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The citrus flavonoid naringenin 
confers protection in a murine 
endotoxaemia model through 
AMPK-ATF3-dependent negative 
regulation of the TLR4 signalling 
pathway
Xin Liu1, Ning Wang1, Shijun Fan1, Xinchuan Zheng1, Yongjun Yang1, Yuanfeng Zhu1, 
Yongling Lu1, Qian Chen1, Hong Zhou2 & Jiang Zheng1

Excessive activation of the TLR4 signalling pathway is critical for inflammation-associated disorders, 
while negative regulators play key roles in restraining TLR4 from over-activation. Naringenin is a citrus 
flavonoid with remarkable anti-inflammatory activity, but the mechanisms underlying its inhibition of 
LPS/TLR4 signalling are less clear. This study investigated the molecular targets and therapeutic effects 
of naringenin in vitro and in vivo. In LPS-stimulated murine macrophages, naringenin suppressed the 
expression of TNF-α, IL-6, TLR4, inducible NO synthase (iNOS), cyclo-oxygenase-2 (COX2) and NADPH 
oxidase-2 (NOX2). Naringenin also inhibited NF-κB and mitogen-activated protein kinase (MAPK) 
activation. However, it did not affect the IRF3 signalling pathway or interferon production, which 
upregulate activating transcription factor 3 (ATF3), an inducible negative regulator of TLR4 signalling. 
Naringenin was demonstrated to directly increase ATF3 expression. Inhibition of AMPK and its 
upstream calcium-dependent signalling reduced ATF3 expression and dampened the anti-inflammatory 
activity of naringenin. In murine endotoxaemia models, naringenin ameliorated pro-inflammatory 
reactions and improved survival. Furthermore, it induced AMPK activation in lung tissues, which was 
required for ATF3 upregulation and the enhanced anti-inflammatory activity. Overall, this study reveals 
a novel mechanism of naringenin through AMPK-ATF3-dependent negative regulation of the LPS/TLR4 
signalling pathway, which thereby confers protection against murine endotoxaemia.

Toll-like receptors 4 (TLR4) are type I transmembrane receptors primarily expressed by innate immune cells1,2. 
The engagement of TLR4 activation by microbe-derived pathogenic molecules, such as lipopolysaccharide (LPS), 
leads to activation of multiple intracellular signalling pathways and transcription events, which further induce 
essential antimicrobial activities3. However, excessive TLR4 activation may trigger the pathogenesis of sepsis, 
autoimmune diseases and other inflammatory-associated disorders4,5. Therefore, a variety of negative feedback 
regulatory mechanisms have evolved to restrain TLR4 from over-activation6. Activating transcription factor 3 
(ATF3), a member of the ATF/CREB family, functions as a key inducible negative regulator of TLR4 signalling6,7. 
ATF3 primarily binds to the CREB-ATF elements within the promoter region and dampens the transcription of 
inflammatory genes by histone deacetylase recruitment and chromatin remodelling7. Furthermore, ATF3 was 
recently found to negatively regulate NF-κ B in RAW 264.7 cells via direct interaction with the p65 subunit8.

The anti-inflammatory effect of ATF3 is well documented. ATF3-deficient macrophages produce remarkably 
lower levels of proinflammatory cytokines such as IL-12p40, TNF-α  and IL-6 upon LPS stimulation7. ATF3-null 
mice are also more susceptible to endotoxic shock challenge9. More recently, ATF3 was demonstrated to be 
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activated by high-density lipoprotein and to mediate the anti-inflammatory reprogramming of macrophages, 
which suggests that ATF3 activation may be a promising therapeutic target in inflammatory diseases10. ATF3 is 
commonly regarded as a feedback regulator and induced by TLR-dependent activation by bacterial-derived stim-
uli in macrophages. For example, the production of interferon (IFN) is essential for the full expression of ATF311. 
However, the regulation pattern of ATF3, in addition to LPS stimulation, has not been well elucidated.

Natural products derived from food, fruits and traditional herbs have been traditionally used to treat infec-
tion and inflammatory diseases12. Naringenin and its glucoside naringin are flavonoid-type natural compounds 
that can be purified from grapefruit and other citrus species. Emerging evidence has revealed that naringenin 
displays anti-inflammatory and antioxidant activities, which are thought to be required for its efficacy in treating 
inflammatory-associated atherosclerosis, arthritis and metabolic syndrome13,14. However, the molecular mech-
anisms underlying the anti-inflammatory properties of naringenin require further elucidation. In the present 
study, we evaluated the anti-inflammatory properties and life-protective efficacy of naringenin in LPS-stimulated 
macrophages and in a murine endotoxaemia model. We also investigated the underlying mechanism of 
naringenin-associated inflammation control, which may provide more evidence for verifying potent therapeutic 
targets of anti-inflammatory flavonoids.

