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Our bodies are colonized by a complex ecosystem of bacteria, unicellular

eukaryotes and their viruses that together play a major role in our health.

Over the past few years tools derived from the prokaryotic immune

system known as CRISPR-Cas have empowered researchers to modify and

study organisms with unprecedented ease and efficiency. Here we discuss

how various types of CRISPR-Cas systems can be used to modify the

genome of gut microorganisms and bacteriophages. CRISPR-Cas systems

can also be delivered to bacterial population and programmed to specifically

eliminate members of the microbiome. Finally, engineered CRISPR-Cas

systems can be used to control gene expression and modulate the production

of metabolites and proteins. Together these tools provide exciting opport-

unities to investigate the complex interplay between members of the

microbiome and our bodies, and present new avenues for the development

of drugs that target the microbiome.

This article is part of a discussion meeting issue ‘The ecology and

evolution of prokaryotic CRISPR-Cas adaptive immune systems’.
1. Introduction
Healthy humans live in a symbiotic relationship with trillions of microorganisms

that inhabit the exposed surfaces of our bodies and play an essential role in the

maturation of the host-immune response, production of metabolites, brain–gut

axis and more (see reviews [1–4]). This close relationship makes our microbiome

an interesting target for therapies with the goal to induce desired responses,

immunological, metabolic or even neurological in nature. These therapies can be

classified into three main types: (i) additive therapies supplementing the host

microbiota with individual strains or consortiums of bacterial species, (ii) subtrac-

tive therapies aiming to eliminate disease-causing members of the microbiome, and

(iii) modulatory therapies aiming to modulate the composition or activity of the

endogenous microbiome (see reviews [5,6]). While these therapeutic approaches

are still in their infancy, engineered bacteria and viruses can be used to achieve

desired outcomes [6]. In this review, we describe how tools derived from the pro-

karyotic immune system known as clustered regularly interspaced short

palindromic repeats (CRISPRs)—and CRISPR-associated (Cas) proteins can be

used to modify or eliminate members of the microbiome (figure 1).

CRISPR-Cas systems are the adaptive immune system of bacteria and archaea

[7]. The strong interest in these systems comes from the discovery of a set of diverse

RNA-guided nucleases able to destroy target nucleic acid sequences, some DNA

and other RNA. The Cas nucleases are guided by CRISPR RNAs (crRNA), pro-

duced by transcription and processing of the CRISPR locus: a chromosomal site

into which DNA fragments from invading nucleic acids are integrated in between

repeats, providing a memory of past infections. Cas proteins associated to CRISPR

arrays are very diverse and form the basis of the classification of CRISPR-Cas sys-

tems into two classes and six main types [8,9]. Class 1 systems (types I, III and IV)

consists of a complex machinery, with several Cas proteins assisting the recognition

of foreign nucleic acids and their cleavage. Class 2 systems (types II, V and VI) have

a simpler protein architecture with a single effector protein arbitrating both recog-

nition and cleavage. The latter class includes the type II CRISPR-Cas9 system,

whose versatility has pushed the limits of genome editing [10]. Some features
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Figure 1. CRISPR approaches to microbiome therapies. CRISPR-Cas systems can be used to engineer designer probiotic strains of bacteria and yeast (additive
therapies). CRISPR-Cas systems can also be used to eliminate target bacteria (subtractive therapies), either through the engineering of designer lytic bacteriophages,
or through the delivery of CRISPR-Cas systems themselves as antimicrobials. Dead Cas proteins can be used to modify gene expression, and engineered temperate
phages can modulate the composition and activity of bacteria in the microbiome (modulatory therapies).
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unique to type II systems are the double-stranded (ds) DNA

endonuclease Cas9 and the auxiliary trans-acting crRNA

(tracrRNA) [11]. The crRNA and tracrRNA can be fused into a

chimeric single guide RNA (sgRNA) further simplifying the

use of this system as a tool. More recently, Cas nucleases from

other subtypes have been successfully used in a variety of bio-

technological applications. These include the Cas12 (Cpf1)

DNA endonuclease from type V systems as well as the Cas13

nuclease from type VI systems, which targets RNA rather than

DNA [12,13].

