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Abstract

The transcription factor CREB (cAMP Response Element Binding Protein) is overexpressed in the 

majority of acute myeloid leukemia (AML) patients, and this is associated with a worse prognosis. 

Previous work revealed that CREB overexpression augmented AML cell growth, while CREB 

knockdown disrupted key AML cell functions in vitro. In contrast, CREB knockdown had no 

effect on long-term hematopoietic stem cell activity in mouse transduction/transplantation assays. 

Together, these studies position CREB as a promising drug target for AML. To test this concept, a 

small molecule inhibitor of CREB, XX-650-23, was developed. This molecule blocks a critical 

interaction between CREB and its required co-activator CBP (CREB Binding Protein), leading to 

disruption of CREB-driven gene expression. Inhibition of CBP-CREB interaction induced 

apoptosis and cell cycle arrest in AML cells, and prolonged survival in vivo in mice injected with 

human AML cells. XX-650-23 had little toxicity on normal human hematopoietic cells and tissues 
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in mice. To understand the mechanism of XX-650-23, we performed RNA-seq, ChIP-seq and 

Cytometry Time of Flight with human AML cells. Our results demonstrate that small molecule 

inhibition of CBP-CREB interaction mostly affects apoptotic, cell cycle, and survival pathways, 

which may represent a novel approach for AML therapy.
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Introduction

Acute Myeloid Leukemia (AML) is associated with a 5-year overall survival of less than 

50% despite the use of intensive chemotherapy regimens and hematopoietic stem cell 

transplantation 1–3. Treatment for AML is itself associated with significant morbidity and 

mortality, and most patients who survive experience at least one serious treatment-related 

long-term complication 4. Therefore, it is critical to identify novel therapeutic targets and 

develop more effective, less toxic drugs for the treatment of patients with AML.

Previous work has described the transcription factor CREB (cAMP Response-Element 

Binding Protein) as a critical regulator of the growth and survival of AML cells 5–9. Elevated 

CREB expression was observed in ~60% of AML patients, and this was associated with a 

significantly worse prognosis and an increased risk of relapse compared to patients with 

basal CREB expression 8. CREB overexpression in AML cells augments their growth rate 

and confers resistance to apoptosis in vitro 6. Conversely, CREB knockdown inhibited AML 

cell proliferation and induced apoptosis, but had no toxicity to normal hematopoietic stem 

cells in mouse transplantation assays 10. Together, these observations suggest that CREB is 

associated with a more aggressive form of AML, yet is not required for normal 

hematopoietic stem cell function. Therefore, we hypothesized that inhibition of CREB 

function may represent an effective, targeted approach to AML therapy.

CREB binds genomic DNA at thousands of loci possessing the consensus cAMP Response 

Element (CRE) 11. Initiation of CREB-driven transcription at these loci requires that CREB 

recruits and binds a co-activator, the histone acetyltransferase CREB-Binding Protein 

(CBP) 5. This interaction triggers local histone acetylation and subsequent recruitment of 

transcriptional machinery to the promoter 12. Thus, our group sought to disrupt the critical 

interaction between CREB and CBP in an effort to disrupt CREB-driven transcription.

The precise molecular interactions that mediate CBP-CREB binding have been resolved by 

NMR spectroscopy 13, 14, which facilitated the identification of a small molecule capable of 

disrupting the CBP-CREB interaction, naphthol AS-E phosphate (KG-501) 15. Although the 

low potency of KG-501 renders it a poor candidate for potential clinical use (Ki ~90 μM), 

this molecule provided a molecular backbone for further development 16. Through a series 

of structure-activity relationship studies, we designed “XX-650-23” [N-(4-cyanophenyl)-3-

hydroxy-2-naphthamide], an inhibitor of the CBP-CREB interaction 17–20. The current 

studies were undertaken to determine the efficacy of targeting the CBP-CREB interaction in 

AML therapy, and evaluate the toxicity of this approach to normal cells.
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Here, we provide evidence that XX-650-23 disrupts the CBP-CREB interaction in AML 

cells and elicits an array of on-target transcriptional alterations, which leads to cell cycle 

arrest and apoptosis of AML cells in vitro and significantly increases survival of cell line- 

and patient-derived xenograft mice with no toxicity to normal hematopoietic cells or 

animals. These data provide “proof-of-principle” that CREB inhibition represents a potential 

approach for AML treatment.

Methods

Protein Purification and Biacore

KIX domain mutants were created by standard cloning and mutagenesis methods in the 

pGEX4T3 vector (GE Healthcare Life Sciences, Pittsburgh, PA, USA). GST-KIX and its 

mutants were purified with the B-PER GST Fusion Protein Spin Purification Kit (Thermo 

Scientific/Pierce, Grand Island, NY, USA). Surface Plasmon Resonance analysis was 

performed on a GE Biacore 3000 surface plasmon resonance instrument in collaboration 

with the Stanford Protein and Nucleic Acid (PAN) Facility.