Results
Naringenin inhibits the production of proinflammatory mediators in LPS-stimulated murine 
macrophages. To evaluate the anti-inflammatory properties of naringenin, a typical pure flavanone 
compound (Figs 1 and S1), we detected proinflammatory cytokines in LPS-stimulated murine macrophages. 
Naringenin was shown to suppress TNF-α  and IL-6 release in a dose-dependent manner in RAW 264.7 cells 
(Fig. 2A). The inhibitory effect was not due to cytotoxicity, as naringenin did not affect cellular viability below 
160 μ M (Figure S2). Similar inhibitory effects were observed in primary murine macrophages (Figure S3). The 
anti-inflammatory effects of naringenin were also time-dependent, and pre-incubation demonstrated increased 
efficacy (Fig. 2B). Moreover, naringenin significantly suppressed the mRNA expression of TNF-α  and IL-6 in 
LPS-stimulated RAW 264.7 cells or BMDMs (Figs 2C and S4). It also markedly attenuated TLR4, inducible NO 
synthase (iNOS), cyclo-oxygenase-2 (COX2) and NADPH oxidase-2 (NOX2) expression levels that were upreg-
ulated by LPS (Fig. 2D). These results indicated that naringenin effectively suppressed the proinflammatory 
response in LPS-treated murine macrophages.

Naringenin suppresses activation of the NF-κB and MAPK signalling pathways in LPS-treated 
RAW 264.7 cells. We next investigated whether naringenin affected activation of the MAPK-, NF-κ B- and 
IRF3-dependent pathways, which contribute to the production of proinflammatory cytokines. Herein, naringenin 
inhibited the phosphorylation of Iκ B-α , p38 and ERK in both dose- and time-dependent manners (Fig. 3A,B). 
Similar inhibitory effects were observed in BMDMs (Figure S5). Moreover, naringenin markedly suppressed 
the nuclear translocation of NF-κ B and c-fos (a subunit of the AP-1complex and downstream of p38 and ERK) 
in LPS-treated RAW 264.7 cells (Fig. 3C). Naringenin also significantly inhibited the elevated transcriptional 
activity of NF-κ B and AP-1, as shown by a luciferase reporter activity assay (Fig. 3D). In contrast, naringenin did 
not reduce the phosphorylation of IRF3 or decrease its transcriptional activity in LPS-stimulated macrophages 
(Fig. 3E). Moreover, naringenin was unable to inhibit the expression of IFN-β  or regulated on activation, normal 
T cell expressed and secreted (RANTES), two proinflammatory mediators upregulated by activation of IRF3 
(Fig. 3F). Therefore, our results suggest a selective inhibition of TLR4-dependent signalling by naringenin in 
LPS-stimulated macrophages.

Naringenin upregulates ATF3 expression to mediate the inhibition of TLR4 dependent signal-
ling and pro-inflammatory reactions. To explore the underlying inhibitory mechanisms against LPS, 
RNA-Seq was used to detect transcriptome profiling in RAW 264.7 cells. In our study, naringenin co-treatment 
resulted in a significant downregulation of proinflammatory mediators compared to LPS stimulation alone. 
In contrast, the expression of ATF3, a key negative regulator of the TLR4 signalling pathway, was upregulated 
by naringenin in murine macrophages (Figs 4A and S6A). We further determined that both the mRNA and 
protein levels of ATF3 were upregulated by naringenin alone or upon co-treatment with LPS in RAW 264.7 
cells (Fig. 4B–D). Furthermore, ATF3 siRNA was transfected to downregulate its expression (Fig. 4E). In 
ATF3-knockdown macrophages, naringenin demonstrated a lower ability to inhibit the phosphorylation of p38 

Figure 1. Chemical structure of naringenin. 
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and the production of IL-6 compared with wild-type macrophages or macrophages transfected with scrambled 
siRNA (Fig. 4F,G). These results indicate that ATF3 may be involved in mediating the anti-inflammatory reac-
tions of naringenin in LPS-treated macrophages.

Naringenin upregulates ATF3-dependent anti-inflammatory activity by inducing calcium- 
dependent AMPKα activation. We next investigated the possible upstream regulators that lead to ATF3 
upregulation. In our study, we observed that naringenin could independently enhance AMPKα  phosphoryl-
ation in murine macrophages, similar to the AMPKα  agonist AICAR (Fig. 5A). Moreover, the combined use 
of LPS and naringenin further increased AMPKα  phosphorylation in murine macrophages (Figs 5B and S6B).  
Then, we found that co-treatment of AICAR with naringenin further decreased IL-6 production, while an 
AMPK inhibitor compound C partly restored IL-6 release when co-treated with naringenin (Fig. 5C). We next 
downregulated AMPKα  expression by siRNA transfection in RAW 264.7 cells (Fig. 5D) and observed that 
the naringenin-induced ATF3 upregulation was significantly inhibited in AMPKα -knockdown macrophages 
(Fig. 5E,F). Moreover, naringenin-mediated suppression of p38 phosphorylation and IL-6 production were also 
attenuated by AMPKα  knockdown (Fig. 5F,G). These data indicated that AMPKα  activation was induced by 
naringenin and required for ATF3 upregulation and the subsequent anti-inflammatory activity. Calcium influx 
and CaMKKβ  activation act as major upstream regulators of AMPK activation. Herein, we also demonstrated that 