CRISPR-Cas systems are present in approximately 40% of

bacteria. Endogenous CRISPR-Cas systems can in some cases

be exploited, and engineered CRISPR-Cas systems can other-

wise be introduced into target bacteria. These systems can be

used to modify the genomes of microbiome-associated or

probiotic bacteria, yeast and bacteriophages. They can also

be used to kill specific strains based on their sequence with-

out touching the rest of the microbiome (figure 1). Finally,

CRISPR-Cas systems can be used to control gene expres-

sion without the need to modify the genome. Altogether

CRISPR-Cas systems offer a powerful set of tools that

will benefit the study of the microbiome and lead to the

development of new strategies to modify it (figure 2).
2. CRISPR editing of bacteria
Shortly after its discovery and biochemical characterization,

the CRISPR-Cas9 system was repurposed to edit eukaryotic
and bacterial genomes [14]. It can now be considered as a

tool of choice to engineer probiotic strains for additive thera-

pies. Genome editing strategies rely on the use of a guide

RNA designed to target a chromosomal sequence of interest

where Cas9 will cut. Early bioinformatics studies revealed

that bacterial genomes sometimes naturally carry CRISPR-

Cas systems that contain guides targeting their own

chromosome [15]. In most of these cases clues can be ident-

ified showing that the CRISPR-Cas system is inactivated by

mutations in the cas genes or CRISPR array, or mutations

altering the targeted sequences. A model was thus proposed

where the CRISPR-Cas systems sometimes capture self-

targeting spacers ‘by mistake’ and can only survive such

events if the system is functionally inactivated. The idea

that self-targeting of the bacterial chromosome by the

CRISPR-Cas system is lethal was also corroborated by reports

that bacteria die when endogenous or exogenous CRISPR-

Cas systems are programmed to target the chromosome

[16–19]. While the primary outcome of self-targeting is cell

death, some cells are able to survive through the deletion of

large DNA fragments encompassing the target position

[18,20–23]. This strategy offers little to no control over the

extent of DNA that will be deleted, but could still prove

useful in removing undesired genetic elements such as patho-

genicity islands or prophages from strains of interest. Lethal

self-targeting can also be used to counter-select specific

genotypes in complex populations [19,24].

The first evidence that CRISPR-Cas9 could be employed to

achieve precise scar-less genome editing in bacteria came from
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Figure 2. Killing, genome editing or modulation of gene expression by CRISPR-Cas systems. CRISPR-Cas systems can be delivered to target bacteria either in vitro or
in vivo through transformation, transduction or conjugation. Cas nucleases induce DNA breaks that can either lead to DNA degradation and cell death, or if the break
is repaired to the introduction of mutations. Catalytically dead Cas proteins such as dCas9 can be used to silence genes by blocking the RNA polymerase (RNAP).
Dead Cas proteins can also be fused to various protein domains such as activators to induce the expression of genes, or to domains able to modify DNA bases.
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a study in which the Cas9 protein from Streptococcus pyogenes
was integrated in the chromosome of Streptococcus pneumoniae,
an opportunistic pathogen commonly present in the respiratory

tract, sinuses and nasal cavities of healthy carriers [25,26].

In this work, the CRISPR-Cas9 system was programmed

to target an antibiotic resistance cassette present in another

strain. When the DNA from the first strain was used to transfer

the CRISPR-Cas9 system to the second strain through natural

transformation, most bacteria died from the activity of the

CRISPR-Cas9 system. Nonetheless, a substantial fraction of

bacteria survived CRISPR-Cas9 killing through the modifi-

cation of the targeted position by homologous recombination

with the locus present in the donor DNA, which did not carry

the antibiotic resistance cassette [26]. This work showed that

Cas9 can be used to select for the introduction of mutations

at desired positions without the need to leave a selection

marker or a scar at the edited position.