AML Cell Lines and Patient Samples

KG-1, HL-60, MOLM-13, MV-4-11, and U937 cell lines were obtained from ATCC and 

low-passage stocks were used and cultured for less than 3 months maintained. Cells were 

regularly tested for Mycoplasma and growth characteristics, though no further authentication 

has been performed by the authors. Cells were plated at a density of 2-4x105 cells/ml, and 

treated with various doses of XX-650-23. Cell counts and viability were determined using 

the Vi-CELL XR Cell Viability Analyzer (Beckman Coulter, Brea, CA, USA). HL-60 and 

KG-1 cells overexpressing CREB were generated using lentiviral gene delivery with 

subsequent cells sorting for GFP. CREB knockdown was achieved by infecting cells with a 

lentivirus expressing the shRNA sequence 5′-GCAAATGACAGTTCAAGCCC-3′. For 

chemotherapy combination experiments, combination index values were calculated using 

median effects analysis on Calcusyn software as described 21. Human patient bone marrow 

samples were cultured in DMEM plus 20% FBS and 1x PSG, supplemented with 

recombinant GM-CSF (20 ng/ml), G-CSF (20 ng/ml), SCF (50 ng/ml), IL-3 (20 ng/ml), and 

IL-6 (10 ng/ml). Cells (1x105 cells/ml) were cultured with XX-650-23 for up to 72 hours. 

All samples contained >85% AML blasts and were not sorted prior to performing 

experiments. Flow cytometry analyses were performed on a DxP10 flow cytometer (Cytek, 

Fremont, CA, USA). All antibodies were purchased from BD Biosciences (San Jose, CA, 

USA). Bone marrow from AML patients were collected through voluntary patient 

participation at University of California, Los Angeles (Los Angeles, California, USA) and 

Stanford University (Palo Alto, California, USA) in compliance with the Institutional 

Review Board regulations of each institution. Informed consent was obtained from all 

human subjects, and all research was conducted in accordance with the statements set forth 

in the declaration of Helsinki and the Data Protection Directive.

Luciferase Assays

KG-1 cell lines were created to express luciferase in a CREB-dependent or non-CREB-

dependent fashion using lentiviral gene delivery. Cells were sorted for mCherry expression. 
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Luciferase activity was measured on a spectrophotometer using the Promega Luciferase 

Activity Kit (Promega, Madison, WI, USA) per manufacturer’s instructions. The split 

Renilla luciferase complementation assay has been described previously 20. In this assay, the 

KID and KIX domains were fused to the N- and C- terminal regions of Renilla luciferase, 

respectively. Once KIX binds phosphorylated KID, the Renilla luciferase regions were 

brought together, resulting in luciferase activity.

Cell Cycle Analysis

KG-1 cells were synchronized at prometaphase using a modified thymidine plus nocodazole 

block 22. Briefly, KG-1 cells were treated with 2 mM thymidine for 30 h, washed with PBS 

and released from G1/S block in fresh media for 4 h. The cells were incubated with 300 nM 

nocodazole (Sigma, St. Louis, MO, USA) for 13 h. XX-650-23 or DMSO was added 3 hours 

before release. The synchronized cells were washed with PBS and released from the mitotic 

block in fresh media containing XX-650-23 or DMSO. To analyze DNA content by flow 

cytometry, cells were harvested, fixed in 70% ice-cold ethanol for at least 1 hour at −20°C, 

and then stained with propidium iodide. Cells were analyzed on a FACS Calibur flow 

cytometer (BD Biosciences). Cell-cycle distribution was determined using FlowJo software 

(TreeStar, Ashland, OR, USA).

Chromatin Immunoprecipitation and High-Throughput Sequencing (RNA-Seq and ChIP-
Seq)

For Chip-Seq experiments, KG-1 cells were treated with 5 μM XX-650-23 or DMSO for 6 

hours. Cells were cross-linked with 1% formaldehyde at room temperature for 10 min and 

then incubated with 0.125 mM glycine for 5 min. After cross-linking, chromatin was 

digested by Micrococcal nuclease and then sonicated using SimpleChIP® Plus Enzymatic 

Chromatin IP Kit (Cell Signaling, Danvers, MA, USA) following the manufacturer’s 

protocol. Chromatin immunoprecipitations were carried out with anti-CREB antibody (17–

600, Millipore, Billerica, MA, USA), anti-Acetyl-Histone H3 (8173, Lys27) (D5E4) (Cell 

Signaling Technology) or a control IgG (Santa Cruz Biotechnology, Santa Cruz, CA, USA). 

The captured immunocomplexes containing bound transcriptional DNA fragments were 

eluted, with recovered DNA fragments used for PCR amplification. For RNA-Seq 

experiments, KG-1 cells were treated with XX-650-23 (5μ) or 0.1% DMSO for 12 hours. 

Sample libraries were run using the Illumina sequencing platform. Two hundred million 

reads were collected on two biological replicates of the experiment. Libraries were prepared 

using the Illumina Truseq RNA samples prep kit per manufacturer’s instructions. Fastq files 

were aligned using TopHat 23. Aligned BAM files were used for CuffDiff calculation of 

differentially expressed genes 24. CummeRbund R package was used to infer QC of the 

RNA-seq. RNA-seq and CREB ChIP-Seq data were deposited in the NCBI GEO database 

(GEO Submission GSE74928). ChIP-seq analysis was performed as previously described 25. 

BETA analysis was used by inferring differentially expressed genes between DMSO and 

XX-650-23 treated cells based on a fdr ≤0.01 and gene distance of 100 kb (Galaxy/

cistrome). For analysis of RNA-seq data as target genes of known transcription factors, a 

curated list of all human target genes was extracted from the TRANSFAC Pro database. 

DNA sequences enriched on ChIP-Seq were defined as previously published26.
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RT-PCR

Total RNA was isolated using the Aurum RNA Isolation Mini Kit, and the iScript cDNA 

Synthesis Kit was used to prepare samples for qPCR (Bio-Rad). Data were analyzed using 

the Livak method 27. Data were normalized to 7SL scRNA expression values.

Western Blot Analysis

Cell lysates were resolved on SDS PAGE gels, and then transferred onto PVDF membranes 

(Millipore). Listing of primary antibodies is given in Supplementary Table 1. Secondary 

antibodies were used at a 1:2500 dilution and purchased from Thermo Scientific/Pierce. 

