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Abstract: Medicinal chrysanthemum detection is one of the desirable tasks of selective chrysan-
themum harvesting robots. However, it is challenging to achieve accurate detection in real time
under complex unstructured field environments. In this context, we propose a novel lightweight
convolutional neural network for medicinal chrysanthemum detection (MC-LCNN). First, in the
backbone and neck components, we employed the proposed residual structures MC-ResNetv1 and
MC-ResNetv2 as the main network and embedded the custom feature extraction module and feature
fusion module to guide the gradient flow. Moreover, across the network, we used a custom loss
function to improve the precision of the proposed model. The results showed that under the NVIDIA
Tesla V100 GPU environment, the inference speed could reach 109.28 FPS per image (416 x 416),
and the detection precision (APs5p) could reach 93.06%. Not only that, we embedded the MC-LCNN
model into the edge computing device NVIDIA Jetson TX2 for real-time object detection, adopting a
CPU-GPU multithreaded pipeline design to improve the inference speed by 2FPS. This model could
be further developed into a perception system for selective harvesting chrysanthemum robots in
the future.

Keywords: chrysanthemum; bud stage detection; deep convolutional neural network; agricultural
robotics; edge computing device

1. Introduction

Numerous studies have reported that medicinal chrysanthemums have significant
commercial value [1]. Furthermore, it has prominent medicinal values [2], such as heat
clearing, eye brightening, anti-inflammatory, antihypertensive, and antitumor properties.
In the natural environment, a single chrysanthemum plant can present flower heads in
different flowering stages, whereas medicinal chrysanthemums are mainly harvested at the
bud stage. To show the research objective of this study, the different flowering stages of
medicinal chrysanthemums are presented in Figure 1.

At present, the harvesting process of medicinal chrysanthemums is labor-intensive
and time-consuming. Consequently, due to the current shortage of skilled labor, it is highly
desirable to develop a selective harvesting robot to solve the crop waste problem. The
design of manipulators and the development of visual perception systems are vital for
selective harvesting robots, and this study is focused on the development of visual per-
ception systems for medicinal chrysanthemums. Traditional machine learning techniques
for computer vision tasks are well developed, with shallow learning of image information
through manual feature extraction [3]. Convolutional neural networks (CNNs), an im-
portant subset of machine learning techniques that learn hierarchical representations and
discover potentially complex patterns from the data, have made impressive advances in the
computer vision field [4]. CNNs have also yielded encouraging results in agriculture [5].

Plants 2022, 11, 838. https:/ /doi.org/10.3390/plants11070838

https://www.mdpi.com/journal /plants


https://doi.org/10.3390/plants11070838
https://doi.org/10.3390/plants11070838
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://doi.org/10.3390/plants11070838
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants11070838?type=check_update&version=1

Plants 2022, 11, 838

20f17

Although the approaches based on traditional machine learning techniques and deep learn-
ing techniques have achieved significant success in agricultural applications, developing
lightweight networks for selective harvesting robots under unstructured environments is
still difficult.

Bud stage

Figure 1. The different flowering stages of medicinal chrysanthemums.

We collected the literature on chrysanthemum detection based on traditional machine
learning techniques and deep learning techniques throughout the world, and the results
are shown in Table 1. Overall, the available literature is relatively scarce. When carefully
analyzing Table 1, we found three issues that deserve further exploration.

Issue 1: The current research has not yet achieved high-accuracy, real-time detection
of chrysanthemums.

Issue 2: Throughout the literature, the testing environment has mainly been in the
laboratory, which cannot guarantee the robustness of the model.

Issue 3: Although there are some differences in the research tasks for chrysanthemum
detection, the aim of the research is to achieve commercialization, and this could be effective
in helping farmers reduce their workload. Commercial production inevitably requires
embedding the models into low-power edge computing devices, but the current test results
are laptop-based.

Table 1. The literature on different chrysanthemum detection tasks.

Authors Tasks e Environment  Trecsion TGRS
[6] Chrysanthemum cut detection 1996 Ideal / / Laptop
[7] Chrysanthemum leaf recognition 2000 Ideal / / Laptop
[8] Chrysanthemum bud testing 2014 Ideal 0.75 / Laptop
[9] Chrysanthemum disease detection 2017 Ideal / / Laptop

[10] Chrysanthemum variety testing 2018 Tllumination 0.85 04s Laptop
[11] Chrysanthemum picking 2019 Tllumination 0.9 0.7s Laptop
[12] Chrysanthemum variety classification 2019 Ideal 0.78 10 ms Laptop
[1] Chrysanthemum variety classification 2020 Ideal 0.96 / Laptop
[13] Chrysanthemum image recognition 2020 Ideal 0.76 0.3s Laptop
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Based on the three issues above, we propose a lightweight convolutional neural
model (MC-LCNN). First, MC-LCNN can balance detection precision and inference speed
to achieve real-time and efficient detection of medicinal chrysanthemums. Second, MC-
LCNN was tested under three complex unstructured environments (illumination variations,
overlaps, and occlusions) to ensure the robustness of the proposed model. Finally, for sub-
sequent development of selective harvesting chrysanthemum robots, we chose to test
MC-LCNN on a low-power embedded GPU platform, NVIDIA Jetson TX2, and further im-
proved the detection inference speed by designing a CPU-GPU heterogeneous architecture.
The contributions of this study are as follows:

1. A lightweight MC-LCNN model was designed to achieve high-accuracy, real-time
detection of medicinal chrysanthemums under complex unstructured environments.