While this strategy was easily employed in S. pneumoniae
where natural transformation and recombination are efficient,

its application to less recombinogenic bacteria such as E. coli
requires the use of the phage lambda red recombination

system to promote editing and repair of the Cas9-mediated

breaks [26]. Many studies have now expanded on this work,

making CRISPR-Cas9 editing tools more convenient to use

[27–30]. CRISPR-Cas9 editing strategies typically rely on the

expression of guide RNAs, Cas9 and the lambda red genes

from one or several plasmids. Template DNA can be provided

as short single stranded DNA, short or long double stranded

DNA (typically PCR products), or cloned on a plasmid. In

all cases Cas9 is guided to introduce a break at a position of

interest, which leads to cell death unless the target DNA was

modified, or unless it can be repaired by recombination with
the template DNA. In a different strategy inspired by previous

work with the I-SceI nuclease [31], a non-replicative vector

can be integrated through homologous recombination into

the locus of interest, followed by Cas9 cleavage of the vector

backbone leading to recombination and recovery of the

desired scar-less mutation [32,33]. In all the strategies

above, steps of plasmid curing can also be necessary and are

typically achieved by using the temperature sensitive

pSC101 origin of replication [34]. When more than one plas-

mid is required this can be coupled with other strategies

such as targeting the second plasmid with a guide RNA or

the use of counter-selection markers such as sacB [27–29].

The fairly large number of components involved, and the

necessity to clone a guide RNA as well as in some cases a tem-

plate DNA, can make these strategies more cumbersome than

established methods [35]. CRISPR-Cas9 strategies have none-

theless enabled pushing at the limits of what is possible, in

particular where scar-less mutations are needed [27]. Of par-

ticular interest, a strategy has been devised to perform high-

throughput modifications of many positions in parallel [36].

Pools of oligonucleotides designed to carry both a homolo-

gous repair cassette and a sgRNA can be cloned on a

vector, yielding a library that can be used to perform multi-

plexed recombineering. Another clever strategy enabled the

replacement of large fragments of the E. coli genome with syn-

thetic DNA [37]. In this study, multiple guide RNAs were used

simultaneously in the same E. coli cell to cleave two positions in

the E. coli chromosome and two positions on a plasmid carry-

ing a synthetic DNA fragment, triggering the replacement of

the chromosomal DNA through homologous recombination.

A novel and powerful approach in the field of genome

editing is the use of the catalytic dead variant of Cas9
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(dCas9) fused to a cytosine deaminase or an adenosine dea-

minases in order to convert C†G to T†A or A†T to G†C at

specific target positions without the need to introduce a

DNA break [38–40]. In this strategy, cytosines or adenosines

located within a small window 15–25 bp from the proto-

spacer adjacent motif (PAM) are modified, leading to a

somewhat random mutational outcome when several C or

A are present in the target window. Nonetheless this

approach appears to be very efficient and can easily be

used to modify many positions in parallel. In a recent study,

Kondo and colleagues optimized this strategy for E. coli and

were able to modify up to 41 loci simultaneously [41].

CRISPR-Cas9 genome editing tools are already being

employed to investigate basic biological questions, as well

as in applications such as metabolic engineering [42]. While

these applications are not directly related to microbiome

engineering, we should keep in mind that E. coli is a gut bac-

terium that can be used as a probiotic. Probiotic E. coli strains,

like Nissle 1917, have been engineered to express antigens

[43], antimicrobial compounds [44], enzymes to disperse bio-

films, quorum sensing molecules that control pathogen

virulence [45], metabolic functions of interest and more [6].

These current efforts to engineer probiotic E. coli strains will

certainly benefit from this boon of new tools.