Membranes were visualized with enhanced chemiluminescence system. Representative blot 

of at least three different experiments are shown.

Hematopoietic Cell Colony Assays

Normal human bone marrow cells were resuspended in methylcellulose (2×104 cells/mL, 

Miltenyi Biotec, Auburn, CA, USA) containing cytokines (GM-CSF, G-CSF, IL-3, IL-6, 

SCF, erythropoietin), and cultured for 2 weeks. Colonies were scored on the basis of 

morphology.

Caspase-3 Activity

The ApoTarget Caspase-3 Protease Activity Kit (Invitrogen, Grand Island, NY, USA) was 

used per manufacturer’s instructions.

Multiparameter Single Cell Mass Cytometry (CyTOF)

Bone marrow from primary AML patients were cultured as above and treated for 48 hours 

with 2 μM XX-650-23. These were stained for viability using cisplatin as previously 

described 28. Cells were fixed with 1.6% PFA for 10 min and washed with cell staining 

media (CSM). Fc receptor block was performed using Human TruStain FcX (Biolegend, San 

Diego, CA, USA). Cells were stained for surface proteins at room temperature for 30 min, 

and then cells were washed twice with CSM and permeabilized with methanol pre-cooled to 

4°C for 10 min. Cells were then washed twice and stained for intracellular proteins for 30 

min at room temperature. Cells were washed and stained with 1 mL of 2000x iridium DNA 

intercalator (diluted 1:5000 in PBS with 1.6% PFA; DVS Sciences, Sunnyvale, CA, USA) 

overnight at 4 °C. Data were acquired using internal metal isotope bead standards as 

previously described 29. Cell events were acquired on a CyTOF I (DVS Sciences/Fluidigm). 

All antibodies were also purchased from DVS Sciences/Fluidigm. Each patient sample was 

individually normalized to the internal bead standards prior to analysis. To remove dead cells 

and debris, cells were gated based on cell length and DNA content as described 30.

AML Xenograft Models of AML

For AML xenograft mouse experiments, HL-60 cells (2x106) expressing firefly luciferase 

and GFP, or cryopreserved human AML patient cells (5x106), were injected through the tail 

vein into NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice (5–8 weeks old). AML cells-

injected mice were randomly divided into two groups. Mice were then treated with 

XX-650-23 or 10% DMSO, injected intravenously (i.v.) daily, until death or an endpoint was 
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reached (moribundity) in accordance with the animal care institutional guidelines. The 

sample size of AML xenograft mice experiments was determined based on our previous 

studies as well as the published papers 31,32. Blinding was not used for xenograft mice 

experiments. All mouse experiments were subject to institutional approval by Stanford 

University Institutional Animal Care and Use Committee. Leukemia progression in mice at 

the indicated time points was monitored using an in vivo IVIS 100 bioluminescence/optical 

imaging system (Xenogen Corporation, Alameda, CA, USA). Analysis was performed on 

Living Image In Vivo imaging software (Perkin-Elmer, Waltham, MA, USA).

Statistical Analysis

Unless noted, all experiments were performed in triplicate, and unpaired two-tailed 

Student’s t-test was used to assess experimental mean values for statistically significant 

differences using Prism software (v5.04) (Graphpad, La Jolla, CA, USA), with p-values of 

<0.05 deemed statistically significant. Kaplan-Meier plots and statistical significance of 

differences in mice survival experiments were calculated using a Log-rank (Mantel-Cox) test 

with Prism. Synergy calculations were performed using CalcuSyn software. IC50s were 

calculated using Prism.

Results

XX-650-23 is a Competitive Inhibitor of CREB Binding to CBP

The region of CBP critical for binding Ser-133-phosphorylated-CREB is termed the Kinase-

Inducible Acceptor domain or ‘KIX’ domain, and spans CBP amino acids 586-666. The 

small molecule KG-501 (Naphthol AS-E phosphate) was reported to disrupt CREB-CBP 

binding by interacting with key amino acids in the KIX domain, particularly residues 

Arg-600 to Valine-608 15. Based on this information and subsequent structure-activity 

relationship studies, our group developed an optimized molecule targeted to this domain 

designed to disrupt the CREB-CBP interaction, termed “XX-650-23” (Fig. 1A). Earlier 

structure-activity relationship studies revealed XX-648-48 as an inactive yet similarly 

structured compound (N-methyl-(4-chlorophenyl)-3-hydroxy-naphthamide) 20.

Binding of XX-650-23 to the KIX domain and two KIX domain mutants in which residues 

critical for CREB binding were altered or removed (Arg-600 mutated to Alanine or deletion 

of amino acids 586-602) was determined by Surface Plasmon Resonance (Biacore) analysis 

(Fig. 1B). Mutation of Arginine-600 to Alanine reduced binding of XX-650-23 by ~45%, 

while a KIX domain mutant lacking amino acids 586-602 reduced binding by ~70%. A 

hypothetical binding model between XX-650-23 and CBP KIX domain is shown (Fig. 1C). 

This binding model suggests the major interactions between XX-650-23 and the KIX 

domain are hydrophobic. The aniline ring of XX-650-23 is predicted to project into a 

hydrophobic pocket of KIX where Leucine-141 of CREB, an amino acid essential for stable 

CREB binding, normally docks.