2. A series of experiments were designed to validate the superiority of MC-LCNN,
including comparisons with different data enhancements, ablation experiments be-
tween various network components, and comparisons with state-of-the-art object
detection models.

3. The MC-LCNN model was embedded into an edge computing device with a custom
pipeline design to achieve accurate real-time medicinal chrysanthemum detection.

The rest of the paper is organized as follows. Section 2 describes the dataset, the
hardware parameters of the NVIDIA Jetson TX2, the structure of the proposed model, the
improvement approach of multithreading, the evaluation metrics, and the experimental
setup. Section 3 presents the experimental results in detail. Section 4 discusses the experi-
mental results, advantages and disadvantages, solutions, and future research perspectives
of this work. Section 5 briefly summarizes the contributions of this study.

2. Materials and Methods
2.1. Dataset

The medicinal chrysanthemum dataset used in this study was collected at Yangma
Town, China, from October 2019 to October 2021. Due to the short flowering stage of
medicinal chrysanthemums, there are only a few days per year to collect suitable samples.
The capture device was an Apple X phone with a video resolution of 1080 x 1920. The
dataset was collected entirely in the field, with backgrounds including illumination varia-
tions, occlusions, and overlaps. It is worth mentioning that to ensure the robustness of the
robotic perception system, the collected images had no natural environmental constraints.
The dataset comprising a total of 4000 chrysanthemum images was divided into training,
validation, and test datasets following a ratio of 6:3:1. Some original images are shown in
Figure 2.

2.2. NVIDIA Jetson TX2

The NVIDIA Jetson TX2 comprises a 6-core ARMv8 64-bit CPU complex and a 256-core
NVIDIA Pascal architecture GPU. The CPU complex includes a dual-core Denver2 pro-
cessor, a quad-core ARM Cortex-A57, 8 GB of LPDDR4 memory, and a 128 bit interface,
making it ideal for applications with low power and high computing performance. There-
fore, we chose this edge computing device to design and implement a real-time object
detection system. We introduce the NVIDIA Jetson TX2 in Figure 3.
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JETSONTX2 Parameters
256 Core Pascal
GPU
1.3 TFLOPS (FP16)
o 6 core Denver and A57
(2x)2MB L2
Upto 8 GB
Memory 128b LPDDR4
58 GB/s
Storage Upto32GB eMMC
Encode 4K @ 60 (H.265)
Decode 2x 4K @ 60 (H.265)
12 lanes MIPI CSI-2
Camera D-PHY 1.2 (30 Gbps)
C-PHY (41 Gbps)
87mm x 50mm
Mechanical

400 pin connector

Figure 3. NVIDIA Jetson TX2 parameters.

2.3. MC-LCNN

The MC-LCNN is a lightweight network (11.3 M) that can achieve real-time detection
of complex unstructured environments (light changes, occlusions, and overlaps). The
network structure is mainly constructed based on the backbone, neck, and head, as shown
in Figure 4. In the backbone, the main network utilizes the proposed MC-ResNetv1
incorporating the CBM module and SPP module in this component. In the neck, the
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main network uses the proposed MC-ResNetv2 with the CBL module embedded. In the
head, a feature pyramid network (FPN) feature fusion strategy is employed. Furthermore,
several strategies were used throughout the network to improve the training robustness,
including exponential moving average (EMA), larger batch size, DropBlock regularization,
and generalized focal loss.

Input Focus CBM MRI CBM MRI CBM SPP CBM

ﬁ ﬁ ﬁ ﬁ @_ ﬂ@@ Concat CBM MR2 CBM  Upsampling
. — = L IC0T
Concat Conv

MR1 3x3 BN Ix1 BN ReLU

@ — @ ﬁ ﬁ Concat CBM Concat Conv
3x3 BN 1x1 BN ReLU ﬁ ﬁ

(00T

Sl T =

Figure 4. Structure of the proposed MC-LCNN.

2.3.1. MC-ResNetvl and MC-ResNetv2

The main challenge in implementing lightweight models is that under fixed com-
putational budgets (FLOPs), only a restricted amount of feature channels can be af-
forded. To increase the number of channels at low computational budgets, we employed a
1 x 1 convolution and a bottleneck structure to achieve information exchange between dif-
ferent channels. The shape of the 1 x 1 convolution was determined by the input channels
c1 and output channels c,. Thus, the FLOPs of the 1 x 1 convolution could be calculated
as B = hwcycy, where h and w are the spatial sizes of the feature maps. When the cache in
the computing device is sufficiently large to store all the feature maps and parameters, the
memory access cost (mac) = hw(cy + ¢2) + c1¢2. Based on the mean inequality, we obtain
the following:

mac > 2V hwB + % 1

Accordingly, the memory access cost has a minimum value given by the FLOPs. It
reaches its minimum value when the number of input and output channels are equal.