Beyond E. coli, the most commonly used probiotic bacteria

are Bifidobacteria and Lactobacilli. Engineered Lactobacilli are

being developed by various biotech companies as targeted

therapies against a wide range of diseases including oral

mucositis, inflammatory bowel disease, viral and bacterial

infections [46]. The ability of Bifidobacterium to proliferate in

solid tumours offers the possibility to engineer them to pro-

duce cancer-suppressing compounds [47]. While CRISPR

tools for Bifidobacteria have yet to be developed, Oh and

van Pijkeren developed a method to perform genome editing

in Lactobacillus reuteri ATCC PTA 6475 [48], a bacteria shown

to have interesting immunomodulatory and antimicrobial

properties [49,50]. Modifications can be introduced by recom-

bination of a single stranded DNA oligonucleotide mediated

by the RecT protein, followed by selection with Cas9.

CRISPR-Cas9 mediated genome editing was also recently

demonstrated in Lactobacillus plantarum, where putting the

recombination template on a plasmid rather than providing

it as single stranded DNA led to the best results [51]. Barran-

gou and colleagues have recently highlighted how CRISPR

tools could be used to enhance therapeutic effects of lactic

acid bacteria [52]. For instance, researchers are exploring strat-

egies to enhance bile salt hydrolase activity to improve strain

survival in the gut, or to modify surface layer-associated

proteins to change their immunomodulatory properties.

Other bacteria of interest include the Clostridia, a diverse

class of bacteria that include strains of industrial interest but

also many commensals of the gut microbiome, of which a

few—and most notoriously Clostridium difficile—can be

opportunistic pathogens. Several reports have demonstrated

the use of CRISPR tools to modify species of biotechnological

interest including Clostridium acetobutylicum, Clostridium bei-
jerinckii and Clostridium cellulolyticum [53–55]. CRISPR-Cas9

tools have now also enabled the engineering of C. difficile
[56,57]. Note that non-toxigenic Clostridia, including non-

toxigenic C. difficile, form part of the normal human gut

microbiome [58] and could potentially be engineered as inter-

esting probiotics. Clostridium butyricum MIYAIRI 588 has

notably been developed as a probiotic against C. difficile
infections [59], and could likely be engineered using the

CRISPR tools developed for other Clostridium species.

Finally, CRISPR-Cas9 tools have also been developed for

Staphylococcus aureus [60–62], an opportunistic pathogen

commonly found on the skin [63]. Similarly to Clostridiae,

Staphylococci can either be beneficial commensals or patho-

gens depending on the genetic makeup of specific strains.

In addition to these microbiome-associated bacteria,

CRISPR-Cas9 tools have been developed for other bacterial

species including Bacillus subtilis [64]. In the future the catalo-

gue of bacteria that can be engineered with CRISPR tools will

likely continue to expand, enabling an increasing number of

applications.
3. CRISPR editing of unicellular eukaryotes
While less studied than bacteria, commensal protozoans and

fungi are highly prevalent in healthy populations [65,66], and

some yeast can be used as probiotics in additive therapies.

Most famously Saccharomyces boulardii was isolated by the

French scientist Henri Boulard in 1923 with the purpose of

controlling the symptoms of diarrhoea and is now commonly

used as a probiotic. This yeast strain has been engineered

with CRISPR-Cas9 to introduce various modifications,

including the introduction of an exogenous metabolic path-

way and the production of human lysozyme [67].

Saccharomyces boulardii has also been engineered with the

help of CRISPR for the development of oral vaccines [68].