XX-650-23 inhibited the interaction between CREB and CBP with an IC50 of 3.20 ± 0.43 

μM in a split Renilla luciferase complementation assay was performed 20 (Fig. 1D). To 

determine whether XX-650-23 could specifically decrease CREB-driven reporter gene 
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expression in AML cells, KG-1 AML cell lines expressing luciferase under the control of a 

CREB-driven promoter (two CRE elements placed upstream of an attenuated CMV 

promoter) or a CMV-driven promoter without CREs, were treated with XX-650-23. CREB-

driven luciferase activity was reduced by XX-650-23 in a dose-dependent fashion, whereas 

CMV-driven luciferase expression was unchanged following treatment (Fig. 1E). The 

inactive analog XX-648-48 had no significant effect on luciferase activity in either AML cell 

line. Finally, we demonstrated that treatment of HEK293 lysates or cells with XX-650-23 

prevented binding of CREB to CBP (Fig. 1F). Thus, XX-650-23 inhibits CREB function 

through disruption of CBP-CREB interaction.

XX-650-23 Suppresses AML growth

To test the effects of XX-650-23 on AML cells, four AML cell lines were treated with doses 

ranging from 100 pM to 10 μM for 48 hours. The IC50 of XX-650-23 for these AML cell 

lines, defined as a 50% reduced viable cell count compared to DMSO-treated cells after 48 

hours of culture, ranged from 870 nM to 2.3 μM (Fig. 2A). These four cell lines expressed 

CREB protein (Fig. 2B). We next tested the effects of XX-650-23 on primary human AML 

samples, obtained at initial diagnosis or at the time of relapse. AML patient samples treated 

with 2μM XX-650-23 for 72 hours demonstrated a range of responsiveness (Fig. 2C). AML 

patient samples with relatively higher CREB expression exhibited a greater loss of viability 

than those with lower CREB expression (Fig. 2D). Normal bone marrow cells expressed 

nearly undetectable levels of CREB protein (Fig. 2D), and the viability of the cells did not 

significantly change by treatment with XX-650-23 (Fig. 2C). These studies were extended to 

10 methylcellulose colony assays of normal human hematopoietic cells, which also 

demonstrated no significant decrease in colony formation when treated with up to 10 μM 

XX-650-23 (Fig. 2E). These data indicated that higher CREB expression might be 

associated with greater sensitivity to XX-650-23. Therefore, we modulated CREB 

expression levels to determine whether we could change sensitivity of cells to XX-650-23. 

CREB was overexpressed, or knocked down by shRNA, in KG-1 cells (Fig. 2F). CREB 

knockdown in KG-1 cells decreased their sensitivity to XX-650-23, while CREB 

overexpression increased their sensitivity (IC50: CREB KD, 3.43 μM; GFP, 1.53 μM; CREB 

OE, 0.99 μM) (Figure 2G). Experiments were also performed to examine the efficacy of 

combining XX-650-23 with cytarabine or daunorubicin, standard drugs used in AML 

therapy. Combination of XX-650-23 with cytarabine or daunorubicin in KG-1 cells showed 

synergistic effect against KG-1 cell viability (Supplementary Fig. 1).

XX-650-23 Specifically Disrupts CREB-Driven Transcription in AML Cells

To determine the functional specificity and downstream effects of XX-650-23 in AML, the 

CREB transcriptome was first defined in KG-1 cells using CREB chromatin 

immunoprecipitation followed by high-throughput sequencing (CREB ChIP-Seq). In 

parallel, whole transcriptome sequencing (RNA-Seq) of KG-1 cells treated with XX-650-23 

was performed to define alterations in the transcription of identified CREB-bound genes. 

Finally, whole-genomic H3K27 histone acetylation analysis was performed to assess the 

disruption of CBP-CREB interaction. Together, these three experiments permitted: 1) 

assembly of a comprehensive catalogue of CREB-bound sites within the AML genome; 2) 

identification of the set of genes which exhibited altered expression following XX-650-23 
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treatment, and 3) measurement of alterations in CBP-mediated histone acetylation at 

genomic CREB binding sites. In this way, the ‘on-target’ effects of XX-650-23 could be 

assessed.

CREB peaks (p-val ≤ 10−5, fdr ≤1%) identified on ChIP-Seq analysis were enriched for the 

canonical ‘CRE element’ DNA binding sequence (Fig. 3A). CREB binding was detected at 

4680 sites in the KG-1 AML cell genome. Nearly half of the CREB-bound genes (1863 of 

4213 total CREB-bound genes) in KG-1 cells coincided with the previously reported 

putative CREB target genes 11. Gene ontology enrichment analysis of the function 

annotations for regions associated with CREB-bound peaks (Supplementary Table 2) 

showed that CREB-bound peaks were enriched in clusters of genes regulating cell cycle and 

apoptosis as well as translation and mRNA processing. Over 90% of occupied CREB-

binding sites were within 500 bp of a transcription start site (TSS) (Supplementary Figs. 2A 

and 2B). Of these CREB-bound 4213 genes, 2787 CREB-bound genes exhibited reduced 

expression following XX-650-23 treatment and 602 genes exhibited greater than 50% 

reduced expression. Majority of H3K27 peaks in CREB-bound genes (4052 out of 5282 

total peaks) exhibited decreased H3K27 histone acetylation following treatment with 

XX-650-23 (66.5 ± 17% of control, n=4052 peaks. Fig. 3B & Supplementary Table 3). 

