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We performed an EEG graph analysis on data from 31 typical readers (22.27 ± 2.53
y/o) and 24 dyslexics (22.99 ± 2.29 y/o), recorded while they were engaged in an
audiovisual task and during resting-state. The task simulates reading acquisition as
participants learned new letter-sound mappings via feedback. EEG data was filtered
for the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) bands. We
computed the Phase Lag Index (PLI) to provide an estimate of the functional connectivity
between all pairs of electrodes per band. Then, networks were constructed using a
Minimum Spanning Tree (MST), a unique sub-graph connecting all nodes (electrodes)
without loops, aimed at minimizing bias in between groups and conditions comparisons.
Both groups showed a comparable accuracy increase during task blocks, indicating
that they correctly learned the new associations. The EEG results revealed lower task-
specific theta connectivity, and lower theta degree correlation over both rest and task
recordings, indicating less network integration in dyslexics compared to typical readers.
This pattern suggests a role of theta oscillations in dyslexia and may reflect differences
in task engagement between the groups, although robust correlations between MST
metrics and performance indices were lacking.

Keywords: EEG, networks, dyslexia, letter-speech sound associations, phase lag index, minimum spanning tree
(MST)

INTRODUCTION

Neuroimaging evidence suggests disrupted functioning in several brain systems involved in reading
script in individuals with dyslexia (Shaywitz et al., 2002; Kronschnabel et al., 2014; Žarić et al., 2014)
as well as connectivity deficits in brain networks (Pugh et al., 2000; Quaglino et al., 2008; van der
Mark et al., 2011; Žarić et al., 2017). Functional neuroimaging studies indicated that dyslexia is
associated with disruptions in a broad set of brain systems beyond those typically associated with
reading (Finn et al., 2014) and resting-state functional magnetic resonance (fMRI) studies reported
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that dyslexia is associated with dysfunctional brain connectivity
in networks related to reading abilities (Hampson et al., 2006;
Koyama et al., 2010, 2013). Another stream of evidence
pointed at the potential role of large-scale oscillatory
activity networks in dyslexia (e.g., Vourkas et al., 2011;
Dimitriadis et al., 2013). In general, oscillations at different
frequencies are thought to control communication between
anatomical networks (Akam and Kullmann, 2014), enabling
different functions under shared anatomical pathways (Fries,
2015). In relation to this, a recent resting-state study using
magnetoencephalography (MEG) found support for spatially
distinct and behaviorally relevant networks at each classical
frequency band (Becker and Hervais-Adelman, 2020).

Previously, we used graph analysis of EEG data to assess
the topographical configuration of long-range EEG connectivity
at different frequency bands between children (Fraga González
et al., 2016) and adults (Fraga González et al., 2018) with
dyslexia and typical readers. Graph analysis of the EEG consists
of computing a measure of connectivity between each pair
of sensors or nodes (N) to define an adjacency matrix. The
values in this matrix are weights that represent strength of
connectivity and they are used to define the network links (m).
Subsequently, the network can be represented in a graph that
allows to calculate metrics describing its topological properties,
i.e., how connectivity is organized in the network (e.g., Bullmore
and Sporns, 2009; Stam, 2014). These descriptors can be used
to characterize the efficiency and specialization of brain systems
(both globally and locally) and can help finding new markers of a
wide range of disorders (Stam, 2014).