A1 x 1 convolution reduces the computational burden by replacing dense convolution
with sparse convolution. On the one hand, it allows more channels to be used at fixed
FLOPs and increases the network capacity. However, on the other hand, the increase in
the number of channels leads to a higher memory access cost. The relationship between
memory access cost and FLOPs for 1 x 1 group convolution is as follows:

mac = hw(cy + ¢2) + % @
= hwcey + %f + %,

where g denotes the number of groups, and B = hwcycy /g stands for FLOPs. Given the
fixed input shape ¢; x h X w and the computational cost B, the memory access cost increases
with the growth of g.

Both 1 x 1 convolution and bottleneck structures increase the memory access cost.
This cost is not negligible, especially for lightweight networks. Consequently, to obtain ze
high model capacity and efficiency, the critical issue is how to keep numerous equal-width
channels without either dense convolution or many groups. To achieve the above, we
designed the MC-ResNetvl module. We introduced a simple operator named Focus, where
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the input is split into two branches at the beginning of each unit. One branch uses a shortcut
design, where half of the feature channels directly passes through the block and joins the
next block, which can be considered as functional reuse. The other branch comprises two
convolutions with the same input and output channels. Moreover, another MC-ResNetv2
module was designed, where the Focus operation was removed and thereby the number of
output channels was doubled. At the same time, the original shortcut design was substi-
tuted with two convolutions. The blocks were repeatedly stacked to construct the entire
network. Therefore, 3 x 3 convolutions are followed by an additional 1 x 1 convolutional
layer to blend the features, and the number of channels in each block is scaled to generate
a network of different complexities. Not only that, the 1 x 1 convolution removes com-
putational bottlenecks by reducing the dimensionality of the module, which is otherwise
constraining the size of the network. This not only increases the depth of the network
but also increases the width of the network without significantly affecting performance.
To verify the performance of MC-ResNetvl and MC-ResNetv2, we implemented ablation
experiments, as outlined in Section 3.2.

2.3.2. Generalized Focal Loss

Focal loss [14] is designed for object detection tasks with an imbalance between the
foreground and background classes, and Equation (3) is as follows:

, when =1
FL(p) =~ log (p), pe={ | 77 e V=

®G)
where y € {1,0} denotes the ground truth class, p € {1,0} indicates the estimated prob-
ability of the class labeled as y = 1, and y represents an adjustable focusing parameter.
To be specific, focal loss comprises a dynamically scaling factor part (1 — p;)” and a stan-
dard cross-entropy part —log(p;). Due to the presence of class imbalance problems, we
considered extending the two components of focal loss, known as the quality focus loss (Q):

Q(e) = ~|y | ((1-y) log (1= ) +y log (¢)) )

where 0 = y means the global minimum solution of the quality focus loss. |y — (7|ﬁ isa
moderating factor that goes to 0 when the quality estimate becomes accurate, i.e., o — y,
and the loss of well-estimated samples is downgraded, where the parameter § smoothly
controls the downgraded rate. We used the relative offset from the location to the four
sides of the bounding box as the regression objective. The bounding box regression models
the regression label y as Dirac delta distribution é(x — y), where [ j;o d(x —y)dx = 1. The
integral of y is as follows:

y= [ 60— y)xdx ®)

We learnt the underlying generic distribution P(x) directly without inserting any other
prior factors instead of the Dirac delta assumption. Based on the range of labels for the
minimum yy and maximum yp (yo <y < yn,n € NT), we can estimate  from the model:

+o0 Yn

7= / P(x)xdx = / P(x)xdx 6)
- Yo

To be consistent with the network structure, we discretized the range [yo,yx] as

a set of {yo,y1,---,Yi,Vit1,---,Yn—1,Yn}, converting the integral of the continuous do-

main into a discrete representation. Thus, according to the discrete distribution property

o P(yi) =1, the regression value  can be formulated as follows:

A

=Y o Pyi)yi ?)
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Consequently, P(x) can be simply achieved by the softmax S(-) layer, where P(y;) is
represented as S;.

To encourage high probability values close to the target y to optimize P(x), we intro-
duced a distribution focus loss. By expanding the probabilities of y; and y; 1, the network
is forced to concentrate quickly on values close to the label y. We defined the distribu-
tional focus loss by applying the entire cross-entropy component of the mass focus loss.
We defined distribution focus loss by applying the whole cross-entropy part of quality
focus loss:

Q(Si, Siv1) = —((Wiy1 —y) log(S;) + (v — vi) log(Siy1)) ®)

The purpose of distribution focus loss is to expand the probability of the values around

the target y. The global minimum solution of distribution focus loss, ie., S; = %,
Siy1 = v y+ :z iy, , ensures that the estimated regression target 7 is infinitely close to the corre-

sponding label y, i.e., § = YL o P(y))y; = Siyi + Sivyist = 5=y vi + 525 v = v
Quality focus loss and distribution focus loss can be unified into a general form known
as generalized focal loss. Suppose a model has probability estimates for two variables
v yr (vi <yr) as py, py, (Py, = 0,py, = 0,py, + py, = 1), and the final prediction of their
linear combination is § = y;py, + yrpy, (v1 < 7 < yr). The corresponding label y of the
predicted § also satisfies y; < y < y,. With the absolute distance |y — ﬁ’ﬁ( B >0) as the

moderating factor, the equation of generalized focal loss (G) is as follows:

G(pyyspur) =~y = (ipy +vrpy) | (0 = y) og(py) + (v = ) log (py,))  (9)
= yy:—yyz and py, = yyfyll,
which also implies that § exactly matches the continuous label y, i.e., § = yipy, + yrpy, = V.
The modified detector differs from the former detector in two respects. First, we fed the
classification scores directly as NMS scores during the inference process without multipli-
cation if any separate quality prediction existed. Second, the final layer of the regression
branch used to predict the location of each bounding box now has n + 1 outputs rather than
1 output, resulting in negligible additional computational cost. We can define the training
loss L in terms of generalized focal loss as follows:

Generalized focal loss (py,, py,) reaches a global minimum at Py,

1

£ - NpOS ZZ £Q+

1
N L w0y (AoLs + A1 Lp) (10)
pos

where L is quality focus loss, and Lp is distribution focus loss. £z stands for GloU loss,
and Ag and Aq refer to the balance weights of Lg and Lp, respectively. Here, 1/ is the
indicator function, where the value is 1 if ¢ > 0 and 0 otherwise.

2.4. CPU-GPU Multithreaded Pipeline Design

To make full use of GPU computational power, the aim was to design a real-time
object detection system on the NVIDIA Jetson TX2, a low-power embedded heterogeneous
GPU platform. Due to the low power of the TX2, energy consumption can be controlled
by minimizing the calculations during system operation, and the inference speed can be
improved simultaneously. Computational reduction often leads to a decline in detection
accuracy, and the critical issue to be tackled is how to increase the inference speed while
retaining system accuracy.

With a multicore CPU on the TX2, we maximized the computational power of the GPU
via a multithreaded CPU-GPU pipeline design, where the CPU is primarily responsible for
processing more logical tasks and the GPU is used to process high-density floating-point
calculations. The data is transferred from the CPU memory to the GPU graphics memory.
The GPU finishes processing the data for calculation and then transfers the results out to
the CPU memory.
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Calculation of the detection time of the system for the object target starts with reading
the image and ends with the system completing the detection and returning the result of
the object and its position. Using the time detection function to count the inference time
for each part of the code, we found that the time spent on the object detection process was
primarily in the CPU image preprocessing and GPU network prediction stages, whereas the
time for the final CPU output detection results was negligible. By further statistical analysis
of the TC-YOLO network execution on the CPU and GPU, the time taken to process each
frame was approximately 21 ms in single-threaded operation, with 12.6 ms executed on the
GPU and 8.4 ms on the CPU. Considering that the CPU on the TX2 development board is
multicore, an attempt was made to maximize the use of the computational power of the
GPU by opening multiple threads for scheduling and trying to keep the GPU in constant
computation. Here, one thread performs the GPU task, and another thread conducts the
CPU image reading and preprocessing tasks simultaneously. When the first thread finishes
the GPU computation, the second thread can immediately start the GPU computation task.
The whole process carries out the GPU computation task of the previous image and the CPU
preprocessing stage of the next image at the same time, so the time for preprocessing each
image can be saved during the detection. Depending on the dataset and input requirements,
the number of threads opened can be adjusted. We used two threads for pipelined detection
depending on the current application. The final time spent on the whole process entirely
hides the CPU processing time, and only the GPU processing time needs to be calculated to
detect the images. In addition, the improvements proposed herein do not involve changes
to the network structure and thus have no impact on the accuracy of the system.

2.5. Evaluation Metrics

To define the detection results in more detail, we introduced a series of evaluation
metrics based on average precision (AP), including APsg, AP75, APs, APy, and APy,
where APs5p denotes the AP at intersection over union = 0.5, and AP75 indicates the AP
at intersection over union = 0.75. APg indicates the AP with detection area less than
1394 (34 x 41), APy indicates the AP with detection area larger than 1394 (34 x 41) and
smaller than 2888 (76 x 38), and APy refers to the AP with detection area larger than
2888 (76 x 38). The equation of AP is as follows:

AP = YN P(i)Arecall (i) (11)
where N denotes the number of test images, P(i) represents the precision value at i images,
and recall (i) shows the change in recall between k and k — 1 images.

Experimental Setup

The experiments were conducted on a server with NVIDIA Tesla V100, CUDA 11.2.
The basic detection frameworks were MC-ResNetvl and MC-ResNetv2. During training,
the key hyperparameters were set as follows: learning rate = 0.0002, momentum = 0.8,
gamma = 0.1, and weight decay = 0.0002. The optimizer used was stochastic gradient
descent (SGD). Moreover, to ensure the test results would be more convincing, we executed
the whole test process 10 times, and the final test results were averaged.

