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Abstract: Single-cell and single-nucleus RNA sequencing (sc/snRNA-seq) technologies have en-
hanced the understanding of the molecular pathogenesis of neurodegenerative disorders, including
Parkinson’s disease (PD). Nonetheless, their application in PD has been limited due mainly to the
technical challenges resulting from the scarcity of postmortem brain tissue and low quality associated
with RNA degradation. Despite such challenges, recent advances in animals and human in vitro
models that recapitulate features of PD along with sequencing assays have fueled studies aiming to
obtain an unbiased and global view of cellular composition and phenotype of PD at the single-cell
resolution. Here, we reviewed recent sc/snRNA-seq efforts that have successfully characterized
diverse cell-type populations and identified cell type-specific disease associations in PD. We also
examined how these studies have employed computational and analytical tools to analyze and inter-
pret the rich information derived from sc/snRNA-seq. Finally, we highlighted important limitations
and emerging technologies for addressing key technical challenges currently limiting the integration
of new findings into clinical practice.
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1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder
and affects over 1% of the population over the age of 60 [1]. In the United States, ap-
proximately 1.04 million individuals were diagnosed with PD in 2017, and the number of
persons living with PD is expected to double by 2040, affecting people of all ages, races,
and ethnicities [2,3]. In 2017, the estimated total economic burden of PD in the US was
$51.9 billion, including direct medical costs and indirect and non-medical costs, such as loss
in wages and social productivity; the total economic burden is expected to increase to about
$79.1 billion in 2037 [3]. As the global incidence and prevalence of PD is increasing, there
have been worldwide efforts to combat PD and understand the disease at the molecular
level by leveraging advanced technologies.

PD is characterized by a loss of dopaminergic neurons (DaNs) in the substantia nigra
pars compacta (SNpc), resulting in motor symptoms such as rigidity, postural instability,
tremor at rest, and bradykinesia [4]. While dopaminergic drugs and deep-brain stimulation
alleviate the symptoms and form the mainstay of PD treatment at present, they do not
get to the root causes of the disease and fail to accomplish disease modification in PD
patients. The other major pathologic feature of PD is the accumulation of small and
complex structures called Lewy bodies (LBs), which are enriched in aggregated forms of
α-synuclein (α-syn), including fibrils [5]. Yet, the processes that govern α-syn fibrillization
and the biogenesis of the LBs remain poorly unknown. Further, only 15% of PD patients
report a family history of PD symptoms, with varying genetic predispositions, while the
remaining 85% of the PD populations are classified as sporadic PD, which do not harbor
an interpretable genetic cause [6].
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Single-cell and single-nucleus RNA sequencing (sc/snRNA-seq) technologies have
become instrumental for assessing heterogeneous cell types and for reconstructing tempo-
ral and spatial dynamics of complex tissues [7–9]. With the advent of DNA barcode and
combinatorial indexing strategy, up to millions of cells or nuclei can now be sequenced
from a single experiment, enabling ultra-high throughput sc/snRNA-seq of samples across
different tissues and in the context of a wide range of diseases. While past efforts in de-
convoluting the complex nature of neural circuits have been largely ineffective with bulk
assays of the average composition of a brain tissue, single-cell sequencing technologies
have the advantage of characterizing the cellular heterogeneity that governs the key aspect
of neurobiology. Without the need for selective cell purification, sc/snRNA-seq technolo-
gies, including transcriptomic (i.e., abundance of RNA molecules) and epigenomic (i.e.,
chemical and physical modifications of DNA and histone proteins) assays, measure RNA or
DNA from individual cells [10]. While sc/snRNA-seq technologies, including multi-omic
techniques covering multiple different modalities, have been extensively leveraged in neu-
roscience, they are just beginning to be applied in studies of PD, particularly with human
postmortem brain tissues. Using animal and human in vitro models of PD and parkinson-
ism, these assays have transformed our understanding of the cellular composition and
diversity of neuronal and glial cell type identities in the developing mouse and human
brain and have identified their functional role in the DaN degenerative process underlying
PD. Sc/snRNA-seq data derived from studies examined below can represent a possible
starting point for the development of tools for targeted functional studies, connecting
PD-specific transcriptomic signatures with spatial context and physiology.

2. Animal and Human In Vitro Models of PD and Parkinsonism

While most PD is idiopathic, genetic models of PD have provided deep insights into
the more common sporadic form of the disease. Recent meta-analyses of genome-wide
association studies (GWAS) in PD have identified novel loci for disease risk and the genetic
variants that deterministically drive the disease or alter risk. These studies have provided
useful biological insights into the pathophysiology of PD and the opportunity to develop
animal models, which are, in many cases, excellent surrogates for in vivo whole brain
systems [11,12]. Mutations in SNCA (α-syn) and LRRK2 (leucine-rich repeat kinase 2)
cause autosomal dominant PD, while mutations in PINK1 (PTEN-induced putative kinase
1), PRKN (parkin), ATP13A2 (ATPase 13A2), DJ-1 (protein DJ-1), FBXO7 (F- box protein
7), and PLA2G6 (A2 phospholipase group VI) genes cause autosomal recessive PD [13].
Novel susceptibility genes associated with an increased risk of developing PD have also
been identified, including NR4A2 (Nurr1, nuclear receptor superfamily protein), SNCAIP
(synphilin-1), APOE (apolipoprotein E), MAPT (tau protein), GBA (b-glucocerebrosidase),
and COMT (catechol-O-methyl transferase) [13–15].