Figure 2. Naringenin inhibits the upregulation of proinflammatory mediators induced by LPS in RAW 
264.7 cells. (A) TNF-α  and IL-6 production affected by naringenin in series concentrations. Cells were treated 
with 80 μ M NG, LPS or LPS with NG (2.5, 5, 10, 20, 40 and 80 μ M) for 12 h. Supernatant TNF-α  and IL-6 levels 
were detected by ELISA (n =  3). *P <  0.05, **P <  0.01 vs LPS (TNF-α ), #P <  0.05; ##P <  0.01 vs LPS (IL-6).  
(B) Time-dependent analysis of TNF-α  and IL-6 production upon naringenin treatment. Cells were treated 
for 12 h with LPS or with NG, which was added 2 and 1 h before LPS or 0, 1 or 2 h post-LPS stimulation. 
Supernatant TNF-α  and IL-6 levels were detected by ELISA (n =  3). *P <  0.05, **P <  0.01 vs LPS. (C) TNF-α  
and IL-6 mRNA expression affected by series concentrations of naringenin. Cells were treated with LPS or 
with NG (10–80 μ M) for 4 h. TNF-α  and IL-6 mRNA was detected by real-time PCR (n =  3). **P <  0.01 vs LPS 
(TNF-α ), ##P <  0.01 vs LPS (IL-6). (D) Inhibition of mRNA expression of TLR4, iNOS, COX-2 and NOX-2 by 
naringenin. Cells were treated with LPS alone or with NG for 4 h. mRNA expression of TLR4, iNOS, COX-2 
and NOX2 was detected by real-time PCR (n =  3). *P <  0.05 vs LPS. Naringenin is abbreviated as NG. The 
concentrations of LPS and NG were 100 ng/ml and 80 μ M unless indicated.
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Figure 3. Naringenin inhibits MAPK and NF-κB pathways in LPS-treated RAW 264.7 cells. (A,B) Time- 
and dose- dependent inhibition on MAPK and NF-κ B activation by naringenin. Cells were treated with LPS 
alone or with 20, 40 and 80 μ M NG for 30 min (A). Cells were treated with LPS alone or with NG for 0, 5, 15 
and 30 min (B). Protein levels of pIκ Bα , Iκ Bα , pERK, ERK, p-p38, p38 and tubulin were detected by western 
blot. (C) Inhibition of nuclear translocation of NF-Kb p65 and c-fos by naringenin. Cells were treated with LPS 
alone or with NG for 2 h. Nuclear translocation of NF-κ B p65 and c-fos were detected by immunofluorescence. 
(D) Inhibition of reporter activity of NF-kB and AP-1 by naringenin. Cells transfected with NF-κ B and AP-1 
reporter plasmids and treated with LPS alone or together with NG for 6 h. Relative reporter activity was 
detected by the luciferase assay (n =  3). **P <  0.01 vs LPS. (E) Activity of IRF3 detection. Cells were treated with 
LPS alone or together with NG; IRF3 phosphorylation was detected by western blot (upper), and the relative 
reporter activity of IRF3 was detected by a luciferase assay (lower). (F) Production of supernatant IFN-β  and 
RANTES levels. Cells were treated as in (E) for 12 h and supernatant IFN-β  and RANTES levels were detected 
by ELISA (n =  3). Naringenin is abbreviated as NG. The concentrations of LPS and NG were 100 ng/ml and  
80 μ M unless indicated.
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Figure 4. Naringenin upregulates ATF3 expression in RAW 264.7 cells, which is required for its anti-
inflammatory action. (A) ATF3 expression as demonstrated in the transcriptome assay. Cells were treated 
with LPS or LPS plus NG for 4 h. The gene expression ratio of LPS +  NG/LPS was analysed by a transcriptome 
assay. (B) Naringenin induces ATF3 mRNA expression. Cells were treated with NG, LPS and LPS plus NG 
(20, 40 and 80 μ M) for 4 h. ATF3 mRNA was detected by real-time PCR (n =  3). (C) Naringenin induces ATF3 
protein expression. Cells were treated with LPS alone or with NG (20, 40 and 80 μ M) for 4 h. The protein level 
of ATF3 was detected by western blot. (D) Naringenin enhances cellular staining of ATF3. Cells were treated 
with NG, LPS or LPS plus NG for 4 h. Intracellular ATF3 was detected by immunofluorescence. Uncropped 
images are presented in Supplementary Figure S8A. (E) ATF3 knockdown by siRNA. Cells were transfected 
with control siRNA (siNC) or ATF3 siRNA (siATF3) for 24 h. Then, ATF3 mRNA was detected by PCR (n =  3, 
**P <  0.01). The protein level of ATF3 was detected by western blot. (F,G) ATF3 knockdown dampens the 
anti-inflammatory activity of naringenin. Wild-type cells and siNC- or siATF3-pretreated cells were treated 
with LPS alone or LPS plus NG. Plasma protein was collected 30 min after LPS treatment, and p-p38, p38 and 
tubulin were detected by western blot (F). Uncropped images are presented in Supplementary Figure S8A. 
Supernatants were collected 12 h after LPS treatment, and the IL-6 level was detected by ELISA (G). n =  3, 
**P <  0.01. Naringenin is abbreviated as NG. The concentrations of LPS and NG were 100 ng/ml and 80 μ M 
unless indicated.
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Figure 5. Naringenin activates AMPKα to mediate ATF3 upregulation in RAW 264.7 cells. (A) Dose-
dependent induction of AMPK phosphorylation by naringenin. Cells were treated with NG (0, 10, 20, 40  
and 80 μ M) or 1 mM AICAR for 1 h. The phosphorylation of AMPKα  was detected by western blot.  
(B) Naringenin enhances AMPK phosphorylation with LPS. Cells were treated with NG, LPS or LPS plus 
NG for 1 h. AMPKα  phosphorylation was detected by western blot. (C) Modulation of AMPK affects IL-6 
suppression by naringenin. Cells were treated with NG alone or in combination with 1 mM AICAR or 2 μ M  
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inhibition of extracellular calcium influx (by a calcium chelator or a calcium channel inhibitor) or suppression 
of CaMKKβ  activation (STO-609) reduced AMPK activation, downregulated ATF3 expression and resulted in 
marked increase in IL-6 production (Fig. 5H,I). The above data indicate that naringenin may trigger calcium 
influx and activate CaMKKβ  and AMPK to mediate the ATF3-dependent anti-inflammatory activity.