In different versions of the same model, as the input size of the image gets larger,
the network needs more layers (deeper and wider) to expand the receptive fields and
more channels to capture finer-grained features. Thus, the network depth or width of
the backbone is typically different in various versions of the same model; in other words,
their weight files are varied. If we simplistically resize the inputs of different versions
to the same resolution, it would be unfair to these state-of-the-art models. To this end,
we kept all parameters of the comparison models, including input size, backbone, and
weights, unchanged, allowing all models to perform well. It is worth noting that the input
size of the proposed model was 416 x 416 (we reshaped the 1080 x 1920 resolution to
416 x 416 resolution) to balance performance and inference speed.
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3. Results
3.1. The Impact of Data Augmentation on the MC-LCNN

Data augmentation is an integral part of the whole training process and has direct
impact on the final detection accuracy. We compared 14 influential data augmentation
methods [15-18] and combined them to determine the final approach for dataset augmen-
tation in this study. First, we tested the 14 enhancement methods in turn and then selected
the top four performing methods to combine and test them. Typically, it is difficult for an
augmentation method that performs poorly when working alone to suddenly become supe-
rior when combined with other methods, so we only considered the top four augmentation
methods that perform well. The test results are shown in Table 2.

We can clearly observe that Cutout, Blur, Flip, and Rotation achieved excellent per-
formance with AP5 of 91.14%, 90.69%, 88.59%, and 88.38%, respectively. Surprisingly,
the three most advanced data augmentation methods, namely Mixup, Cutmix, and Mo-
saic, all showed mediocre performance, probably because the image features of medicinal
chrysanthemums are mostly similar, such as color, texture, etc. Thus, using complex aug-
mentation methods can generate a large amount of redundant local information and cause
overfitting. It is worth noting that the performance of Blur ranked second among all the
enhancement methods, probably due to the fact that Blur makes the whole dataset increase
with new features rather than redundant ones, which greatly improves the robustness of
the model. Furthermore, when we combined Cutout and Blur together, the AP5y improved
from 91.14% to 93.06%, an encouraging result. In summary, we combined Cutout and Blur
as the data augmentation methods in this study.

3.2. Ablation Experiments

MC-LCNN employs several modules, including the proposed MC-ResNet, DropBlock,
EMA, SPP, and CBM. We used ablation experiments to verify the performance of these
modules. First, to validate the performance of the MC-ResNet module, we replaced MC-
ResNet with 24 feature extraction networks. Furthermore, to validate the performance of
DropBlock, EMA, and SPP, we removed these modules. Finally, we verified the performance
of CBM by sequentially increasing the number of CBM. It is worth noting that MC-LCNN
is essentially a convolutional neural network, so CBM cannot be completely removed. The
results of the ablation experiments are shown in Table 3.

First, as observed in Table 3, MC-ResNet outperformed the 24 feature extraction
networks, and the APsy, APs, APy, and AP}, were 2.13%, 3.29%, 3.14%, and 2.36% higher
than the suboptimal CSPRetNeXt module, respectively, showing that MC-ResNet had the
most prominent ability for small object feature extraction. Not only that, the inference
speed (FPS) of MC-ResNet was an impressive 11.07% higher than that of CSPDarknet53
(the module with the second highest inference speed after MC-ResNet). Second, after
adding DropBlock, EMA, and SPP, the APs5y of MC-LCNN improved by 3.4%, 2.12%, and
6.81% and the inference speed (FPS) improved by 2.4%, 2.59%, and 7.99%, respectively.
Because SSP can receive any size of feature map input and output it to a fixed size of
feature vector, this can significantly improve the detection precision and inference speed
of the model. Finally, we verified that the optimal performance of MC-LCNN could be
achieved using a single CBM module. When several CBM modules were employed, the
APs) of the whole model showed a slight increase. When using four CBM modules, the
APs5p marginally increased by 0.27%, but the inference speed FPS significantly decreased by
19.45. To intuitively observe the image features, we show the visualization process of some
images in MC-LCNN in Figure 5.
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Table 2. Comparison with different data enhancement methods.

Flip Shear Crop Rotation Grayscale Hu  Saturation Exposure Blur Noise Cutout Mixup Cutmix Mosaic AP APs AP35 APg APym APy,
v 70.68 88.59 75.49 69.22 75.87 85.89
V4 70.99 88.63 75.32 67.01 75.22 85.28

69.03 87.84 74.01 66.84 75.34 85.44

Vv 69.56 88.38 74.42 66.28 76.03 85.59

Vv 68.42 87.84 73.21 66.14 75.84 86.41

Vv 68.82 88.44 73.57 66.11 76.03 86.04

Vv 68.49 88.18 73.36 65.98 75.62 86.63

Vv 69.93 89.13 73.52 66.01 75.83 86.12

Vv 70.13 90.69 73.59 66.02 75.98 87.35

Vv 68.06 87.11 71.25 64.39 72.88 84.11

v 70.33 91.14 75.44 67.22 74.89 87.88

v 68.46 88.31 72.53 65.52 73.46 85.03

Vv 68.88 88.67 72.68 65.33 73.13 85.67

Vv Vv Vv 68.87 88.54 72.23 65.12 73.06 85.29
Vv Vv 71.62 92.03 75.09 67.88 75.38 88.26
Vv Vv 70.98 91.82 74.66 67.65 75.22 87.61
Vv v 71.44 92.36 75.93 68.66 75.87 87.99

v v 71.64 92.22 76.23 69.03 76.08 87.92

v v 72.22 93.06 76.46 69.63 76.42 88.89

vV Vv Vv 71.88 92.62 76.32 69.12 76.53 88.22
Vv Vv Vv 71.03 92.03 75.96 68.99 75.99 87.53
Vv Vv Vv 70.65 91.87 74.53 67.63 75.68 87.04

Vv Vv Vv Vv 70.11 90.58 73.89 66.37 74.81 86.34
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Table 3. The ablation experiment results of different modules.