Genetic-based models of PD and parkinsonism have involved familial PD-associated
mutant forms of SNCA (A53T, A30P, E46K), overexpression or knock-in mutations of
LRRK2 (G2019S, R1441C/G), or deletion or knock-out of PRKN, PINK1, and/or DJ-1.
Although these genetic forms of PD models exhibited substantial neurodegeneration and
phenocopy human PD to some extent, they often lacked measurable loss of DaNs and
the resulting motoric dysfunctions [16–18], posing challenges for using current models to
inform therapeutic intervention. On the other hand, conditional, temporal, and/or cell
type-specific overexpression of mutant SNCA [11,19] and overexpression of adenoviral
(AAV)-mediated transduction of mutant LRRK2 (G2019S) [20,21] led to neurodegeneration
of DaNs. Similarly, loss of function models of PRKN, PINK1, or DJ-1 result in loss of
DaNs in mice and rats [11,22–24], serving as robust experimental systems to understand
molecular and cellular mechanisms leading to brain cell dysfunction and degeneration and
the effect of PD-causing mutations on these processes, in PD.

PD is a prion-like disorder characterized by the spread of pathologic α-syn from cell
to cell. Misfolded α-syn fibrils can induce monomeric α-syn to misfold in the cell and
are released into the extracellular space where they can further enter neighboring cells
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to seed soluble α-syn into a misfolded and aggregated form. Preformed α-syn fibril(s)
(PFF) can be injected into the striatum or substantia nigra (SN) using animal models for the
development of Lewy-like α-syn fibrillar inclusions and aggregates that closely recapitulate
features of human PD [25]. The possibility of combining different genetic-based models of
α-syn pathology has also been explored; Thakur et al. have injected exogeneous PFF into
the SN and ventral tegmental area (VTA) of the rat brain that overexpressed AAV-derived
human α-syn to further speed up the process of α-syn fibrillar inclusions [25].

Interestingly, recent studies have provided direct evidence of gut-to-brain α-syn trans-
mission in rodent [26] and mouse [27] models, supporting the classical Braak’s hypothesis
that sporadic PD could be caused by pathogen (virus or bacterium) entering the gut via
the nasal cavity [28]. Such trans-neuronal propagation of pathologic α-syn was further
accompanied by loss of DaNs and behavioral deficits [27], providing novel PD models
to explore the role of gut–brain axis in PD pathogenesis. In a similar manner, Van Den
Berge et al. found evidence of transmission of α-syn pathology through both sympathetic
and parasympathetic pathways from the duodenum to the dorsal motor nucleus of the
vagus (DMV) and locus coeruleus in transgenic rats that overexpressed a human form
of α-syn [29]. While these new models may be useful in studying specific cellular and
molecular pathways in PD and related α-synucleinopathies, it takes a substantially long
time (>6 months) for significant neurodegenerative changes to appear in midbrain DaNs
following the injection of PFF into the gut. Here we discuss recent sc/snRNA-seq efforts
that enabled single-cell characterization of animal and human in vitro models of PD and
human postmortem brain tissues obtained from controls and/or PD patients (Table 1).

Table 1. Summary of single-cell and single-nucleus RNA sequencing (sc/snRNA-seq) datasets analyzed in studies of
Parkinson’s disease (PD) and in those of dopaminergic neuron (DaN) neurogenesis.

Sample Origin Condition Brain Region Number of
Single Cell

Cell or
Nucleus

Number of Cell
Cluster

sc/snRNA-seq
Technology Reference

Human postmortem Wild-type (WT) SN, cortex 17,000 Nucleus SN: 10, cortex: 6 10× [30]

Human iPSC
WT, oxidative
stress-induced,

SNCA-A53T mutant
- 15,325 Cell WT: 6 10× [31]

Human postmortem WT SN 44,274 Nucleus 24 10× [32]

Mouse tissue WT Midbrain, forebrain,
olfactory bulb 1 396 Cell 13 Smart-seq2 [33]

Mouse tissue WT Ventral midbrain 2 1106 Cell 8 Smart-seq2 [34]

Rat tissue PD model Striatum (Str),
midbrain (mid)

Str: 746, mid:
7875 Cell 4 Smart-seq2, 10× [35]

Mouse tissue 4 WT Entire nervous
system 509,876 Cell B: 39, R: 265 3 10×

[36]Mouse tissue 5 WT 9 brain regions 6 690,000 Cell, nucleus 565 Drop-seq

Mouse tissue 7 WT 5 brain regions ~10,000 Cell, nucleus B: 24, R: 149 8 DroNc-seq

Human postmortem 9 WT Hippocampus,
prefrontal cortex 19,550 Nucleus 16 DroNc-seq

Human postmortem 10 WT Visual cortex, frontal
cortex, cerebellum 36,166 Nucleus 35 snDrop-seq

Mouse embryo WT

Ventral
mesencephalic and
diencephalic (VMD)

region

550 Cell 4 11 Smart-seq2 [37]

Mouse embryo WT Ventral midbrain 1907 Cell 26 C1-STRT [38]

Human postmortem WT, idiopathic PD
patients Midbrain 41,435 Nucleus 12 10× [39]

Human iPSC WT, PD GBA-N370S
patients - 146 Cell 6 12 Smart-seq2 [40]