More generally, many CRISPR-Cas9 editing strategies have

been developed in Saccharomyces cerevisiae [69,70] as well as

microbiome-associated fungi, including the opportunistic

pathogen Candida albicans [71,72]. Along the same line,

CRISPR tools developed for protozoan parasites like Plasmo-
dium falciparum [73,74] could likely be adapted to commensal

protozoans like Blastocystis.
4. CRISPR editing of bacteriophages
Phages have been applied to cure bacterial infections, with

many reported successes in various animal models of lung,

skin or gut infection. Engineered phages present interesting

subtractive therapeutic opportunities to treat infectious dis-

eases and target the microbiome. In particular, phage

adsorption elements like tail fibres and tail tips can be engin-

eered to modify their host range [75]. Temperate phages can

be engineered to remove potential virulence factors and

turned into lytic phages to limit the risks associated with

their use in phage therapy [76]. Phages can further be modi-

fied to disperse biofilm [77], encode antimicrobial proteins

[78] or other functions of interest. Temperate phages that

can be stably maintained in the bacterial cell as prophage

or plasmid can be engineered during their lysogenic cycle

using the tools described above. However, the modification

of lytic phages is particularly challenging as they never

reside as a stable genetic element in the cell and antibiotic

selection markers cannot be used.

Strategies to edit lytic bacteriophages with CRISPR tools

have now been developed. A guide RNA is designed to

target the phage genome and a genetic modification of inter-

est is typically cloned on a vector with homology arms to

promote recombination with the phage DNA. Shortly after

viral DNA entry, Cas nucleases cleave the target sequence
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and the lesion is repaired through recombination with the

provided template, resulting in the edited phage. Only

edited phages can then form plaques on bacteria carrying

the CRISPR-Cas9 system. This strategy was first demon-

strated using the type I-E CRISPR-Cas system of E. coli to

engineer phage T7 [79], followed shortly thereafter by a dem-

onstration that the CRISPR-Cas9 system from Streptococcus
thermophilus could be used to edit virulent phages of this bac-

terium [80]. These techniques have now been extended to

the engineering of Lactococcus lactis phage p2 [81], of phage

T4 in E. coli [82] and phage vB_BsuP-Goe1 in Bacillus subtilis
[83]. In one example, the type III CRISPR-Cas10 system from

Staphylococcus epidermidis has also been used to edit staphylo-

coccal phages [84]. Note that lytic phages can also be cloned

and engineered in yeast [75], where CRISPR-Cas9 tools are

readily available.

Beyond the possible use of natural or engineered bacterio-

phages to cure infections caused by specific pathogens, the

recent description of their role as key components of the

microbiome will likely open the way to new phage-based

therapies [85]. Not only can phages alter the structure of

the microbiome by infecting specific species, but they can

also alter the genotype and phenotype of the bacteria they

infect through horizontal gene transfer and lysogeny. As

such, phages likely contribute to the maintenance of the intes-

tinal homeostasis either in health or in disease (dysbiosis)

[86]. The use of temperate phages to influence the compo-

sition and phenotype of bacteria in the microbiome could

thus be viewed as an interesting modulatory therapeutic

strategy, but a better understanding of these complex ecologi-

cal interactions will be needed for the development of such

therapies.
5. CRISPR antimicrobials
Besides their use to directly kill target bacteria, phages can be

used as DNA delivery vectors. Plasmids carrying a phage

packaging signal, known as phagemids, can be used to

deliver various effector DNA circuits to target bacterial popu-

lations. Phagemids can be packaged into phage particles in

the presence of a helper phage that carries all the elements

necessary for the production of functional capsids that are

missing from the phagemid DNA [87]. In addition, the

helper phage can be modified in order to block packaging

of its DNA [88]. The M13 phagemid was used to deliver var-

ious toxins or restriction enzymes to E. coli [89–91]. The Pf3

phage has also been used to a deliver a restriction enzyme,

and successfully treat a Pseudomonas infection in mice [78].