Naringenin improves survival and suppresses inflammatory responses in a murine endotoxae-
mia model. To verify the anti-inflammatory activity of naringenin in vivo, the survival and proinflammatory 
responses in an LPS-challenged sepsis mice model was detected. In the survival analysis, injections of 10 or 
20 mg/kg LPS resulted in the mortality rates of 60% or 90%, respectively, in the mice. Treatment with naringenin 
significantly reduced the mortality rates to 0% and 40%, respectively (Fig. 6A). Furthermore, heat-killed E. coli 
was used to mimic actual LPS challenge during infection. Intraperitoneal E. coli injection resulted in mild or 
severe mortality in mice, and naringenin also significantly increased the survival rates in both models (Fig. 6B). 
We next detected significant increases in serum TNF-α , IL-6 and IL-10 levels 6 h after LPS challenge, which was 
markedly reduced by naringenin treatment (Fig. 6C). In addition, LPS injection induced a rapid decrease in 
blood leukocytes in the whole blood, which was also reversed by naringenin administration (Fig. 6D). Finally, we 
detected elevations in TNF-α  and IL-6 in homogenates of the lungs, liver and spleen. Treatment with naringenin 
markedly decreased the production of TNF-α  and IL-6 in these organs (Fig. 6E).

Naringenin upregulates AMPK-dependent ATF3 activation and mediates lung protection in 
the lung tissues of endotoxaemia mice. The lungs are the most severely affected organs during sep-
sis and other acute inflammatory conditions. In this study, we observed elevations in TNF-α , IL-6 and IL-10 
accompanied with increased leukocyte counts in broncho-alveolar lavage fluid (BALF) after LPS administration. 
However, serum levels of IFN-β  and RANTEs were not affected (Figure S7). Consistently, naringenin inhibited 
increases in cytokines and leukocytes in the BALF (Fig. 7A). Then, we detected suppressed Iκ B-α , p38 and ERK 
activation in lung tissues by naringenin, indicating that the proinflammatory signalling induced by LPS was also 
suppressed by naringenin treatment (Fig. 7B). In histological analysis, LPS injection induced severe bleeding and 
pulmonary interstitial thickening in the lung tissue of mice. Treatment with naringenin resulted in markedly 
reduced tissue damage in the lungs (Fig. 7C). We next detected the activation of AMPK and ATF3 to determine 
their involvement in lung protection mediated by naringenin. In our study, naringenin alone or in combination 
with LPS increased ATF3 expression in the mouse lung tissues (Fig. 7D). Naringenin treatment also resulted in 
enhanced phosphorylation of AMPKα  (Fig. 7E). Then, LPS-challenged mice were treated by naringenin with 
AICAR or compound C. The naringenin induced ATF3 upregulation in the lung tissue was enhanced by AICAR 
while attenuated by compound C (Fig. 7F). Accordingly, serum and BALF IL-6 levels were decreased by AICAR 
co-treatment but increased by compound C co-treatment (Fig. 7G). These results demonstrated that AMPK and 
ATF3 were activated by naringenin to mediate protection in the mice challenged with lethal LPS injection.

Discussion
Excessive TLR4 activation in innate immune cells leads to uncontrolled proinflammatory responses, while intra-
cellular negative regulators play a critical role in facilitating downregulation1,6. In the present study, we describe 
a new anti-inflammatory property of the citrus flavanone naringenin based on the upregulation of ATF3, a feed-
back negative regulator of the TLR4 dependent signalling pathway, in a calcium- and AMPK-dependent manner. 
Our results also demonstrate that naringenin administration could activate AMPK and upregulate ATF3 in the 
lung tissue of LPS-challenged mice, subsequently leading to the amelioration of lung injury and an improvement 
in survival. Therefore, the AMPK-ATF3 pathway may serve as an important drug target for flavonoid compounds 
to mediate anti-inflammatory activity.

Macrophages are the major source of various types of inflammatory mediators upon microbial stimuli, 
especially in systemic inflammatory disorders such as sepsis15. Our experiments demonstrated that naringenin 
exerted antagonistic effects on LPS-induced TNF-α  and IL-6 expression in murine macrophages. Such results 
are in accordance with previous reports that showed that naringenin inhibits the production of proinflamma-
tory cytokines and chemokines in LPS-stimulated epithelial cells and microglia cells16,17. Moreover, naringenin 
demonstrated inhibitory activity against enzymes (iNOS, COX-2 and NOX2), which are responsible for the 