1 Of Th:EGFP BAC transgenic (Tg(Th-EGFP)DJ76Gsat/Mmnc) mice from embryonic day (E) E15.5 and postnatal day (P) P7. 2 Of
Pitx3eGPF/wt mice from E13.5, 15.5, 18.5, and P1, 7, and 90. 3 B refers to broad categories (level 4), and R refers to refined cell types
(level 5), respectively. 4 This scRNA-seq dataset was generated from [41]. 5 This sc/snRNA-seq dataset was generated from [42]. 6 Frontal
cortex, striatum, globus pallidus externus/nucleus basalis, thalamus, hippocampus, posterior cortex, entopeduncular nucleus/subthalamic
nucleus, substantia nigra/ventral tegmental area, and cerebellum. 7 This sc/snNRA-seq dataset was generated from [43]. 8 B and R refers
to broad (level 1) and refined (level 2) cell types, respectively. 9 This snRNA-seq dataset was generated from [44]. 10 This snRNA-seq
dataset was generated from [45]. 11 By embryonic age: E10.5, 11.5, 12.5, and 13.5. 12 By sample origin: Control1, 2, 3, and PD GBA-N370S
patients GBA1, 2, and 3. SN, substantia nigra.
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2.1. Mouse SN-Derived DaNs

The earliest attempts at elucidating the extent of DaN development and diversity
through the analysis of sc/snRNA-seq used mouse embryos and early postnatal DaNs,
resolving temporal and spatial dynamics and molecularly defined cell types during ven-
tral midbrain development [34,37,38]. In 2016, the integrative analysis of scRNA-seq
data derived from ventral midbrain (VM) in human and mouse identified specific adult
dopaminergic cell types that emerged postnatally and several diverse radial glia-like cell
types biased toward a distinct fate (Figure 1a,b) [38]. This study faithfully depicted the
degree to which species differ in developmental timing and cell proliferation in the context
of molecular diversity.
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Figure 1. scRNA-seq of mouse neural progenitors from embryos and early postnatal DaNs. (a,b) Use of ventral midbrain at
six embryonic (E) days from E11.5 to E18.5 in mouse embryos. Reprinted from [38], Copyright 2016 Elsevier. (a) Dot plot
depicting time distribution of cell types (left), heatmap showing pairwise correlation (middle), and bars showing average
number of mRNA molecules per cell (right). (b) t-distributed stochastic neighbor embedding (t-SNE) of cells colored by
cell type. (c–e) Use of mesencephalic DaNs at four embryonic (E) days from E10.5 to E13.5 in Lmx1aEGFP mice. Reprinted
from [37], Copyright 2017, with permission from Elsevier. (c) Cells plotted along the first principal component (PC1), colored
by embryonic days (top) and the frequency distribution (bottom); yellow: E10.5, orange: E11.5, red: 12.5, and black: E13.5.
Relative expression of (d) pan-neuronal markers and (e) DaN markers along PC1 (left) and co-immunostainings of the stated
markers (right). (f,g) Use of ventral midbrain at three embryonic (E) days from E13.5 to E18.5 and three postnatal (P) days
from P1 to P90 in Pitx3eGPF/wt mice. Reprinted from [34]. Copyright 2019, Katarína Tiklová et al. (f) Principal component
(PC) plot showing 1106 cells colored by developmental stage. (g) Network plot depicting distribution of Pitx3-expressing
midbrain neurons colored by developmental stage, pseudotime, and molecularly defined cell type. Dat: Slc6a3, T: Th, N:
Nxph4, G: Gad2, A: Aldh1a1, and V: Vip.



Biomedicines 2021, 9, 368 5 of 21

In line with this study, scRNA-seq of proliferating mesencephalic DaN neural pro-
genitor cells in Lmx1aEGFP mice from four different embryonic days showed a strong
axis of differentiation (Figure 1c–e). In-depth analysis of the generated dataset revealed
a close association between developing DaNs and subthalamic nucleus neurons, while
identifying a specific set of unique transcription factors that can classify the two neuronal
subtypes [37]. In subsequent years, the same research group followed later maturation
by sampling both postmitotic DaN precursor cells and differentiated neurons from the
mouse VM at six different time points during DaN maturation from E13.5 to postnatal day
(P) P90 in Pitx3eGPF/wt mice (Figure 1f,g). Validated by histological analysis, the network
analyses identified seven neuronal subpopulations divided into two major branches of
Pitx3-expressing neurons differing in the expression of Slc6a3, revealing novel cellular pop-
ulations that are developmentally related but are non-dopaminergic [34]. Altogether, these
studies have important implications for developing a cell therapy strategy for PD, as the
refinement and optimization of differentiation protocols will require better understanding
of dopaminergic specification, neurogenesis, and diversity.

Mouse brain tissues have been subjected to sc/snRNA-seq not only to elucidate the
diversity and development of DaNs, but also to identify putative cell types specifically
vulnerable in PD. Through the expression-weighted cell-type enrichment (EWCE) [46]
analysis, Bryosis et al. found that genes that were upregulated in brains with higher
Braak scores were specifically enriched in oligodendrocytes and not microglia, while
downregulated genes were expressed only in DaNs using mouse brain-derived scRNA-
seq [36]. DaN-specific expression patterns revealed by sc/snRNA-seq were further used for
prioritizing candidate genes in previously identified GWAS loci associated with sporadic
PD susceptibility through PD GWAS loci gene scoring [33]. Computational approaches
used in these studies are discussed in detail in Section 4.2.