CRISPR-Cas systems themselves can be delivered to

populations of bacteria using this strategy with the purpose

of specifically eliminating bacteria carrying target sequences

in their genome. This strategy has already been demonstrated

in E. coli [92] and in S. aureus [93]. In the first study, a plasmid

carrying Cas9 and guide RNAs targeting antibiotic resistance

genes were injected into bacterial populations using the M13

phagemid system. Efficient cell death was observed as

expected when the target gene was present. In the second

study, a phagemid based on Staphylococcus phage phiNM1

was constructed by cloning its packaging site on a plasmid

carrying a CRISPR-Cas9 system. This phagemid was then

tested against various antibiotic resistance genes and viru-

lence factors. Both reports demonstrated the possibility of
using CRISPR-Cas systems to eliminate a specific target bac-

terial genotype in a mixed population, both in vitro and

in vivo, testing a wax worm infection model in the former

case and a mouse skin colonization model in the second

one. These studies also investigated the outcome of targeting

a plasmid rather than the chromosome. Cas9 cleavage of a

target plasmid leads to cell survival and plasmid loss. Note

however that in cases where the plasmid carries a toxin–

antitoxin addiction system, the cells will die as a consequence

of plasmid loss.

In yet another study, it was proposed to use temperate

phages rather than phagemids in order to introduce CRISPR-

Cas systems in E. coli [94]. The CRISPR array was programmed

to cure plasmids carrying antibiotic resistance genes, thereby

sensitizing bacteria to antibiotics. In this work an additional

trick was played: a lytic phage was engineered to carry

sequences matching the guide RNAs encoded by the CRISPR

array. This phage could then be used to kill bacteria that

did not carry a functional CRISPR-Cas system and ensure the

fixation of the CRISPR prophage in the population.

CRISPR-based antimicrobials offer the possibility to

develop novel subtractive therapies, enabling the killing of

bacteria based on their sequence without disturbing the rest

of the microbiota. We now understand increasingly how

different strains of a given bacterial species can have pro-

foundly different effects on our health. The accessory

genome that differentiates bacterial strains includes genomic

islands, prophages and plasmids that impact the interaction

of bacteria with each other and with their host. These

elements frequently include virulence factors, toxins and anti-

biotic resistance genes [95,96]. CRISPR antimicrobials could

become a powerful tool both to study the effect of specific

strains by removing them from the microbiome, and to elim-

inate undesired strains as a therapeutic strategy. Note that

many bacteria carry active CRISPR-Cas systems of their

own that can also be harnessed to trigger self-targeting and

cell death. The different approaches to CRISPR antimicrobials

and the associated challenges have been reviewed in more

detail elsewhere [97,98].
6. Controlling gene expression with CRISPR
Beyond the targeted elimination of strains and the genetic

modification of commensals, CRISPR-Cas systems can also

be engineered to modulate gene expression. These engineered

CRISPR-Cas systems could be used to modulate the activity

of bacteria used as probiotics in additive strategies, or

could directly be delivered to the resident bacteria of the

microbiome through transduction or conjugation (figure 2).

The Cas9 protein carries an HD nuclease domain and a

RuvC nuclease domain, each cleaving the target DNA on

a different strand [10]. Mutation of the catalytic residues

abolishes DNA restriction while maintaining strong on-

target binding. Binding of dCas9 to promoter sequences

strongly inhibits the initiation of transcription, while binding

inside transcribed regions can inhibit transcription elongation

[99,100]. Note that dCas9 is only able to efficiently block the

running RNA polymerase when it is guided by an RNA that

binds to the non-template (coding) strand of DNA. The level

of complementarity between the guide RNA and the target

can be used to control the rate at which RNA polymerase

‘kicks out’ dCas9 from the target and completes transcription
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[33]. This mechanism can be used to precisely and robustly

reduce gene expression by defined relative amounts, offering

a powerful tool to modulate the physiology of target bacteria.

Gene silencing with dCas9, also known as CRISPRi, is

comparatively much easier to perform than Cas9-mediated

genome editing in bacteria. This has led to the rapid and

broad adoption of this technology in a wide range of bacteria,

including pathogenic streptococci [100,101], Pseudomonas
[102], Staphyloccoci [103], Mycobacteria [104] and Mycoplasma
[105], as well as a large number of bacterial species of

industrial interest. Directly relevant to this review, dCas9

repression has also been performed in microbiome-associated

bacteria like Lactococcus lactis [106] and Bacteroides thetaiotao-
micron, where it was used to alter the bacterial metabolic

capacity and its resistance to antimicrobial peptides [107].