compound C before stimulation with LPS. Supernatant IL-6 was detected by ELISA (n =  3). **P <  0.01 
vs LPS; #P <  0.05, ##P <  0.01 vs LPS +  NG (D) AMPK knockdown by siRNA. Cells were transfected with 
control siRNA (siNC) or AMPKα  siRNA (siAMPKα ) for 24 h. Then, AMPKα  mRNA was detected by PCR 
(n =  3, *P <  0.05). The protein level of ATF3 was detected by western blot. Uncropped images are presented 
in Supplementary Figure S8B. (E–G) ATF3 expression and anti-inflammatory activity affected by AMPKα  
siRNA. Wild-type cells and siNC- or siAMPKα -transfected cells were treated with LPS alone or LPS plus NG. 
The mRNA expression of ATF3 was detected by RT-PCR (E) (n =  3, *P <  0.05). Then, ATF3, p-p38, p38 and 
tubulin were detected by western blot (F). The mRNA and protein levels of IL-6 were detected by RT-PCR and 
ELISA (n =  3, *P <  0.05, **P <  0.01). (H–I) Effects of calcium and CaMKKβ  inhibition on cytokine production 
and ATF3/AMPKα  activation. Cells were pretreated with 5 mM EGTA, 10 μ M LiCl3 (Li3+ ) or 1 μ M STO-609 
before treating with NG alone or in combination with LPS. mRNA expression of IL-6 was detected by RT-
PCR. The supernatant level of IL-6 was detected by ELISA n=3, **P < 0.01 vs LPS, ##P < 0.01 vs LPS + NG. 
ATF3, p-AMPK, AMPK and GAPDH were detected by western blot. Uncropped images are presented in 
Supplementary Figure S8B. Naringenin is abbreviated as NG. The concentrations of LPS and NG were  
100 ng/ml and 80 μ M unless indicated.
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Figure 6. Naringenin improves survival and ameliorates systemic and tissue inflammatory reactions in 
endotoxaemia mice. (A) Survival analysis of the LPS-injected mice. Mice were intraperitoneally injected with 
10 mg/kg (left) or 20 (right) mg/kg LPS (■ ) or in combination with NG (L +  NG, □ ). Survival was observed for 
7 days (n =  10). (B) Survival analysis in the bacteria injection model. Mice were intraperitoneally injected  
with 1.0 ×  1010 CFU/kg (left) or 2.0 ×  1010CFU/kg (right) heat-killed E. coli (■ ) or in combination with NG 
(L +  NG, □ ). Survival was observed for 7 days (n =  16). (C–E) Detection of cytokines and cell counts in blood 
or tissue samples. Mice were injected with normal saline (NS), LPS or LPS with NG (L +  NG). Samples from 
blood, lung, liver and spleen tissues were obtained 12 h after injection. Serum levels of TNF-α , IL-6 and IL-1β  
were detected by ELISA (C). Blood WBCs were detected using haematological analysers (D). **P <  0.01 vs LPS. 
The levels of TNF-α  and IL-6 per gram protein (E) were detected in homogenates of the lung, liver and spleen 
(n =  3). **, ## and §§represent P <  0.01 vs LPS for lung, liver and spleen, respectively. Naringenin is abbreviated as 
NG. The doses of LPS and NG were both 10 mg/kg unless indicated.
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Figure 7. Naringenin upregulates ATF3 expression in lung tissues of LPS-challenged mice, which is AMPK 
dependent and required for limiting proinflammatory reactions. (A,B) Detection of cytokines and cell 
counts in BALF and Western blot assays for signalling molecules in murine lung tissues. Mice were injected 
with NS, LPS or LPS with NG. BALF or lung tissues were collected 12 h after LPS injection. TNF-α , IL-6 and 
IL-10 levels and WBC counts (n =  3) in the BALF were measured (A). Protein levels of p-Iκ Bα , Iκ Bα , ERK, 
pERK, p-p38, p38 and tubulin were detected by western blot (B). (C–E) Detection of histological changes, ATF3 
expression and AMPK activation in murine lung tissues. Mice were injected with NS, NG, LPS or LPS with 
NG, and lung tissues were collected 12 h after injection. Histopathological changes (C) were observed, and the 
protein levels of ATF3 (D) or pAMPKα  and AMPKα  (E) were detected by western blot. Uncropped images are 
presented in Supplementary Figure S8C,D. (F,G) Effects of the co-injection of AMPK modulators on the levels 
of ATF3 and proinflammatory cytokines. Mice were injected with NS, NG, LPS, LPS plus NG, LPS plus NG and 
compound C (1 mg/kg) or LPS plus naringenin and AICAR (100 mg/kg). Blood, lung tissues and BALF were 
collected 12 h after injection. ATF3 expression in the lung tissues were detected by western blot (F). TNF-α  
and IL-6 levels in the serum or in the BALF (G) were detected by ELISA (n =  3). *P <  0.05, **P <  0.01 vs LPS; 
#P <  0.05; ##P <  0.01 vs LPS+NG. Naringenin is abbreviated as NG. Broncho-alveolar lavage fluid is abbreviated 
as BALF. The doses of LPS and NG were both 10 mg/kg unless indicated.
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production of secondary mediators in macrophages. It was previously reported that naringenin attenuated the 
hepatic expression of COX-2 and iNOS in carbon tetrachloride (CCL-4)-challenged rats18. However, naringenin 
was found unable to suppress the upregulation and activation of COX2 in LPS-stimulated microglia cells17. Such 
differences may be attributed to multiple mechanisms involved in the transcription of COX-2 expression in dif-
ferent cell types.