2.2. Human iPSC/Embrionic Stem Cell (ESC)-Derived DaNs

The advances in induced pluripotent stem cell (iPSC) technology have revolutionized
our ability to model PD and have brought much success in generating human in vitro
neurons that would be otherwise inaccessible. As compared with postmortem tissues
representing the endpoint of disease, reprogramming PD patient-derived cells into iPSCs
followed by subsequent differentiation into DaNs represents the earliest stages of the dis-
ease process, facilitating discovery of novel biomarkers and therapeutic candidates [31,47].
Successful generation of iPSC-derived DaNs from patients harboring PD mutations or
alterations in GBA (RecNcil, L444P, N370S) [48,49], SNCA (triplication) [50–52], or LRRK2
(G2019S) [53–56] has elucidated the role of α-syn in the origin and progression of PD.

Further, human iPSC (hiPSC)-derived neuronal models have enhanced the under-
standing of the role of PD-causing mutations. For example, it has been proposed that
LRRK2-G2019S results in dopaminergic neurodegeneration with its functional role in
mRNA translation and calcium homeostasis [57], oxidative phosphorylation [58], mito-
chondrial DNA damage [55], interferon gamma (IFN-γ) signaling [59], neuritogenesis [60],
phagosome maturation [61], and lysosomal tubulation and vesicle sorting [62]. Similarly,
the roles of SNCA-A53T in axodendritic neuropathology [63], cellular bioenergetics [64],
endoplasmic reticulum (ER)-to-Golgi complex trafficking [65], mitochondrial dysfunction,
and neuronal apoptosis [66] have been suggested through rigorous exploration of hiPSC-
derived models. As familial PD represents <10% of cases, human iPSC lines from patients
with young-onset PD with no known PD mutations have also recently been established [47],
although such iPSC models of sporadic PD often do not show α-syn accumulation as com-
pared with wild-type (WT) controls [53,67].

Nevertheless, regardless of the midbrain patterning protocol, DaN cultures can be
highly heterogeneous. Comprehensive meta-analysis of published hiPSC-PD studies found
that proportions of generated neurons and DaNs vary greatly between studies, even when
using identical differentiation methods, with 27% of cell populations being DaNs, on
average [6]. Further, the presence of other cell types, such as astrocytes, neural stem
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cells, and glutaminergic and GABAergic neuronal subtypes in cell cultures was often
inevitable [6,68,69], adding layers of complexity and inconsistencies in downstream analy-
ses. To date, these cell cultures exhibiting varying degrees of heterogeneity and cellular
variability have been explored by bulk-cell approaches that are unable to characterize
individual cells.

To overcome these limitations, Lang et al. performed both bulk and single-cell RNA-
seq using hiPSC-derived DaNs from controls and PD GBA-N370S patients and revealed
a functionally enriched gene set that defined a pseudotemporal axis of gene expression
variation in mutant hiPSC-derived DaN [40]. Using ingenuity pathway analysis (IPA),
they found that the downregulation of HDAC4-controlled genes occurs early along the
axis of disease and that pharmacological modulation of HDAC4 activity or localization
rescued PD-related phenotypes, including ER stress and autophagic and lysosomal per-
turbations, and increased in α-syn release. In another study, droplet-based scRNA-seq of
WT hiPSC-derived DaNs identified six distinct cell types, including two neuron progenetic
populations expressing dopaminergic progenitor markers (i.e., VIM, HES1, and NFIA) and
four DaN populations expressing mature neuronal markers (i.e., MAP2 and SNAP25) and
dopaminergic lineage markers (i.e., PBX1, KCNJ6) [31] (Figure 2a–c). The sensitivity to
oxidative stress and ER stress was further assessed in a cell type-specific manner using
hiPSCs-derived WT DaNs and isogenic SNCA-A53T mutant DaN subpopulations. Overall,
this study performed an in-depth scRNA-seq analysis and provided a rich resource (acces-
sion code: ArrayExpress E-MTAB-9154) with which to explore cell type-specific responses
to PD-relevant stress-induced perturbations.

Stem cells can also be derived from fetal sources and embryonic origins. Their self-
renewal ability (i.e., capable of infinite expansion) makes stem cells ideal candidates for
cell replacement therapies in PD. The engraftment of human pluripotent stem cell-derived
neural progenitors and/or functional neurons have been proven safe and efficient in
animal models of PD [70–73] and even in a PD patient [74]. Nevertheless, to develop a gold
standard, and a possibly personalized cell therapy strategy for PD, it is important address
some of the issues that may arise. As the field is still in its infancy, the cell manufacturing
process should carefully (1) derive the right neural cell type (e.g., caudal midbrain DaNs) or
cell state (e.g., progenitor cells, intermediate, or fully differentiated) for transplantation, (2)
determine the initial source of stem cells (e.g., fetal, ESC, or iPSC) for immunosuppression,
(3) identify the number of cells and site of transplantation, and (4) eliminate the risk of
tumorigenesis [75].