Histogram analysis of H3K27 acetylation of all CREB-bound genomic loci also showed a 

relative reduction in overall H3K27 acetylation, represented as a median shift to the left 

(Supplementary Fig. 2C). Moreover, reductions in H3K27 acetylation were almost 

exclusively within 1 to 3 kb of these CREB-bound promoter sites. On the contrary the genes 

that did not show any significant binding site for CREB showed no global detectable 

changes in acetylation. (Fig. 3C). CREB genomic binding did not change following 

XX-650-23 treatment (Fig. 3D and Supplementary Fig. 2D). Western blot analysis 

confirmed that XX-650-23 caused a specific decrease in H3K27 acetylation and is not a 

general inhibitor of acetyltransferase activity (Fig. 3E).

To validate the RNA-Seq data set, qPCR of XX-650-23 target genes with CREB-bound 

promoters that exhibited significant (>50%) transcriptional downregulation and reduced 

H3K27 acetylation was performed in two AML cell lines (KG-1 and HL-60) following 

treatment with XX-650-23 (Fig. 3F and Supplementary Fig. 2E). XX-650-23 consistently 

reduced these genes expression in both these cell lines in a statistically significant manner, 

although we expect that these genes are regulated by other transcription factors in addition to 

CREB. To assess for potential ‘off-target’ effects of XX-650-23, the RNA-Seq gene 

expression profiles of other transcription factors that bind CBP, including Rel, RelA, RelB, 

Foxo3, Foxo1 and Myb, were analyzed. XX-650-23 evoked no significant change in the 

expression of these other CBP-binding transcription factors target genes (Fig. 3G). These 

results were confirmed for a set of Myb-driven genes, SP3, FPR1, PRODH, SLC34A2 in 

both KG-1 and HL-60 cells 33–36 (Supplementary Fig. 2F). Thus, these results provide 

evidence that XX-650-23 disrupts the interaction of CREB to the KIX domain of CBP but 

not other KIX binding proteins in AML cells.
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XX-650-23 Prolongs Survival in Mouse Models of AML Without Toxicity

To examine the efficacy of XX-650-23 in an in vivo model of AML, NSG mice were tail-

vein injected with HL-60 AML cells expressing Firefly luciferase and GFP. Mice received 

XX-650-23 (2.3 mg/kg, intravenously) once daily starting the day after cell injection 

(immediate treatment groups), or starting seven days after AML cell injection (delayed 

treatment groups). Bioluminescence imaging performed during treatment revealed less 

disease burden in XX-650-23-treated mice compared to control (average radiance 

measurements, given in p/sec/cm2/sr: 5.7x105 for the control group versus 2.8x105 for the 

XX-650-23-treated group at day 17) (Fig. 4A). XX-650-23 significantly prolonged the 

median survival in Kaplan-Meier analysis in both the immediate (median survival, 22 days 

versus 31 days, p = 0.0027, long-rank test; mean survival 22.3 days vs. 31.2 days) and 

delayed treatment groups (median survival, 20 days versus 24 days, p = 0.0211, long-rank 

test; mean survivals 20.9 vs. 26.4 days) (Fig. 4B and 4C). We also assessed the efficacy of 

XX-650-23 in a mouse xenograft model using primary AML cell sample (patient sample 

#186). Mice treated with XX-650-23 demonstrated a significant survival advantage 

compared to DMSO-treated mice (Supplementary Fig. 3A). Next we evaluated the effects of 

XX-650-23 on CREB transcriptional activity in AML cells in vivo. This experiment 

recapitulated in vitro findings (Fig. 4D).

Pharmacokinetic studies showed that the half-life of XX-650-23 in plasma is approximately 

4.3 hours (Supplementary 3B). XX-650-23- treated mice demonstrated normal complete 

blood counts, liver function tests and kidney function tests, compared to age-matched NSG 

mice given no treatment (Supplementary Fig. 3C). Histology demonstrated no microscopic 

evidence of vital organ damage (Supplementary Fig. 3D).

XX-650-23 Induces Apoptosis in AML cells

We next examined whether XX-650-23 induced cell death as well as growth inhibition in 

AML cells. In HL-60 cells treated with XX-650-23, apoptosis was induced in a dose- and 

time-dependent manner. Over 95% of cells entered early apoptotic or late apoptotic stage 

after 72 hours of XX-650-23 treatment (Fig. 5A). To confirm that XX-650-23-induced 

apoptosis is not restricted to HL60 cells, we determined the apoptotic effect of XX-650-23 

in additional AML cell lines (KG-1, MV-4-11, and U937 cells). Apoptosis was observed in 

all these cell lines with XX-650-23 treatment (Supplementary Fig. 4). XX-650-23 elicited 

apoptosis through the intrinsic apoptosis pathway, with activation of Caspase-3 (Fig. 5B) 

and detectable Caspase-9 cleavage (data not shown). The balance between pro- and anti-

apoptotic protein expression contributes to cell fate decisions 37. CREB regulates the 

expression of several anti-apoptotic proteins, including BCL2, BCL2L1 and MCL1 38, 39. 

The transcription of BCL2 decreased following 72 hours of 2 μM XX-650-23 treatment (Fig. 

5C), and this was verified by Western blot analysis (Fig. 5D). In parallel, the expression of 

Mcl-1 initially increased, then decreased at 72 hours, while Bcl-XL expression remained 

constant. Bcl-2 inhibitor ABT-737 treatment induced in apoptosis, similar to XX-650-23 

(Supplementary Figs. 5A and 5B) 40. KG-1 cells also underwent apoptosis following 

treatment with XX-650-23, and similarly exhibited decreased Bcl-2 expression alongside a 

pronounced decrease in Mcl-1 (Fig. 5D). Bcl-2 levels were influenced by CREB expression 

Mitton et al. Page 9

Leukemia. Author manuscript; available in PMC 2016 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in these AML cell lines (Supplementary Fig. 5C). Together, these data suggest that 

downregulation of Bcl-2 is involved in XX-650-23-induced apoptosis in AML cell lines.