Method FPS AP APs;,  AP;;  APg APy AP,
Ours + CBM x 5 80.29 7244 9331  77.02 7023 7739  88.93
Ours + CBM x 4 89.83 7263 9333  77.86  70.99 7754 8925
Ours + CBM x 3 9611 7256 9323 7733 7056 7728 8921
Ours + CBM x 2 10126 7234  93.08 7702 7012 7725 8891

Ours — SPP 10129 6785 8625  69.82  62.63 69.91 84.36
Ours — EMA 10669 7033 9094 7383 6445 7412 87.11
Ours — DropBlock 10688 6958  89.66 7325 6422 7366  86.82
Ours (ResNet101) 64.66 6412 8514 6689 5833 67.01 82.34
Ours (ResNet50) 7345 6206 8264 6557 5746 6563  80.84
Ours (RetNeXt-101) 9221 6936  88.08 7412  65.89 7433 8533

Ours (ResNet50-vd-dcn) 80.58 68.54 87.61 74.88 67.82 74.93 85.26
Ours (ResNet101-vd-dcen) 67.99 68.38 89.96 74.58 67.66 74.61 86.01

Ours (EfficientB6) 61.58 68.35 88.31 71.29 67.41 71.38 85.49
Ours (EfficientB5) 67.33 67.68 87.55 69.84 66.84 69.85 85.12
Ours (EfficientB4) 70.44 67.39 87.08 68.46 66.19 68.63 84.87
Ours (EfficientB3) 78.09 66.67 86.42 70.41 67.88 70.52 84.58
Ours (EfficientB2) 83.28 66.33 85.27 69.16 65.44 69.46 84.33
Ours (EfficientB1) 85.33 65.64 83.26 67.33 62.06 67.42 82.89
Ours (EfficientB0) 96.63 63.59 80.83 68.99 64.83 69.58 78.45
Ours (VGG16) 76.13 63.87 81.65 66.89 61.26 70.34 78.05
Ours (MobileNet v1) 83.54 62.66 79.99 72.67 66.02 72.93 76.85
Ours (MobileNet v2) 79.56 64.48 82.11 73.43 66.24 73.67 80.99
Ours (ShuffleNet v1) 85.84 65.12 84.12 69.91 61.41 70.28 82.24
Ours (ShuffleNet v2) 76.27 66.69 87.28 70.57 62.66 70.88 84.44
Ours (DenseNet) 81.02 67.34 88.54 69.66 62.16 69.99 84.83
Ours (DarkNet53) 84.82 67.98 89.67 70.18 64.53 70.22 85.06
Ours (CSPDarknet53) 98.21 68.11 89.82 72.89 65.98 72.88 85.54
Ours (CSPDenseNet) 91.46 68.14 90.22 74.33 67.38 74.56 86.22
Ours (CSPRetNeXt) 93.11 68.88 90.93 73.26 66.34 73.28 86.53
Ours (RetinaNet) 62.63 64.09 84.08 66.28 60.11 66.54 81.31

Ours (Modified CSP v5) 90.23 69.23 90.82 73.11 67.23 73.25 86.83
Ours 109.28  72.22 93.06 76.46 69.63 76.42 88.89
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Figure 5. Visualization results of some input images.

3.3. Comparisons with State-of-the-Art Detection Methods

In this section, we present a comprehensive comparison of the latest 13 object detection
frameworks (54 models) with the proposed MC-LCNN. The results are shown in Table 4.

First, our goal was to build a lightweight network; hence, the inference speed of the
model was crucial to us. The inference speed of MC-LCNN (FPS = 109.28) was second
only to PP-YOLOv2 (FPS = 110.54) with an input size of 320 x 320, ranking second among
the 54 models in terms of inference speed. However, the AP5y of MC-LCNN (93.06%)
was 7.08% higher than that of PP-YOLOV2 (85.98%) with an input size of 320 x 320,
showing a clear advantage. Secondly, although the inference speed of MC-LCNN was
not the most superior, the detection accuracy (AP5p = 93.06%) was the highest among the
54 models and 3.43% higher than the suboptimal YOLOX-X (AP5p = 89.63%), which is
an encouraging result. Not only that, in MC-LCNN, the detection precision for different
anchor box sizes (APg = 69.63%, APy = 76.42%, and APy, = 88.89%) was 4.41%, 2.88%,
and 2.03% higher than that of the suboptimal YOLOX-X (APs = 65.22%, APy\1 = 73.54%,
and APy, = 86.86%), respectively. The performance of MC-LCNN was more prominent for
small-sized anchor box detection, which is critical for robotic systems that operate in natural
environments. Because of path planning constraints, small-sized anchor box detection is
particularly relevant when the robot picks distant chrysanthemums. Finally, according to
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the improvement strategy in Section 2.4, we tested MC-LCNN on a heterogeneous GPU
platform, NVIDIA Jetson TX2, and the example is shown in Figure 6.

Table 4. Comparisons with state-of-the-art detection methods.