Increasingly, scRNA-seq technologies and analyses have been used to examine the
safety, efficacy, and reproducibility of the generated neurons that were grafted. For exam-
ple, the Takahasi research group performed a single-cell RT-qPCR analysis to assess the
expression of genes related to DaN differentiation, proving the reproducibility of their re-
sults [72]. Through the combined analyses of scRNA-seq and histology, Tiklová et al. have
also recently characterized intracerebral grafts derived from human embryonic stem cells
(hESCs) and ventral midbrain (VM) fetal tissue, unraveling previously unknown cellular
diversity and composition in a pre-clinical rat PD model [35]. In addition to neurons and
astrocytes, a class of newly identified perivascular-like cells was identified as having a
novel cellular composition of hESC-derived grafts in this study (Figure 2d–g).
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Figure 2. scRNA-seq of fetal and human induced pluripotent stem cell (hiPSC) or embryonic stem cell (ESC)-derived neurons
in studies of PD. (a–c) Use of WT hiPSC-derived DaNs. Reprinted from [31], Copyright 2020 Elsevier. (a) Immunofluoresence
staining, (b) Uniform manifold approxiamation and projection (UMAP) and (c) expression heatmap of WT hiPSC-derived
DaNs. TH: tyrosine hydroxylase, TUJ1: beta-3-tubulin. (d–g) Use of human embryonic stem cell (hESC) and fetal ventral
midbrain (VM)-derived progenitors. Reprinted from [35], Copyright 2020, Katarína Tiklová et al. (d) Immunohistochemistry
of TH in the graft core (six months post-transplantation) (e,f) t-SNE and (g) expression plot using the stated genes (before
grafting). “Y”, “O”, “B”, and “G” indicate cell clusters shown in (e).

3. Human Postmortem Substantia Nigra

Recent efforts to profile individual nuclei from human postmortem brain tissues have
demonstrated efficient classification of cell types and/or assessment of spatiotemporal
dynamics of cellular compositions at the single-cell resolution [30,32,44,45,76–83]. For
example, a survey of human neocortex transcriptome diversity identified novel subpop-
ulations of adult neurons that expressed major histocompatibility complex type I genes,
in which such an expression pattern was not observed in fetal neurons [81]. In another
study, snRNA-seq of cells obtained from six neocortical regions further identified 16 neu-
ronal subtypes, with distinct interneuron cell populations and excitatory neurons showing
unique spatial organization [76]. By combining bulk tissue RNA-seq and scRNA-seq ap-
proaches, Liu et al. further profiled lncRNAs, including polyA selected and total RNA,
obtained from human neocortex at different stages of development, and identified a spe-
cific target enriched in radial glia cells but not in tissues [77]. Consequently, such studies
have constructed open-source sc/snRNA-seq databases, including a single-cell atlas of the
mid-gestation human neocortex [82] and SN [30] and the Allen Brain Cell Types Database
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containing the primary motor cortex (M1), multiple cortical areas, middle temporal gyrus
(MTG), primary visual cortex (V1C), and anterior cingulate cortex (ACC) [83].

Human single-nucleus transcriptomic atlases for the substantia nigra (SN) have iden-
tified cell clusters spanning known resident cell classes, including astrocytes (ASC), oligo-
dendrocytes (ODC), oligodendrocyte progenitor cells (OPC), mural cells (endothelial cells
and pericytes), microglia, fibroblasts, and neurons, including DaNs and multiple inhibitory
types [30,32]. While most of the nuclei obtained from SN were identified as glial cell
populations (95.5%), which mainly comprised ODCs (72%), only 12% of cell populations
were glia, with the rest of captured nuclei comprising mainly excitatory (Ex) and inhibitory
(In) neurons [30] (Figure 3a). The integration of SN and cortex snRNA-seq data further
reveals transcriptional correlation attributed to cell type rather than the region of origin
(Figure 3b). Importantly, DaN-specific expression patterns identified from these merged
data were associated with established genetic variants contributing to PD traits or genetic
risk loci (see Section 4.2. for further details, including computational tools used in the
analyses) [30]. LIGER, a computational algorithm that integrates highly heterogeneous
sc/snRNA-seq datasets, was successfully applied to analyze a total of 44,274 nuclei derived
from the SN of seven healthy individuals [32]. Despite substantial variation observed
across different individuals (Figure 3c), LIGER identified 24 cell populations (Figure 3d,e)
in which the expression patterns were strongly concordant with cell clusters identified
from mouse SN, consistent with another study that observed well-conserved cell types in
human and mouse cortex [83].
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Importantly, one of the first attempts to profile postmortem brain tissues from idio-
pathic PD patients at the single-cell resolution has been made recently, providing com-
prehensive insight into the molecular composition and cellular phenotype of PD [39]. In
this study, PD-specific upregulation of microglia and astrocytes was associated with cy-
tokine signaling and the stress response to unfolded proteins, implicating the role of glial
cells in the neuroinflammatory process in the disease. In accordance with earlier observa-
tions [30,32], the majority of cell populations consisted of glial cells (~80%) while DaNs
contributed to 0.18% of the total cell count. These results highlight important technical lim-
itation in current sc/snRNA-seq protocols, which could miss relatively short poly(A) tail of
Th mRNA transcripts. Nevertheless, to the best of our knowledge, this was the first study
that demonstrated successful enrichment of PD-specific DaNs and glial subpopulations
through the comparative analysis of snRNA-seq derived directly from postmortem brain
tissues of PD patients.

4. Emerging Tools for Data Analysis

Currently, there is a plethora of different sc/snRNA-seq technologies and compu-
tational analytical tools, allowing us to create tailored experimental and computational
designs for studies. Compared to the first attempt to measure the expression of several
genes from a few single cells using in vivo reverse transcription- and in vitro transcription-
based approaches in 1992, recently developed in situ barcoding-based methods allow the
sequencing of up to several millions of cells (key technological developments are described
elsewhere [84]). Multiple rounds of split-pool barcoding of (pre)mRNAs would make
such combinatorial indexing strategies more affordable and effective as compared with
the existing sc/snRNA-seq technologies that rely heavily on physical compartments (e.g.,
wells, traps, droplets) to isolate individual cells and generate sequencing libraries on a
per-cell basis.