In the latter work, the CRISPRi repression was also shown

to be functional in the mouse gut.

It is also possible to repurpose dCas9 as a transcriptional

activator, in a strategy also known as CRISPRa. In a first

proof of concept, dCas9 was fused to the omega subunit of

the RNA polymerase, yielding moderate activation [100]. In

a recent study, activator domains were recruited to the

dCas9 ribonucleic complex using a more elaborate strategy.

Activator domains were fused to the MS2 coat protein,

which binds to a MS2 hairpin itself fused to the guide RNA

[108]. Several candidate activators could easily be tested in

this manner and strong activation was obtained with SoxS,

which could further be optimized to yield up to a 50-fold

increase in the expression of a target reporter gene. The

authors further showed how this design could be used to

activate silent metabolic pathways. Note however that this

strategy is very sensitive to the distance between the target

and the promoter. Binding needs to occur within a narrow

window roughly 60–90 bases upstream of the transcription

start site. When no PAM is available in the desired range, it

might not be possible to use this tool without further efforts

to modify PAM specificity [109].

One appealing feature of CRISPRi is how it can easily be

scaled to high-throughput genetic screens. Arrayed libraries

of guide RNAs have already proven very useful to investigate

the function of essential genes in B. subtilis and S. pneumoniae
[101,110]. Potential caveats of using dCas9 were discovered in

a recent study in which a pool of guide RNAs was used to

target approximately 105 positions in the chromosome of

E. coli [111]. This study revealed that dCas9 can cause off-

target effects at positions with as little as 9 nt of homology

to the guide RNA. The same study also revealed an unex-

pected toxicity of dCas9 in E. coli. Among other important

design rules, this work highlighted the importance of fine-

tuning the concentration of dCas9 to avoid this toxicity while

maintaining strong on-target repression. Using such an opti-

mized expression cassette and relying on the information

gathered by multiple guides targeting the same gene can

enable powerful screens to be performed using dCas9 [112,113].

Other types of CRISPR-Cas systems can also be used to

silence genes. In type I systems, the Cas3 nuclease is respon-

sible for DNA degradation. In its absence, the multiprotein

complex known as Cascade will bind target sequences with-

out introducing any DNA damage. This can be used to block

gene expression in the same manner as dCas9 [114,115]. The

dead variants of the Cas12 (Cpf1) protein from type V system

can also be used to block gene expression in bacteria, as

already demonstrated with Cas12 proteins of various origins
[116–118]. Finally gene silencing can also be achieved at the

RNA level directly using the Cas13 protein from type VI

systems, which acts as a RNA-guided RNAse [12,119]. Note

however that Cas13 displays a non-specific RNAse activity

once it has found its target. This triggers collateral RNA

damage that is likely toxic to the cell and was seen to

reduce cell growth in E. coli [12]. This collateral activity

makes it impractical to silence genes in bacteria, but variants

of Cas13 might be identified in the future that only carry a

specific RNAse activity. Technologies have also been devel-

oped to edit RNA with a deactivated Cas13 fused to a base

modification domain [120].

CRISPRi and CRISPRa have also been adapted to

eukaryotic cells and—of particular relevance to this review—

to Saccharomyces cerevisiae [121], where it could help in the devel-

opment of probiotic yeast. Note that while dCas9 itself can

efficiently block transcription in bacteria, CRISPRi in eukaryotic

cells requires the fusion of dCas9 to effector domains.
7. Challenges and future prospects
Over the past few years, we have seen the application of

CRISPR tools to organisms as diverse as Firmicutes, Proteo-

bacteria, yeasts and human cells. The fact that the Cas9

protein from S. pyogenes worked easily in so many different

cellular backgrounds was surprising to many. This bodes

well for the future applications of CRISPR technologies to

the extremely diverse set of organisms that compose our

microbiome, even though Cas9 from different origins, or

even other Cas proteins, might be better suited than others

to specific organisms.