In our resting-state studies on Dutch speakers (Fraga González
et al., 2016, 2018), we took advantage of spanning trees (MSTs),
a special type of sub-networks which minimizes biases in
comparing network metrics between conditions or groups that
may differ in overall strength of connectivity (Tewarie et al.,
2015). The MSTs contain the highest weights possible without
forming any loop or cycle and, in this regard, they can be
considered a “connectivity backbone,” which has always the same
number of links given a fixed number of nodes (m = N− 1),
assuming that all weight values are unique. Applying this method
to resting-state EEG data, our child study revealed statistically
significant group differences in the theta (4–8 Hz) band
suggesting reduced network integration and less communication
between network nodes in children with dyslexia compared to
typical readers (Fraga González et al., 2016). A similar study used
the same approach on Chinese-speaking children of similar age
and found differences between dyslexic and typical readers in the
same direction but in MST metrics in the beta band (Xue et al.,
2020). They used shorter epoch length and a smaller montage
with less electrodes compared to our previous study, which may
have contributed to the differences in addition to the different
alphabetic systems. Our MST analysis of resting-state EEG data
in adults yielded significant network differences between groups
in the alpha band (8–13 Hz) and, in contrast to the results
observed for children, suggested a more interconnected network
configuration in individuals with dyslexia relative to typical
readers (Fraga González et al., 2018). These studies yielded
no robust associations between graph metrics and cognitive

performance. However, a recent study yielded positive results
examining the relation between EEG networks and reading skills
on L1 Chinese and L2 English-speaking children from first to
fifth grade (Lui et al., 2021). The study found that network
modularity (derived from the connectivity measure of phase
coherence) correlated with Chinese word reading, phonological
and morphological awareness, and reading comprehension, but
not with any literacy skills in L2 English. That study supported the
need to continue exploring the potential of EEG network metrics
as predictors of literacy development.

The focus of the current study is a comparison between
dyslexic and typically reading adults in EEG data associated with
task performance. To date, there are only a couple of studies
examining brain networks in dyslexia using a graph theoretic
approach to analyze brain activity during task performance.
Vourkas and co-workers reported reduced global and local
network efficiency in poor readers in the alpha band during a
pseudoword reading task and letter-sound naming task (Vourkas
et al., 2011). In those tasks participants were asked to read
the visually presented pseudowords or to pronounce the sound
corresponding to the presented letter, respectively. It should
be noted, however, that significant correlations between word
reading and graph measures associated with the EEG alpha band
were reported only in the more simple letter-sound naming task.
In another study, Smith et al. (2018) performed a longitudinal
fMRI study examining networks during a rhyming judgment
task in young readers over a 2.5 year-span. They reported an
association, albeit weak, between a shift in functional segregation
(increase in the proportion of functional clusters) and changes in
reading skill. A recent study examined fMRI during an auditory
rhyming task and a visual spelling task in Chinese children (Mao
et al., 2021). The study found differences between poor readers
and age-and reading-matched controls in network metrics related
to hub properties of frontal and temporal regions relevant
for reading, but no relation with behavioral performance was
reported. Collectively, the results available to date present little
support for a relation between network measures and cognitive
skills and/or performance in specific tasks. The current study
was designed to investigate just such a relation. More specifically,
we examined task-based network organization in dyslexics and
typical readers by using an artificial orthography learning task.