A systemic comparison of existing sc/snRNA-seq technologies, however, revealed
notable differences in read structure and alignment efficiency among different methods [85].
Such efficiency was assessed based on several key metrics, such as the presence of poly(T)
in reads and antisense reads, the fraction of mitochondrial and nuclear reads, the num-
ber of detected UMIs or genes per cell, the detection of multiplets, technical precision,
reproducibility between replicates, accuracy in gene expression, and the ability to classify
heterogeneous cell populations (refer to the recently published work [85] for detailed
analysis). Here we focused on the emerging sc/snRNA-seq experimental and analytical
tools that can be applied in studies of PD.

4.1. RNA Velocity

In 2018, the concept of RNA velocity was first introduced as an alternative computa-
tional approach for inferring the transcriptional dynamics of individual cells based on the
ratio of unspliced to spliced mRNAs [86]. It was suggested that 15–25% of reads sequenced
using SMART-seq2 [87], STRT/C1 [88], inDrop [89], and 10× Genomics Chromium [90]
protocols contain unspliced intronic reads, which could represent nascent mRNAs. This
new analytical tool developed for analyzing scRNA-seq data allows prediction of the rate
and direction of change in gene expression and tracking of the formation of stimuli-specific
gene modules. Newly developed snRNA-seq technologies will particularly advance the
analysis of RNA velocity, given that sequencing single nuclei rather than the intact cell
could potentially enrich the amount of sequenced unspliced reads from precursor mRNA
(pre-mRNA).

Through the analysis of RNA velocity using ectoderm-derived hypothalamic cell pools,
specific cell subpopulations, termed “bridge cells” that link progenitors and immature
neurons, have been identified [91]. Interestingly, RNA velocity vector embeddings of
Th+ cells in this study identified molecularly distinct subtypes of phenotypically uniform
neurons that are critical to hypothalamic development. In another study, UMAP plotting
combined with RNA velocity allowed delineation of developmental trajectories for all
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major hypothalamic cell types, revealing the age at which molecularly defined cell types
deviate from the expected gene expression (Figure 4a) [92]. The RNA velocity analysis
of E11–E13 developing diencephalon further identified four spatially segregated main
hypothalamic domains using the reference region-specific markers that were previously
defined (Figure 4b). We believe that sc/snRNA-seq datasets derived from DaNs obtained
during ventral midbrain development [34,37,38] combined with the RNA velocity analysis
will routinely be used in the near future to elucidate the cellular composition and diversity
of DaNs.
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brain-related disorders, and SN cell types. Reprinted from [30], Copyright 2020, Devika Agarwal et al. Color of heatmap
indicates degrees of statistical significance. *: p value (<0.05), **: Bonferroni corrected q value, Cog.: cognitive phenotypes,
Immune: autoimmune diseases, Metabolic/Cardio/Anthropometric: metabolic, cardiovascular and anthropometric traits.

4.2. Combined Analysis of DaN-Specific Gene Expression and GWAS Results

Through sophisticated computational analysis of GWAS results and bulk and/or
sc/snRNA-seq data, recent studies have prioritized specific types of central nervous sys-
tem (CNS) for follow-up experiments for multiple traits (independent risk loci associated
with the disease) in PD [30,33,36]. Computational tools developed for GWAS enrich-
ment analysis are presented (and their abbreviations are defined) in Table 2 and include
ALIGATOR [93], CytoScape [94], DAPPLE [95], DAVID [96], DEPICT [97], INRICH [98],
MAGMA [99], and WGCNA [100], and those for genome-based heritability analysis include
GCTA [101], LDAK [102], LDRegress [103], LDSC [104], MEGHA [105], and PCGC [106]
(Table 2). Comprehensive software packages and open-source tools developed for GWAS
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data analysis include BEAGLE [107], EIGENSOFT [108], Genetic Power Calculator [109],
LocusZoom [110], METAL [111], Minimac [112], and PLINK [113]. A combination of these
tools can be used in sc/snRNA-seq studies to connect human genomic PD findings to
specific brain cell types and provide significant insight into the etiology of PD.

Table 2. Commonly employed computational and analytical tools in genome-wide association studies (GWAS) and
sc/snRNA-seq studies.

Tool Full Name Analysis Feature Ref.

ALIGATOR Association List Go
Annotator

Pathway analysis tool
for GWAS data

Adjust for common genomic
confounding factors using
well-controlled type I error

[93]

CytoScape CytoScape
Visualization tool for
network and pathway

findings

Visualize results for network
structure analyses, network

clustering, hotspot detection, and
functional enrichment

[31,94]

DAPPLE
Disease Association
Protein-Protein Link

Evaluator

Network-assisted
analysis tool for

prioritizing GWAS
results

Find physical connectivity among
proteins encoded by genes in loci

associated with disease
[95]

DAVID

Database for
Annotation,

Visualization, and
Integrated Discovery

Pathway analysis tool
high-throughput
gene-based data

Facilitate functional annotation
and analysis of any given list

of genes
[96]

DEPICT

Data-Driven
Expression-Prioritized

Integration for
Complex Traits

Integrative GWAS
analysis tool

Prioritize most likely causal genes
using both established annotations

and gene expression data
[97]

GCTA Genome-Wide
Complex Trait Analysis

SNP-based heritability
analysis

Estimate the proportion of
phenotypic variance explained by

whole-genome genotype data
[101]