We examined the relationship between Bcl-2, total CREB, and p-CREB in primary AML 

patient samples, especially in the CD34+CD38− subpopulation containing the putative 

‘leukemia initiating’ cells 41, 42 (see CyTOF gating strategy, Supplementary Fig. 5D). 

XX-650-23 treatment significantly reduced Bcl-2 expression levels in all cell subpopulations 

in XX-650-23 hyper-responsive primary AML cells with higher CREB expression (#96 and 

#186) (Fig. 5E, within red outlined box). This occurred alongside downregulation of total 

CREB as well as reduced phosphorylation at Serine 133, an activation mark of CREB (Fig. 

5E, within yellow outlined box). In contrast, in patient sample 97, which expressed less 

CREB at baseline and showed less sensitivity to XX-650-23 (Fig. 2C & D), CREB 

phosphorylation was increased in the CD34+CD38− population without significant Bcl-2 

downregulation (Fig. 5E, within white outlined box). However, p-CREB and Bcl-2 

expression levels were downregulated in CD34+CD38− population (within green outlined 

boxes) in a patient 111, even though phosphorylation of CREB was increased (Fig. 5E, 

within blue outlined box) without significant Bcl-2 downregulation (Fig. 5E, within blue 

dashed box) in the more mature AML cell populations. These data suggest that Bcl-2 

downregulation in CD34+CD38− population may determine the sensitivity to the drug. The 

relative activation of AKT and ERK was associated with increased or decreased of 

phosphorylation of CREB (Supplementary Fig. 6A). HL-60 cells also showed an increase in 

levels of phosphorylated but not total CREB following 24 hours of XX-650-23 treatment 

(Supplementary Fig. 6B), and this effect can be blocked by validated small molecule 

inhibitors of the ERK and RSK kinases (Supplementary Fig. 6B), in keeping with previous 

work describing ERK/RSK-mediated phosphorylation of CREB downstream of the GM-

CSF receptor in AML cells 43–45. Blockade of these kinases increased the efficacy of 

XX-650-23 (Supplementary Fig. 6C).

XX-650-23 Induces AML Cell Cycle Arrest at the G1/S Transition

CREB regulates the cell cycle by virtue of transcriptionally regulating the expression of key 

cell cycle genes. Following release from prometaphase, cell cycle progression was followed 

by DNA contents for 24 hours in the presence or absence of XX-650-23 in KG-1 cells. 

XX-650-23 treatment caused aberrant cell cycle progression at the G1/S transition and 

through S-phase (% cells in G1-phase for DMSO treated cells: 61.18 ± 0.97% and 4.92 

± 0.33% at 4 and 8 hours, respectively, versus XX-650-23-treated cells: 66.20 ± 1.83% and 

55.41 ± 0.59% (mean ± SEM, n=3) at 4 and 8 hours following release, respectively.) (Fig. 

6A and Supplementary Fig. 7A). CyTOF cell cycle analysis of AML patient bone marrow 

samples revealed the same perturbation in the G1/S transition following XX-650-23 

treatment (Fig. 6B). The percent of cells in both the S and G2/M phases was reduced, and 

that of G1 was increased.

A number of previously described mediators of the G1/S transition and S-phase progression 

were downregulated following XX-650-23 treatment, including a set of CREB-bound 

cyclins, CCNA2 and CCND1, and FOSL1 46–48(Fig. 3F & 6C). We analyzed RNA 

expression and H3K27 acetylation of CREB-bound genes to identify potential target genes 
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of XX-650-23 in cell cycle perturbation. CREB-bound cell cycle regulators including 

FOSL1, CDK2, CCNB1, CDC25C, and RAD54L show decreased RNA expression and 

H3K27 acetylation following XX-650-23 treatment (Supplementary Fig. 7B). 

Transcriptional alterations of a subset of cell cycle regulators were confirmed by qPCR in 

two AML cell lines (Supplementary Figs. 7C). In addition, our group has previously 

reported that Replication Factor C3 (RFC3), a member of the PCNA DNA replication 

complex, is downregulated following CREB knockdown in AML cells, which is associated 

with G1/S transition arrest 49. Levels of RFC3 also decrease following XX-650-23 treatment 

(Fig. 6C).

Discussion

Successful treatment of AML remains a major clinical challenge, and progress in our ability 

to treat AML patients will depend on the development of effective approaches associated 

with minimal toxicity. Here, we provide the first evidence that a novel small molecule that 

inhibits the transcription factor CREB may offer a unique, effective and non-toxic approach 

to treat AML patients. CREB is an ideal target for AML therapy, given that CREB 

overexpression is associated with a worse prognosis and knockdown of CREB does not 

affect normal HSC activity. Previous work facilitated the synthesis of a novel inhibitor of 

CREB function, XX-650-23, which our data establish as a competitive inhibitor of CBP-

CREB interaction. We offer this study as ‘proof of principle’ that CREB inhibition is a 

viable approach to AML therapy.

Developing ‘targeted therapy’ for AML connotes both that the agent is targeted to a specific 

function or molecule within AML cells, and that the agent’s toxicity is specific to AML 

cells. Based on our data, we postulate that the specificity with which XX-650-23 disrupts the 

CREB-CBP interaction defines its selective toxicity to AML cells. Biochemical evidence 

supports that XX-650-23 binds CBP and physically disrupts the CREB-CBP interaction. Our 

whole-transcriptome and genome acetylation studies provide evidence that the CREB-CBP 

interaction is specifically disrupted. The almost exclusive reduction in H3K27 acetylation at 

CREB-bound genomic loci reflects the absence of CBP docking at, and only at, these sites. 