While CRISPR-Cas systems seem easily portable between

species, one key consideration is that the outcome of DNA clea-

vage by Cas nucleases can be very different depending on the

type and efficiency of the DNA repair pathways present in

different organisms. As an example, Cas9 cleavage in the

chromosome of mammalian or yeast cells leads to DNA

repair through homologous recombination or non-homologous

end joining, while the main outcome of efficient Cas9 cleavage

in bacterial genomes is cell death. This is likely owing to the

absence or poor efficiency of non-homologous end joining

(NHEJ) systems in most bacterial species. Among bacteria

that naturally carry NHEJ systems, Cas9 breaks could be

repaired by NHEJ in some species but not others

[55,122,123]. Efforts to import NHEJ systems into bacteria

that lack them have yielded limited success [20,123,124].

Different bacterial species also carry more or less efficient

homologous recombination systems. Bacteria that can undergo

natural transformation and efficient homologous recombination

can easily be modified using CRISPR-Cas9 tools, while other

bacteria like E. coli require the use of an exogenous recombina-

tion system [26]. This heterogeneity in DNA repair capabilities

between organisms means that specific tools and strategies

need to be designed for different species. CRISPR tools

that do not rely on DNA cleavage will likely be more easily

portable. These include base editing and CRISPRi strategies.

One of the main obstacles for the broad adoption of these

technologies to manipulate members of the microbiome is the

difficulty of introducing exogenous DNA in many bacterial

species. Some bacteria are more or less amenable to tech-

niques such as electroporation, conjugation or transduction.

Many bacteria also carry restriction systems that destroy
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incoming DNA. Others might not be able to replicate plasmid

DNA if the origin of replication is not carefully chosen.

Finally, bacteria that cannot be easily grown in the laboratory

are obviously hard to engineer. These obstacles are not

specific to CRISPR technologies and researchers have found

ways to engineer many bacterial species through the con-

struction of dedicated vectors. CRISPR tools thus need to

be redesigned to fit the requirements of individual target

species. Finding more standardized approaches and more

universal tools to deliver DNA to bacteria would go a long

way to accelerate research and engineering of a diverse set

of bacteria. In a recent study, Peters and colleagues used con-

jugation and transposition for DNA delivery and integration

in the bacterial chromosome to facilitate the use of CRISPRi in

many species [125]. Beyond the use of CRISPR tools in vitro,

conjugation as well as phage delivery systems enable the

delivery of DNA directly in vivo and could be used for

the development of novel therapies. Both transduction

and conjugation also open the possibility of targetting non-

culturable bacteria directly in their natural environment.

Phage particles can be used to deliver DNA efficiently into

specific bacterial strains, however this specificity is such

that dedicated phage capsids will likely have to be engin-

eered for each therapeutic indication. The host range of

bacteriophage capsids can be extended through the modifi-

cation of the proteins that interact with the bacterial

envelope such as the tail fibres [75]. In a recent study,

Qimron and colleagues employed a directed evolution

approach to extend the host range of bacteriophage particles
for DNA transduction [126]. This type of approach will be

critical to engineer delivery vectors for a wide range of

target bacteria, but whether transduction or conjugation

can efficiently reach the right bacteria in the complex

spatial structure of the microbiome largely remains to

be investigated.

The increasing knowledge of the profound impact that

the microbiome has on human health is driving the develop-

ment of novel therapeutic avenues to treat infectious disease,

metabolic disease, immune disease and even neurological

disorders. However, the outcome of current therapies that

target the microbiome is often uncertain owing to our limited

understanding of the complex ecological interactions that

occur within microbial communities and with the host

immune system. CRISPR tools provide exciting strategies

not only to study the biology of microbes, but also to eluci-

date their role within complex communities and drive the

development of novel therapies.
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