INRICH Interval Enrichment
Analysis

Pathway analysis tool
for GWAS data

Detect enriched association signals
of LD-independent genomic
regions within biologically

relevant gene sets

[98]

LDAK Linkage Disequilibrium
Adjusted Kinships

SNP-based heritability
analysis

Create kinship matrices take into
account LD between

genotype markers
[102]

LDregress LDregress 1 SNP-based heritability
analysis

Adjust for LD between genotype
markers using regression [103]

LDSC LD Score Regression SNP-based heritability
analysis

Use association summary statistics
instead of genotype data [104]

MAGMA Multi-Marker Analysis
of Genomic Annotation

Gene- and generalized
gene-set analysis for

GWAS data

Analyze both raw genotype data
and summary SNP p-values from a
previous GWAS or meta-analysis

[99]

MEGHA
Massively Expedited

Genome-Wide
Heritability Analysis

SNP-based heritability
analysis

Estimate measures of heritability
with several orders of magnitude
less time than existing methods

[105]

WGCNA
Weighted Gene
Co-Expression

Network Analysis

Gene-expression data
analysis

Find clusters of highly correlated
genes and enriched biology or

functions using module
eigengenes or intramodular

hub genes

[100]

1 It is implemented in the EIGENSOFT software.
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Most commonly used computational tools for SNP-based heritability analysis and
enrichment analysis of GWAS data in recent studies are Multi-Marker Analysis of Genomic
Annotation (MAGMA) [99] and LD Score Regression (LDSC) [104], respectively. Leveraging
these methods, Agarwal et al. found a significant association between PD genetic risk and
DaN-specific gene expression patterns, which were identified from snRNA-seq using the
SN brain tissues, for the first time in humans (Figure 4c) [30]. This finding is consistent with
observations made using mouse-derived expression data of predicted PD GWA-validated
risk variants [12,36]. Such an exemplary study demonstrated the ability of sc/snRNA-seq
technologies to unravel the heterogeneity of complex brain tissue and reveal potential
contribution of SN to PD in a cell type-specific manner.

Despite the central focus on nigrostriatal DaNs in the field, however, there is emerg-
ing evidence to suggest the involvement of glial cell populations and, more specifically,
astrocytes, microglia, and oligodendrocytes in the pathogenesis of PD [30,36,114–116].
By integrating previously published GWAS summary statistics with single-cell transcrip-
tomic data from the entire mouse nervous system and by employing MAGMA [99] and
LDSC [104], Bryois et al. recently found that PD was independently associated with oligo-
dendrocytes and enteric neurons, in addition to the cholinergic and monoaminergic neurons
(e.g., DaNs) [36]. In support of this view, using MAGMA [99] and LDSC [104], Reynolds
et al. reported that the enrichment of PD heritability was observed in a lysosomal-related
gene set highly expressed in astrocytes, microglia, and oligodendrocyte subpopulations
and not in brain-related cell type-specific annotations [116]. PD-associated risk variants
were further found to be associated with lymphocytes, mesendoderm, liver-cells, and
fat-cells [117], in addition to being associated with the adaptive and the innate immune sys-
tem [116,118–120]. These studies altogether highlight the need to move beyond assessing
only the brain and selective neuronal vulnerability.

4.3. Machine Learning Approaches

Cell type annotation is a vital step for subsequent analyses in the computational pipeline
for sc/snRNA-seq. Commonly, prior knowledge of established cell type-specific markers
(scCATCH [121]) or reference databases of bulk or sc/snRNA-seq profiles (CHETAH [122],
scHCL [123], scMap [124], SingleR [125]) are used to annotate each cell type. Increas-
ingly, machine learning-based reference-dependent (CellAssign [126], Garnett [127]) and
reference-free (scDeepSort [128]) algorithms have emerged as powerful tools that can
rapidly and accurately label cells without prior reference knowledge. In sc/snRNA-seq
studies of PD, a stratified cross-validation machine learning approach was implemented to
validate manually annotated cell clusters [39]. Further, supervised machine learning was
used in a scRNA-seq study of mouse and human ventral midbrain development to assess
the quality of the in vitro-differentiated cells relative to in vivo-defined cell types [38].
Thus, we believe that advances in deep learning along with sc/snRNA-seq technologies
will be particularly valuable to stem cell research and in silico biomarker discovery in
studies of PD.

4.4. Challenges and Prospects

The central focus in the field has been the ability to identify known and novel cell
types in an unbiased and efficient manner. However, different experimental and/or com-
putational tools and parameters choices can readily lead to disparate outcomes for the
same sc/snRNA-seq dataset. The performance of existing sc/snRNA-seq technologies
further varies between cell types and samples of different tissues and species, affecting
reproducibility and downstream functional interpretation. For example, a recent multi-
center benchmark study comparing 13 commonly used scRNA-seq protocols, including
CEL-seq2 [129], MARS-seq [130], Quartz-seq2 [131], gmcSCRB-seq [132], Smart-seq2 [87],
ddSEQ (Bio-Rad), ICELL8 [133], C1 High-Throughput (C1HT-small, C1HT-medium) [134],
10 × Chromium [90], Drop-seq [135], and inDrop [89], highlighted differing library com-
plexity and their cell mapping predictive values by analyzing human peripheral blood
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and mouse colon tissue [136]. In this section, important drawbacks that are common to the
existing sc/snRNA-seq technologies were highlighted, with more technical details and a
possible solution for addressing such issues through sophisticated analytic strategies.