The artificial orthography learning task required participants
to learn novel letter-speech sound associations by using feedback
provided on the screen. The idea behind this task is learning
the artificial orthography mimics the initial stages of reading
instruction in which correspondences between arbitrary symbols
(letters) and speech sounds are established. This specific type of
audiovisual integration is considered a key step in fluent reading
acquisition by supporting the specialization of visual areas to
print, which would ultimately make possible the development
of (fluent) sight word reading (Ehri, 2005). Although dyslexic
readers seem to be capable of accurately learning letter-speech
sound associations, they struggle to automate and sufficiently
integrate these associations at the neural level (e.g., Blomert, 2011;
Žarić et al., 2014). Our task is inspired by a series of previous
studies in which we had children with dyslexia performing
a videogame-like task presenting an artificial orthography
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(Aravena et al., 2013, 2016, 2017). This approach allowed us
to obtain an association between task performance and reading
skills (Aravena et al., 2017) and responsiveness to reading
intervention (Aravena et al., 2016). These findings underline the
importance of incidental category (letter-speech sound) learning
in developmental dyslexia. Thus, in a another study we developed
a feedback learning task in which new symbols are associated
with speech sounds (Fraga González et al., 2019). The study
found differences on heart-rate changes associated with feedback
anticipation, a physiological response previously studied in the
context of probabilistic learning (Crone et al., 2004; Kastner
et al., 2017). The task design was motivated by the theoretical
framework of Holroyd and Coles (2002) for studying error
and feedback processing in adapting behavior (Holroyd and
Coles, 2002). Their focus was on midbrain dopamine neurons
and the of corticostriatal systems in performance adaptation
based on prediction error. A set of previous EEG and fMRI
studies suggested that dyslexics may process feedback differently
compared to typical readers (Horowitz-Kraus and Breznitz, 2011,
2013; Kraus and Horowitz-Kraus, 2014; Horowitz-Kraus and
Holland, 2015; Horowitz-Kraus, 2016). The studies, together with
some evidence for atypical activations of frontostrital circuits
in dyslexia (Krishnan et al., 2016; Hancock et al., 2017b) and
reports of potential probabilistic learning impairments (Howard
et al., 2006; Gabay et al., 2015; Singh et al., 2018) motivated
the examination of this task. The current focus on EEG
data associated with the learning of an artificial orthography
would provide a window on the alleged dysfunctional neural
networks in dyslexia.

To sum up, the main goal of the current study is to compare
EEG power, functional connectivity strength and connectivity
organization in typical and dyslexic readers during a letter-speech
sound binding task. Additionally, we include a resting-state
baseline as an additional condition that will allow us to directly
compare changes between conditions in the EEG measures, and
to test whether group differences are specific to each condition.
We then investigate associations between the different EEG
measures during task and baseline, and individual differences in
task performance and reading skills.

MATERIALS AND METHODS

Participants
Twenty-four dyslexic adults (22.99 ± 2.29 years old) were
recruited via a nation-wide center in the Netherlands offering
services for individuals with dyslexia. The sample characteristics
are summarized in Table 1.1 A group of 31 typical readers
(22.27 ± 2.53 years old) were recruited via ads at the University
and through social networks. Participants with diagnosis of
ADHD or other neurological or cognitive impairments were
excluded from the sample. Participants were required to have
normal or corrected-to-normal vision and Dutch as their primary

1The initial sample was 64 participants. 6 typical readers and 3 dyslexics were
excluded due to poor task performance (chance levels suggesting they did not
engage in the task) or problems during EEG data recording.

TABLE 1 | Sample characteristics and descriptive statistics showing reading
scores.

Typical readers Dyslexics

M (SD) M (SD) F p-value η2

N 31 24

Sex ratio (m:f) 9:22 12:12

Handedness (L:R) 1:30 3:21

Age 22.27 (2.53) 22.99 (2.29) 1.15 0.289 0.02

RAVEN—IQ testa 52.52 (4.72) 52.96 (4.71) 0.12 0.732 0.00

1-Min Test –fluencyb 107.32 (8.87) 82.46 (14.14) 63.69 0.000 0.55

Rapid automatized namingc

Letters 16.88 (3.67) 20.88 (4.63) 12.84 0.001 0.19

Numbers 18.45 (4.16) 21.12 (3.95) 5.83 0.019 0.10

Colors 25.42 (4.64) 30.68 (4.58) 17.53 0.000 0.25

Images 28.11 (5.55) 34.81 (6.12) 17.98 0.000 0.25

Total 22.21 (3.27) 26.87 (4.02) 22.45 0.000 0.30

All raw scores.
a20 min. time-limited version of RAVEN.
bRaw score = number of correctly read words within 1 min.
cRaw score = mean reaction time in sec.

language. Inclusion criteria for participants with dyslexia were
first, persistent reading problems manifested and documented
since primary school and with poor response to special support at
school for at least 6 months. Second, a diagnosis of dyslexia after
assessment at the clinic based on the criteria of DSM-5 (American
Psychiatric Association, 2013) and third, a score in a standard
word reading fluency test of at least 1 SD below the average of
a national normative sample of 16-year-olds. The majority of the
participants with dyslexia did not report receiving any specialized
treatment for reading disability (a few participants received a
3 months training course for study skills). Ethics approval was
obtained from the Ethics Committee of the Faculty of Social and
Behavioral Sciences of the University. All participants gave signed
consent to their participation in the study.