Cellular signalling pathways are activated downstream of TLR4, which enhance transcriptional events 
to upregulate the proinflammatory effectors. There are generally two signalling pathways activated by 
TLR42,19. One is the MyD88-dependent pathway and involves NF-κ B and MAPK activation. The other is the 
MyD88-independent pathway, which induces IRF3 activation and the production of IFNs, as well as IFN inducible 
mediators such as RANTES and IP-1020,21. Previously, naringenin was reported to inhibit the activation of MAPK 
and NF-κ B signalling pathways in epithelia cells and dendritic cells, which was required to suppress inflammation 
or cell maturation22,23. However, it is not known whether naringenin affects the MyD88-independent pathway. 
In our study, we obtained similar results in murine macrophages that naringenin effectively attenuated the phos-
phorylation of Iκ B-α , ERK and p38. It also significantly reduced the nuclear distribution and transcriptional 
activity of NF-κ B and AP-1. Interestingly, we found that naringenin did not affect the activation of IRF3 or inhibit 
the production of IFN-β  and RANTES, which require IRF3 activation. To the best of our knowledge, this study 
indicates for the first time the lack of interference between naringenin and the IRF3 signalling pathway. Instead, 
naringenin is more capable of selectively inhibiting pro-inflammatory reactions involving mainly NF-κ B and 
MAPK signalling.

To find the contributing factors underlying the inhibitory effects of naringenin, we performed a transcriptome 
analysis and screened out the enhanced expression of ATF3 upon naringenin co-treatment in LPS-stimulated 
macrophages. ATF3 is primarily induced by TLR stimulation as part of a negative-feedback loop of inflammation 
control10. Although the functional significance is controversial under different situations, increasing evidence 
suggests that ATF3 acts as a protective adaptive homeostatic mechanism that limits the inflammatory response by 
controlling the expression of a number of cytokines and chemokines in LPS-stimulated macrophages. For exam-
ple, HDL mediates the reprogramming of macrophages and exerts broad anti-inflammatory actions through the 
induction of ATF3 expression10. In our study, we observed that naringenin enhanced the expression of ATF3 in 
both quiescent and LPS-activated macrophages. Moreover, genetic knockdown of ATF3 led to increased proin-
flammatory signalling transduction and cytokine production, which demonstrated the requirement of ATF3 
upregulation in mediating the anti-inflammatory action of naringenin. It was previously reported that ATF3 is 
required for the inhibition of iNOS and COX2 activation in activated macrophages24,25. Therefore, the upregula-
tion of ATF3 may also be necessary to explain the suppression of iNOS and COX2 mediated by naringenin.

AMPK is a crucial intracellular sensor under stress conditions. Recently, AMPK activation has appeared to 
be involved in cellular anti-inflammatory functions in macrophages26. However, AMPK is commonly linked 
with the NF-κ B pathway to explain inflammation control27. Previously, naringenin was found to directly activate 
AMPK in vascular endothelial cells and muscle cells28,29. Therefore, we speculated that naringenin may induce 
ATF3 upregulation by activating AMPK. Our present work demonstrated for the first time that AMPK activa-
tion is essential for ATF3 induction and is also positively involved in mediating the anti-inflammatory action of 
naringenin in LPS-activated macrophages. Interestingly, we found that other flavonoids or polyphenols analogues 
of naringenin, such as quercetin, baicalin and resveratrol, could also induce AMPK phosphorylation and upreg-
ulate ATF3 expression (data not shown). In addition, quercetin and resveratrol, which are similar to naringenin, 
exert stronger activities to induce AMPK and ATF3 activation. Therefore, our findings may indicate a common 
feature of naringenin and other polyphenol analogues, which exert anti-inflammatory activities by activating the 
AMPK-ATF3 signalling pathway30,31.

In a recent study, p38 was demonstrated to be activated by naringenin and to mediate the upregulation of 
ATF3 in human colon cancer cells32. However, our results showed that naringenin inhibited p38 activation in 
LPS-treated macrophages, suggesting that p38 may not be required for ATF3 upregulation in macrophages. 
Instead, AMPK may be activated as a key upstream regulator for the upregulation of ATF3. More recently, it was 
reported that ATF3 induction by Toll-like receptors is strictly dependent on IFN-signalling33. In our study, narin-
genin failed to inhibit the activation of IRF3 or attenuate the production of IFN-β  or RANTES. Such results also 
suggest that the MyD88-independent signalling pathway or IFN-β  production may also mediate the upregulation 
of ATF3 induced by naringenin in macrophages. Phosphorylation of AMPK could be also induced by upstream 
kinases of Ca2+ -calmodulin-dependent kinase kinase β  (CaMKKβ ) which phosphorylates and activates AMPK 
in response to increased intracellular calcium levels. Previously, naringenin was reported to increase the extra-
cellular calcium influx in HEK293T cells34. In the present study, we found that extracellular calcium chelation or 
inhibition of CaMKKβ  activation impaired the inhibition on IL-6 expression. Accordingly, the enhanced AMPK 
phosphorylation and ATF3 expression induced by naringenin were also suppressed. Other flavonoid compounds, 
such as saponarin, could also activate AMPK in a calcium-dependent manner35. Therefore, we speculate that 
naringenin may induce extracellular calcium influx and activate CaMKKβ , which thereby lead to AMPK activa-
tion and ATF3 upregulation.