Method Backbone Size FPS AP AP50 AP75 APS APM APL
RetinaNet [19] ResNet101 800 x 800 15.63 48.33 70.23 51.24 41.22 51.33 67.03
RetinaNet ResNet50 800 x 800 18.82 51.61 76.44 55.09 4421 55.43 69.14
RetinaNet ResNet101 500 x 500 24.58 60.83 81.29 62.84 51.29 62.11 75.49
RetinaNet ResNet50 500 x 500 30.99 63.69 82.99 64.44 53.09 64.13 76.58
EfficientDetD6 [20] EfficientB6 1280 x 1280 10.26 64.13 85.21 66.45 56.33 65.91 77.27
EfficientDetD5 EfficientB5 1280 x 1280 23.58 63.09 84.66 66.31 55.94 66.35 78.21
EfficientDetD4 EfficientB4 1024 x 1024 38.61 62.99 84.33 65.11 55.31 65.36 78.01
EfficientDetD3 EfficientB3 896 x 896 50.83 60.86 83.16 64.46 54.86 64.39 77.92
EfficientDetD2 EfficientB2 768 x 768 68.99 59.54 82.84 64.08 54.11 64.12 77.87
EfficientDetD1 EfficientB1 640 x 640 80.11 56.44 79.41 58.66 49.66 58.49 72.28
EfficientDetDO EfficientBO 512 x 512 88.29 53.28 77.96 55.86 47.26 55.89 70.21
M2Det [21] VGG16 800 x 800 19.22 55.23 81.22 57.69 48.54 57.58 71.55
M2Det ResNet101 320 x 320 30.54 52.33 77.38 56.54 48.44 56.36 70.83
M2Det VGG16 512 x 512 33.56 50.19 74.94 54.46 46.21 54.32 69.91
M2Det VGG16 300 x 300 45.44 49.68 71.86 51.33 44.37 52.68 68.58
YOLOV3 [22] DarkNet53 608 x 608 45.31 64.65 86.85 67.23 58.57 67.66 74.83
YOLOV3(SPP) DarkNet53 608 x 608 46.39 64.05 85.13 66.88 56.88 66.43 74.22
YOLOv3 DarkNet53 416 x 416 58.62 61.18 80.08 63.18 55.01 63.54 72.84
YOLOv3 DarkNet53 320 x 320 62.59 58.41 77.34 61.34 54.67 61.67 71.11
PFPNet (R) [23] VGG16 512 x 512 43.11 52.22 73.59 56.24 50.88 56.68 68.42
PFPNet (R) VGG16 320 x 320 52.09 51.35 72.63 55.12 48.89 55.37 67.95
PFPNet (s) VGG16 300 x 300 53.64 55.53 74.33 59.81 53.22 60.44 72.67
RFBNetE VGG16 512 x 512 36.99 60.25 80.03 62.58 54.27 62.89 75.21
RFBNet [24] VGG16 512 x 512 52.02 58.11 76.13 61.06 53.85 61.46 75.03
RFBNet VGG16 512 x 512 60.16 63.96 84.85 65.48 58.68 65.66 81.84
RefineDet [25] VGG16 512 x 512 42.13 59.83 79.66 63.56 57.53 63.69 76.53
RefineDet VGG16 448 x 448 58.61 57.51 78.09 61.11 56.91 61.41 75.54
YOLOV4 [20] CSPDarknet53 608 x 608 49.58 66.99 88.23 69.64 60.85 69.98 86.88
YOLOv4 CSPDarknet53 512 x 512 69.42 66.38 87.98 68.99 60.44 69.33 85.34
YOLOv4 CSPDarknet53 300 x 300 83.28 63.24 83.43 66.48 59.68 66.51 80.28
YOLOv5s CSPDenseNet 416 x 416 84.11 65.14 84.33 68.22 61.24 68.32 81.11
YOLOv5I CSPDenseNet 416 x 416 67.03 66.35 86.26 69.31 61.37 69.41 81.33
YOLOv5m CSPDenseNet 416 x 416 51.22 67.58 86.67 69.89 61.99 70.22 83.59
YOLOV5x CSPDenseNet 416 x 416 30.68 68.93 88.64 72.66 63.12 72.68 84.44
PP-YOLO [26] ResNet50-vd-den 320 x 320 106.85 66.64 85.26 68.15 60.85 68.17 81.23
PP-YOLO ResNet50-vd-den 416 x 416 93.25 67.06 86.88 68.67 60.99 68.61 82.03
PP-YOLO ResNet50-vd-den 512 x 512 80.01 68.32 87.29 69.58 61.45 69.62 83.22
PP-YOLO ResNet50-vd-den 608 x 608 64.26 69.11 88.02 70.18 62.33 70.54 84.31
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Table 4. Cont.