Furthermore, the activity of other transcription factors that also bind the CBP KIX domain 

was not affected. These data provide evidence that XX-650-23 exerts ‘on-target’ effects. 

Within the set of genes bound by CREB, the transcription of hundreds of genes was 

significantly (>50%) down-regulated. While it is not surprising that we did not observe a 

significant reduction in transcription of all CREB-bound genes, expression of most 

eukaryotic genes is determined by input from unique sets of diverse transcription factors. 

Our data demonstrate that key CREB-bound factors that regulate the cell cycle and apoptosis 

are downregulated, and sufficient to cause AML cell cycle arrest and apoptosis in vitro and 

in vivo.

Targeting the activity of specific transcription factors for the treatment of leukemia has 

begun to show promise in a number of pre-clinical studies. The interaction of CBP with β- 

and γ-catenin has recently been targeted using a small molecule, and this strategy was 

effective against both primary and relapsed ALL 31. Another group recently demonstrated 

the efficacy of targeting the mutant fusion transcription factor CBPβ-SMMHC, which drives 
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inv(16)+ AML 32, and the critical interaction between menin and MLL fusion proteins, 

which drives subtypes of both AML and ALL, has also been successfully targeted 50. The 

data presented here similarly provide “proof of principle” that CREB can be targeted for the 

treatment of AML, and lay the groundwork for advancing this strategy to the clinical arena.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. XX-650-23 Binds to the KIX Domain of CBP and Blocks CREB-Dependent Gene 
Transcription
A) The structure of XX-650-23 and its inactive analog XX-648-48. B) The native human 

KIX domain and two mutant proteins were expressed as a fusion protein with GST and 

subjected to Biacore analysis to assess XX-650-23 binding characteristics. Mutation of 

Arginine-600 to Alanine reduced binding of XX-650-23 by ~45% at a concentration of 5μ, 

while a KIX mutant lacking amino acids 586-602 reduced binding by ~70%. C) Binding 

model of XX-650-23 to CBP KIX domain. D) Split-Renilla luciferase assays with 293T 

cells treated with forskolin demonstrated XX-650-23 is a direct inhibitor of CREB-CBP 

binding, with an IC50 of approximately 3.2 μM. Data are presented as mean ± SD, n=3. E) 

Two KG-1 cell lines were generated in which luciferase was expressed either under the 

control of a CREB-driven promoter (CRE) or a CMV-driven promoter (CMV). These two 

cell lines were each treated with a range of XX-650-23 or XX-648-48 concentrations for 6 

hours. Luciferase activity was significantly decreased following XX-650-23 treatment at 

concentrations of 3, 10 and 30 μM. No statistical difference in luciferase activity was 

detected following XX-648-48 treatment. Data are presented as mean ± SEM, n=3. *p < 

0.05, t-test. F) XX-650-23 inhibits CREB/CBP association. HEK293 cells were transfected 

with a plasmid expressing CREB. Cells were treated with XX-650-23 (XX, 5 μM, lane 3) or 

DMSO vehicle (D) for 1 hour. Total lysates of transfected HEK293 cells were 

immunoprecipitated using anti-CBP antibody. XX-650-23 (XX, 5 μM) was added during 

anti-CBP Immunoprecipation process (lane 1). Immunoprecipitates (CBP-IP) and total 

lysates were analyzed by immunoblotting for phospho-CREB (p-CREB) and CBP. Binding 

activities were calculated by the relative protein amounts of p-CREB bound to CBP 

normalized against CBP amounts in CBP IP products.
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Fig. 2. Efficacy of CREB Inhibition Depends on CREB Expression
A) IC50 values for 4 AML cells lines identically treated with XX-650-23 are shown. Cells 

were cultured with various doses of XX-650-23 for 48 hours. Viable cells were enumerated 

by Trypan blue exclusion method. B) Western blot of CREB expression levels in 4 AML cell 

lines, run on non-contiguous lanes. C) Six AML patient and three normal bone marrow 

samples were treated with 2 μM XX-650-23 for 48 hours, and the percent of viable cells lost 

or gained compared to DMSO-treated cells is shown. Data are graphed as mean ± SEM (n = 

4). D) Western blot of CREB expression in ten AML patient and four normal marrow 

samples. Relative expression levels of CREB protein are shown. E) Methylcellulose colony 

assays of normal bone marrow progenitor cells treated with up to 10 μM XX-650-23. Cells 

were cultured with XX-650-23 for 2 weeks in methylcellulose media and colonies were 

scored based on morphology. Data are graphed as mean ± SEM (n = 3). F) Western blot of 

CREB expression levels in KG-1 cells engineered to overexpress CREB (CREB OE) or GFP 

control (GFP), or in which CREB expression was reduced by shRNA (CREB KD). 

Representative blots of at least three independent experiments are shown. G) XX-650-23 

dose-response data for the three KG-1 cell lines depicted in (F) following 48 hours of 

treatment.
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Fig. 3. Specificity of CREB Inhibition
A) The consensus sequence obtained following CREB ChIP-Seq, mapped against the 

canonical CRE element sequence. B) Relationship between H3K27 acetylation and CREB-

driven gene expression. RNA-Seq, CREB ChIP-Seq and H3K27 histone acetylation-Seq 

were performed on KG-1 cells treated with 5 μM XX-650-23 or 0.1% DMSO. Combined 

analysis defined the set of genes bound by CREB in AML cells, and alterations in 

transcription and histone acetylation occurring secondary to XX-650-23 at those loci. The 

percent of histone acetylation remaining following treatment with XX-650-23 is plotted 

versus the corresponding change in gene expression for all CREB-bound genes identified by 

CREB ChIP-Seq. C) Changes in H3K27 acetylation for CREB-bound and -unbound genes 

were averaged and plotted against base-pair distance to transcriptional start sites (TSS) 

following XX-650-23 or DMSO treatment. Non-CREB-bound genes show no significant 

change in H3K27 acetylation following XX-650-23 treatment. D) Heatmap of CREB 

binding and H3K27 acetylation relative to TSS in DMSO and XX-650-23-treated samples. 