4.4.1. RNA Postmortem Degradation

Studies of the human brain have been limited due mainly to difficulty in acquiring
postmortem samples and to the low quality associated with RNA degradation. Optimal
postmortem interval (i.e., the time that has elapsed between the subject’s death and process-
ing of tissue) may be determined prior to conducting the actual sc/snRNA-seq experiments
depending on the biomolecules of interest, including messenger RNA (mRNA), microRNA
(miRNA), histone modifications, and proteins. For example, Nagy et al. found that while
miRNA was resistant to postmortem intervals, histone modifications and proteins showed
a threshold between 72 and 96 h [137]. Postmortem interval-related mRNA degradation
was found to be transcript-, tissue-, and gene-specific [137–139]. Careful consideration of
the assay design, sample preparation, and experimental protocols are thus essential for
accurate downstream analyses for sc/snRNA-seq research.

4.4.2. Doublets

Prior to library preparation and sequencing, complete mechanical dissociation of brain
tissue into single-cell suspensions should be achieved to avoid generation of “doublets”—
two or more cells that share the same molecular tags or barcodes. Failed removal of
doublets could potentially lead to nonexistent expression profiles that misguide down-
stream analyses, including dimensionality reduction, cell type identification, differential
expression, and trajectory inference [140]. Generation of pure single-cell suspensions from
brain tissues, however, remains experimentally challenging mainly because of mature
neurons containing axonal projections. Notably, cells of neuronal lineages were frequently
underrepresented among sequenced cell populations, even in studies leveraging recent
sc/snRNA-seq protocols [30,35,39,41].

Experimental approaches used to address such issues have involved loading of cells at
low concentrations and “hashing” of the cells with barcoded antibodies [141] or mul-
tiplexing using lipid-tagged indices [142]. While these attempts could minimize the
occurrence of doublets, they are costly and require additional materials and laborious
procedures. Alternatively, doublets could be detected computationally and filtered out
during a QC preprocessing step through machine learning. Such analytical tools, including
DoubletFinder [143], Scrublet [144], and scds [145], develop and train a classifier to identify
doublets based on the profiled sc/snRNA-seq data derived from mixed cell populations
comprising mixed singlets and doublets. The number of unique genes, or UMIs, should
also be assessed to detect and remove potential doublets or multiplets exhibiting an aber-
rantly high gene count. Nevertheless, these approaches should carefully be implemented
in the integrated workflow when the identified cell clusters are not fully defined.

4.4.3. Study or Batch Effects

Sc/snRNA-seq data are often derived and compiled from various experiments, in-
cluding library preparation and sequencing, with differences in sc/snRNA-seq protocol
(e.g., cell or nuclei extraction, fixation, permeabilization, reverse transcription, barcode
ligation, double stranded cDNA synthesis, and/or tagmentation), reagents, experimental
duration, handling personnel, and sequencing platforms. Despite systemic differences and
resulting batch or study effects, computational tools, mostly available in the R packages,
allow batch- or study-effect correction and generation of an integrated gene expression
matrix for downstream analysis [10].

For example, the align_cds function in a newly updated R package monocle3 (v0.2.2)—
an analysis toolkit for sc/snRNA-seq—allows the removal of batch effects using mutual
nearest neighbor alignment by calling the mnnCorrect function implemented in another
R package, batchelor (v1.6.2) [146]. Similarly, the FindIntegrationAnchors and IntegrateData
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functions implemented in the R package Seurat (v3) integrate multiple distinct scRNA-
seq datasets produced across different scRNA-seq technologies [147]. These functions
aim to identify “anchors” between pairs of scRNA-seq datasets, representing pairwise
correspondences between individual cells. Here the standard preprocessing of the datasets,
including log-normalization and the identification of variable features, should be performed
prior to finding anchors. The Seurat v3 further supports the projection of the integrated
reference data (meta-data) onto the query expression data, facilitating efficient cell type
classification that can further be validated using known canonical cell type markers. Other
commonly used computational tools for correcting study and/or batch effects across
different sc/snRNA-seq datasets include the tools developed for microarray data batch
correction, such as ComBat [148] and limma [149].

While these batch-effect correction methods have been widely recognized as efficient
computational approaches for integrating multiple independent datasets, each method
had its advantages and limitations in terms of computational runtime, memory usage,
batch integration capability, and the ability to handle large datasets, detect differentially
expressed genes, and identify correct cell type (refer to recent work [150] for the benchmark
study on 14 batch-effect correction methods; Harmony [151], LIGER [32], and Seurat 3 [147]
were found to be the top batch mixing methods in this study). It is thus recommended that
the performance of various batch correcting algorithms should be assessed with the datasets
of interest prior to establishing a computational pipeline for sc/snRNA-seq analysis.

5. Concluding Remarks

Rapid progress in the development of sc/snRNA-seq technologies along with analyt-
ical tools has greatly advanced the understanding of the molecular identity of neuronal
and glial cell types in studies of PD. In this review, we aimed to review the sc/snRNA-
seq technologies and their application to PD that were reported over the past five years.
Emerging computational technologies including deep learning and spatially resolved tech-
nologies for SN profiling as well as the integration of omics data from disparate sources
and technologies have revealed PD-specific, previously unknown subpopulations of DaNs
and glia, and have generated valuable single-cell atlases that could serve as reference data
for future research. Considering that mechanism-based treatments still remain elusive
for PD, we believe that continuous improvement in both experimental and analytical
tools developed for sc/snRNA-seq will dramatically advance the ability to develop novel
gene-based biomarkers for diagnosis, prognosis, and targeted therapy in PD.
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