LPS or heated-killed E. coli are strong inducers of endotoxaemia in animal models, which cause dramatic 
increases in TNF-α  and IL-6 in the serum and major organs and thereby result in systemic inflammation and 
quick death in model animals. Moreover, the latter model was induced by injection of bacteria, which lacks 
viability. However, PAMPs such as LPS still exist, which are released or directly sensed to induce endotoxaemia 
or sepsis. Therefore, this model could better mimic the actual condition of endotoxaemia developed from bac-
terial infection. In our study, treatment with naringenin effectively suppressed the elevation of proinflammatory 
cytokines and improved the survival of mice injected with LPS and heated-killed E. coli. However, naringenin 
did not inhibit IFN-β  and RANTES, which was consistent with cellular experiments and further indicate that the 
IRF3 pathway was also not affected in vivo. The lung is the most frequently affected organ after LPS injection and 
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also closely related with increased mortality in mouse models36. Likewise, our experiments demonstrated that 
naringenin effectively attenuated cytokine levels and leukocyte infiltration in the lung tissue and in the BALF of 
LPS-challenged mice. Previously, it was found that transgenic overexpression of ATF3 specifically in macrophages 
resulted in marked attenuation of TNF-α  and IL-6 expression in adipose tissue and peritoneal macrophages in 
response to saturated fatty acids/TLR4 signalling37. In our study, we also detected increased ATF3 expression and 
AMPK phosphorylation in the lung tissue of the model mice after naringenin treatment. Moreover, co-treatment 
with an AMPK activator enhanced the anti-inflammatory activity of naringenin, whereas an AMPK inhibitor 
functioned in an opposite manner. Overall, the in vivo data support our speculation that AMPK and ATF3 are 
required to mediate anti-inflammatory action by naringenin treatment.

In summary, the findings of this study reveal a new function of naringenin that it suppresses inflammatory 
reactions in LPS-treated macrophages through AMPK-ATF3-dependent negative regulation on the TLR4 sig-
nalling pathway. Such effects were also required for naringenin to confer protection in the murine endotoxaemia 
model. A proposed schematic is presented as Fig. 8 to explain the mechanism, which offers additional avenues 
for studying the therapeutic potential of naringenin in treating inflammatory-associated disorders in the future.

Materials and Methods
Chemicals and Reagents. Naringenin was purchased from Source Leaf Biotech (Shanghai, China). 
Dulbecco’s modified Eagle’s medium (DMEM) and foetal bovine serum (FBS) were obtained from Gibco (Grand 
Island, NY, USA). E. coli lipopolysaccharide (LPS) O55:B5, ethylene glycol-bis (β -aminoethyl ether)-N,N,N’,N’-
tetraacetic acid (EGTA), STO-609, LiCl3, AICAR and Compound C were purchased from Sigma (St. Louis, MO, 
USA). All other chemicals and solvents were of the best grade commercially available.

Animals. Wide-type BALB/c mice (male, 6–8 weeks) were purchased from HFK Bioscience Co., Ltd. (Beijing, 
China) and housed under standard specific pathogen-free conditions with free access to food and water. All ani-
mal experiments were performed in accordance with the National and Institutional Guidelines for Animal Care 
and Use and approved by the Institutional Animal Ethics Committee of the Third Military Medical University.

Endotoxaemia modelling and drug treatment. Murine endotoxaemia was modelled in BABL/c mice 
via a bolus intraperitoneal injection of NS or E. coli LPS O55:B5 or heat-killed E. coli. Then, a single dose of NS 
(containing 4% DMSO) or 10 mg/kg naringenin (containing 4% DMSO) was intraperitoneally injected alone or 
with 100 mg/kg AICAR or 1 mg/kg compound C. Survival was observed for up to 7 days, and samples from model 
mice for different tests were collected 12 h after modelling.

Blood or tissue sampling. BALB/c mice were anesthetized under isoflurane inhalation (Keyuan 
Pharmaceutical Co., Ltd, Shandong, China). Blood samples were gathered via intracardiac puncture, and leu-
kocytes were counted using a haemocytometer. The rest of the samples were centrifuged, and supernatants were 
stored at − 70 °C for further cytokine assays. The entire right lung, liver and spleen organs were eviscerated 12 h 
after LPS injection and homogenized using 1 ml RIPA lysis solution (Beyotime, Jiangsu, China). The homogenates 
were centrifuged, and the supernatants were stored at − 70 °C for further protein-based assays.

Broncho-alveolar lavage fluid (BALF) sampling and cell counts. BALB/c mice were anesthe-
tized under isoflurane inhalation. BALF samples were obtained as previously described38. Briefly, the trachea 
was exposed and cannulated with a small tube. The entire airway was lavaged by gently aspirating and pooled 
with 1 ml of sterile PBS. The BALF samples were collected, and leukocytes were counted in 50 μ l aliquots using 

Figure 8. A schematic diagram describing the anti-inflammatory action of naringenin through AMPK-
dependent upregulation of ATF3. 
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a haemocytometer. The remaining samples were centrifuged, and the supernatants were stored at − 70 °C for 
cytokine assays.

Cell culture and treatment. Murine peritoneal macrophages were obtained from peritoneal lavage in 
BALB/c male mice as previously described39. Briefly, BALB/c mice were euthanized, and 1 ml DMEM was injected 
into the intraperitoneal cavity. The abdomen was gently massaged for 1 min, the injected medium was aspirated, 
and the cell pellets were washed twice with DMEM containing 10% FBS. Then, peritoneal macrophages were 
plated in plates or dishes and cultured at 37 °C in a humidified incubator supplemented with 5% CO2. Murine 
bone marrow-derived macrophages (BMDMs) were isolated from the femurs of BALB/c mice and differentiated 
by supplementing with 50 ng/ml m-CSF for 3–5 days40. Primary macrophages or murine macrophage such as 
RAW 264.7 cells (ATCC, Manassas, VA, USA) were cultured in high-glucose DMEM supplemented with 10% 
FBS at 37 °C in a 5% CO2 humidified incubator. The cell viability was examined by trypan blue (Beyotime) stain-
ing, and the cell density was detected using a Bio-Rad cell counter and adjusted as indicated for further treatment. 
For controls of naringenin solvent, the LPS group contains DMSO up to 0.08% while the medium group remained 
untreated.