H3K27 signal intensity, but not CREB binding signal intensity, decreased following 

XX-650-23. E) Western blot of total and H3K27-specific histone acetylation following 

XX-650-23 treatment following 6 or 24 hours of DMSO or XX-650-23 treatment. 

Representative blots of at least three independent experiments are shown. F) RT-PCR 

confirmed downregulation of CREB-bound genes identified on RNA-Seq following 12 hours 

of XX-650-23 treatment of KG-1 cells for all genes shown. Data are graphed as mean ± 

SEM (n = 3), *p < 0.05; **p < 0.001, t-test. G) RNA-Seq analysis demonstrated that the 

activity of six CBP-bound transcription factors remains unchanged following XX-650-23 

treatment.
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Fig. 4. CREB Inhibition In Vivo
A) Bioluminescent imaging revealed significantly less disease burden in mice treated with 

daily intravenous injections of XX-650-23 on treatment days 10, 14 and 17 (DMSO-treated 

mice, left; XX-650-23-treated mice, right). B) Kaplan-Meier curve analysis demonstrated a 

significant survival advantage in NSG mice treated with 2.3 mg/kg/day intravenously once a 

day XX-650-23 (n=10) compared to those treated with vehicle alone (n=10) beginning one 

day after AML cell injection (p = 0.0027, log-rank tests). C) Kaplan-Meier curve analysis 

also demonstrated a survival advantage for mice given XX-650-23 (n=10) compared to those 

treated with vehicle alone (n=8) beginning 7 days after AML cell injection (p=0.0211, log-

rank tests). D) RT-PCR showed XX-650-23 elicits the same transcriptional alterations in 
vivo as observed in vitro. To directly evaluate the effects of XX-650-23 on CREB 

transcriptional activity in vivo, six NSG mice were injected with 2x106 HL-60 expressing 

GFP. After a ten-day engraftment period, the mice received three once-daily treatments of 

either 2.3 mg/kg XX-650-23 or DMSO. The mice were then sacrificed and GFP+ bone 

marrow cells were sorted and analyzed for transcriptional changes in validated CREB target 

genes. XX-650-23 treatment significantly reduced expression of all genes. Data are graphed 

as mean ± SEM (n = 3), *p < 0.05; **p < 0.01, t-test.
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Fig. 5. CREB Inhibition in AML Cells Induces Apoptosis
A) HL-60 cells clearly showed early apoptotic (c-PARP+/aqua amine−) or late apoptotic (c-

PARP+/aqua amine+) populations following 72 hours of treatment with 2 μ XX-650-23. 

Representative flow cytometric plots of three independent experiments are shown. B) 

Caspase-3 activity is activated in response to XX-650-23 treatment in HL60 cells. Data are 

graphed as mean ± SD (n = 2). C) RT-PCR showed BCL2 expression decreases at 72 hours 

after XX-650-23 treatment in HL-60 cells. Data are graphed as mean ± SEM (n = 3). D) 

Western blot analysis shows a decrease in Bcl-2 protein expression following 72 hours of 

treatment, no change in Bcl-XL expression, and an initial increase followed by a decrease in 

Mcl-1 expression in HL-60 cells. In KG-1 cells, Mcl-1 and Bcl-2 also showed decreased 

expression following XX-650-23 treatment. E) Heatmap representing expression of p-CREB 

(Ser133), total CREB (CREB) and Bcl-2 in four primary AML samples treated with DMSO 

or XX-650-23 as analyzed by mass cytometry. Expression shown as Arcsin ratio to DMSO 

control (first column). Gated cell populations based on CD34 and/or CD38 as indicated 

above heatmap. Patient 96 and 186 demonstrate downregulation of Bcl-2 in all cell 

populations in response to XX-650-23 (red box) as well as decreases in total CREB and p-

CREB (yellow boxes). Patient 97 demonstrates activation of p-CREB in a cell specific 

manner (white boxes) as well as no effect on Bcl-2 expression in CD34+CD38− population. 

In contrast, p-CREB and Bcl-2 expression levels were downregulated in CD34+CD38− 

population (green boxes) in Patient 111, even though p-CREB level was increased (blue 

box) and Bcl-2 expression level was not changed (blue dashed box) in mature populations.
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Fig. 6. CREB Inhibition Induces Cell Cycle Arrest
A) Cell cycle phase analysis of KG-1 cells treated with XX-650-23 showed G1/S transition 

block and delayed S-phase progression. Data represent the percentages of cell populations 

residing at each cell cycle stage and is expressed as mean ± SEM (n = 3). B) CyTOF 

analysis of AML patient samples also showed a reduction of cells in G2 and S phase 

following XX-650-23 treatment. C) CREB-regulated genes important for cell cycle 

progression through G1/S and S were downregulated. CCNA2 and CCND1 expression was 

decreased following 24 hours of treatment, while RFC3 expression decreased following 48 

hours of treatment. Data are graphed as mean ± SEM (n = 3), *p < 0.05; **p < 0.01, t-test.
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