Method Backbone Size FPS AP AP50 AP75 APS APM APL
PP-YOLOV2 [27] ResNet50-vd-den 320 x 320 110.54 67.89 85.98 68.28 62.02 68.47 82.06
PP-YOLOV2 ResNet50-vd-den 416 x 416 103.88 67.95 86.13 68.88 62.55 70.46 83.11
PP-YOLOV2 ResNet50-vd-den 512 x 512 89.04 68.36 86.85 69.33 62.84 69.67 83.89
PP-YOLOV2 ResNet50-vd-den 608 x 608 81.67 68.88 87.26 70.06 63.04 70.33 84.48
PP-YOLOV2 ResNet50-vd-den 640 x 640 63.38 69.45 88.64 71.23 64.24 71.61 85.15
PP-YOLOV2 ResNet101-vd-den 512 x 512 48.98 69.48 89.22 71.99 64.53 72.32 86.67
PP-YOLOvV2 ResNet101-vd-den 640 x 640 41.34 69.66 89.59 72.83 65.11 72.88 86.88
YOLOF [28] RetinaNet 512 x 512 102.84 65.53 86.52 69.03 62.15 69.11 83.12
YOLOE-R101 ResNet-101 512 x 512 89.28 65.91 86.58 69.44 62.41 69.45 83.48
YOLOEF-X101 RetNeXt-101 512 x 512 68.09 67.56 88.34 70.95 62.95 71.06 85.66
YOLOE-X101+ RetNeXt-101 512 x 512 53.69 67.94 88.82 71.38 63.11 71.44 85.83
YOLOEF-X101++ RetNeXt-101 512 x 512 36.06 68.25 89.03 72.63 64.23 72.61 86.22
YOLOX-DarkNet53 Darknet-53 640 x 640 81.61 66.89 87.41 71.12 63.28 71.29 86.13
YOLOX-M [29] Modified CSP v5 640 x 640 65.48 67.83 88.36 71.53 63.56 71.58 86.27
YOLOX-L Modified CSP v5 640 x 640 53.54 69.44 89.14 73.24 64.93 73.38 86.35
YOLOX-X Modified CSP v5 640 x 640 46.22 69.86 89.63 73.39 65.22 73.54 86.86
Ours MC-ResNet 416 x 416 109.28 72.22 93.06 76.46 69.63 76.42 88.89

@ cq@cq-desktop: ~/code/MC-LCNN

Figure 6. The test results on the NVIDIA Jetson TX2.

The precision of the model remained unchanged, and the inference speed of the whole
model increased by 2FPS as it benefited from the multithreaded pipeline design of the CPU-
GPU. Unfortunately, we assumed that the design would completely hide CPU processing
time and thus only counted GPU processing time, resulting in an improvement in detection
time of approximately 19 FPS. However, due to FPS calculation and communication loss
between multiple threads, the actual improvement in detection speed was different from
the ideal case, although it still somewhat saved the CPU preprocessing time. The test
results on the NVIDIA Jetson TX2 are shown in Figure 7.
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Figure 7. The test results on the NVIDIA Jetson TX2.

4. Discussion

In response to the three issues proposed in the introduction, we have compared the
proposed MC-LCNN with the studies in Table 1. For issue 1, from a detection accuracy
perspective, the inference speed of MC-LCNN (9.15 ms) was slightly faster than the Liu et al.
research (10 ms) [12], but the detection accuracy (APs5p) was tremendously improved
by 15.06%. From an inference speed perspective, the detection accuracy of MC-LCNN
(APsp = 93.06%) was 3.06% higher than the research by Yang et al. (AP5¢ = 90%) [11], with a
significant improvement in inference speed from 0.7 s to 9.15 ms. MC-LCNN achieved the
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first highly accurate real-time testing work in the world for medicinal chrysanthemums. For
issue 2, it is clear from Table 1 that most studies were tested in ideal environments or under
illumination variations. In this study, the dataset was collected from natural environments,
including complex unstructured environments, such as illumination variations, overlaps,
and occlusions, thus significantly improving the robustness of the model. For issue 3, we
tested MC-LCNN embedded in a low-power edge computing device, the NVIDIA Jetson
TX2. Not only that, we used a multithreaded CPU-GPU pipeline design to improve the
inference speed of MC-LCNN.

The proposed MC-LCNN has apparent advantages but also has shortcomings that
need to be addressed. First, the inference speed of MC-LCNN was not optimal among
all the compared models, and inference speed is crucial for robotic picking. Not only
that, when the proposed model was embedded in the Jetson TX2, it took around 0.6 s to
test a single image, which is an acceptable but not surprising result. Furthermore, actual
unstructured environments involve more than just illumination variations, overlaps, and
occlusions, and we need to collect further different scenarios to improve the robustness of
the model.

5. Conclusions

In this work, we propose a new lightweight convolutional neural network, named
MC-LCNN, for detecting medicinal chrysanthemums at the bud stage under complex un-
structured environments (illumination variations, overlaps, and occlusions). We collected
4000 original images (1080 x 1920) as the dataset. In the NVIDIA Tesla V100 GPU environ-
ment, the APs5 of the test dataset reached 93.06%, and the inference speed was 109.28 FPS.
The optimal data enhancement strategy for training MC-LCNN was the combination of
Cutout and Blur. Furthermore, we compared the proposed MC-LCNN with 13 state-of-the-
art object detection frameworks (54 models). MC-LCNN achieved the highest AP5y and
was second to the optimal PP-YOLOV2 in terms of inference speed. Finally, we embedded
MC-LCNN into the NVIDIA Jetson TX2 for real-time object detection and improved the
inference speed by 2FPS through a multithreaded CPU-GPU pipeline design. The proposed
MC-LCNN has the potential to be integrated into a selective picking robot for automatic
picking of medicinal chrysanthemums via NVIDIA Jetson TX2 in the future.
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