Cell viability assay. The cytotoxicity of macrophages following treatment with naringenin was determined 
using an MTT assay. Cells were diluted to 1 ×  105 /ml and seeded into 96-well culture plates. Then, naringenin  
(0, 20, 40, 80, 160, 320 and 640 μ M) was added and incubated for 24 h. MTT solution was added to the cultured 
cells and incubated at 37 °C for 4 h. Then, 150 μ l DMSO was added, and the absorption values were detected at 
550 nm wavelength using a Multi-mode plate reader (Thermo, USA).

Western blot analysis. For cell-based analysis, macrophages (1 ×  106 /ml) were cultured in T25 flasks and 
collected after 30 min or as indicated after LPS treatment. Then, cells were lysed with plasma and a nuclear protein 
extraction kit (Beyotime) containing a protease cocktail and phosphatase inhibitors (Roche, Basel, Switzerland). 
For tissue-based analysis, the total protein was prepared as mentioned in Section 2.4. Then, cellular or tissue pro-
teins were separated by SDS-PAGE and transferred onto PVDF membranes (Millipore, Billerica, MA, USA). Blots 
of plasma protein were incubated with primary antibodies (1:1000 dilutions) for p38, p-p38, ERK, pERK, IRF3, 
pIRF3, ATF3, pAMPKα , AMPKα  and tubulin (Cell Signalling, Danvers, MA, USA) at 4 °C overnight. Then, the 
blots were further incubated with HRP-conjugated secondary IgG antibodies (1:2000 dilutions, Cell Signalling) 
at 37 °C for 1 h. Chemiluminescence images were developed with a SuperSignal Sensitivity Substrate kit (Pierce, 
Rockford, IL, US) and detected via a ChemiDoc XRS imaging system (Bio-Rad, Hercules, CA, USA).

Real-time PCR assay. Macrophages (1 ×  106 /ml) were cultured in 6-well plates and treated as indicated, 
and then collected 4 h after LPS treatment. Total RNA was extracted using a TRIzol reagent (Roche) and reverse 
transcribed into cDNA with a ReverTra Ace-α -RNA easy kit (TOYOBO, Japan). The cDNA templates were mixed 
with SYBR Green PCR Mastermix (TOYOBO) and primers for TNF-α , IL-6, TLR4, iNOS, COX2, NOX2, IFN-β ,  
RANTES, ATF3, and β -actin (Sequences listed in Table S1). Quantitative real-time PCR was performed using an 
iCycler Thermal Cycler (Bio-Rad).

siRNA Transient Transfection. ATF3 and AMPK𝛼  were transiently knocked down by siRNA transfec-
tion according to the manufacturer’s instructions. Briefly, RAW264.7 cells were cultured to 70% confluence. 
Negative control (NC) siRNA or siRNA for ATF3 and AMPK𝛼  (Santa Cruz Biotechnology, USA) were mixed with 
Lipofectamine 3000 transfection reagent (Invitrogen, USA) and added to the medium. After 24 h of transfection, 
the culture medium was replaced, and further treatment was performed.

Luciferase Reporter Gene Assay. RAW 264.7 cells (1 ×  105/ml) were cultured in 24-well plates and trans-
fected with plasmid pGM-IRF3-Lu (Yesen Biotech, Shanghai, China) pGL6-NFκB-lu, pGL6-AP-1-Lu (Beyotime) 
using an X-treme GENE HP DNA Transfection Reagent (Roche) for 24 h. Then, LPS was added for 6 h of incu-
bation treatment. The luciferase activity was analysed using a firefly luciferase assay kit (Beyotime) and detected 
using a luminometer. Relative luciferase light units were normalized to untreated cells.

Immunofluorescence Assay. Macrophages (1 ×  104 /ml) plated in glass-bottom culture dishes were 
treated as indicated and collected 1 h after LPS treatment. Cells were fixed with 4% paraformaldehyde (Boster, 
China) for 10 min and permeabilized with Triton X-100 (Sigma) for 5 min, followed by incubation with 
NF-κ Bp65, c-fos and ATF3 primary antibodies (Cell Signalling) at 4 °C overnight. Then, the blots were fur-
ther incubated with a Cy3-conjugated secondary IgG antibody (Cell Signalling), and the nuclei were stained 
with DAPI (Beyotime). Fluorescence images were captured using an LSM 780 confocal microscope (Zeiss, 
Germany).

ELISA assays. Supernatants from cultured macrophages were directly collected 12 h after LPS treatment. 
Serum and BALF supernatant samples of sepsis mice were prepared as previously indicated. The levels of TNF-α ,  
IL-6, IL-10, IFN-β  and RANTES were detected with ELISA kits (eBioscience, San Diego, CA, USA) as indicated 
by the manufacturer’s instructions.

Statistical analysis. Quantitative data are expressed as the mean ±  standard deviation (SD). Student’s t-tests 
was used for comparisons between two groups. One-way ANOVA followed by the Bonferroni post hoc correction 
were used for multiple comparisons. Differences with P values less than 0.05 and 0.01 were considered statistically 
significant.
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