Behavioral Measurements
The following tests were taken at the beginning of the session
and before attaching the electrodes. Test scores are presented in
Table 1. Word reading skills were assessed using a Dutch version
of the 1-Min Test (Een-Minuut-Test, EMT; Brus and Voeten,
2010), a time-limited test consisting of a list of 116 unrelated
words of increasing difficulty. The number of correctly read
words within 1-min serves as reading fluency score (r = 0.82,
reliability calculated in a normative sample of 16 years old).
In addition, participants completed the Rapid Automatized
Naming (RAN; van den Bos and Lutje Spelberg, 2010) task
that consists of four subtasks: letters, digits, colors, and objects.
A sheet containing five items repeated 10 times (arranged in
a pseudo-random order) is presented per subtask. Participants
are instructed to name the items as quickly as possible, and
the time taken to name all items of a sheet provides the
subtask’s score (r = 0.79–0.86, split-half reliability). Finally, the
RAVEN Advanced Progressive Matrices was used to obtain
an estimate of fluid IQ (RAVEN APM; Raven and Court,
1998). A 20-min timed version of this test was used as it was
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previously shown to be a good predictor of the untimed APM
(Hamel and Schmittmann, 2006).

EEG Measurements
Recording and Equipment
The EEG recording took place in a dimly lit and sound-
proof room. Participants were video-monitored by the lab
assistants from an adjacent room to ensure they complied to the
instructions and that they did not show behavioral indications
of drowsiness or sleep onset during the recording. Participants
were seated at approximately 80 cm distance from the computer
screen. Their chair was equipped with response buttons at
both arms. The EEG session started with preparation and
placement of electrodes (lasting around 30 min) and continued
with the eyes-open baseline recording and two experimental
tasks, which took around 2 h. The order of the experimental
tasks was counterbalanced across participants. Following the
second experimental task, an additional eyes-open baseline
recording was performed to explore reliability and stability of
EEG measures within resting state recordings, which falls out
of the scope of the current experiment. The current analysis is
performed on the data from the initial baseline recording and the
main experimental task, i.e., the letter-speech sound binding task
(see section “ Experimental Task Performance”). The additional
experimental task that was part of the recording session, i.e., an
audiovisual-binding task, was not used in the present analysis as
it is intended for event-related analyses.

The EEG was recorded DC (low-pass: 5th order sync digital
filter) with a 2048 Hz sample rate. We used a 64-channel Biosemi
ActiveTwo system (Biosemi, Amsterdam, Netherlands). The
Biosemi system uses two additional electrodes [Common Mode
Sense (CMS) and Driven Right Leg (DRL)] located to the left and
right of POz, respectively, which replace the conventional ground
electrode. All electrode offsets relative to CMS/DRL were brought
within 20 µV in accordance with the manufacturer guidelines.
The 64 electrodes were distributed across the scalp according to
the extended 10–20 International system (see electrode locations
in Supplementary Figure A1) and applied using an elastic
electrode cap (Electro-cap International Inc.). Ten external Flat-
Type Active electrodes were used. Four were used to record
vertical and horizontal electro-oculogram (EOG). They were
placed below both eyes aligned with the pupils approximately
3 cm outside both outer canthi of the eyes. Two electrodes were
placed at mastoids and two were attached to the earlobes to be
used as offline reference signals. Finally, two electrodes were used
to record the electrocardiogram (ECG) and were placed at the
sternum and between the lower two ribs. The ECG data were not
used in the current study. Baseline and experimental task.

During the baseline recording subjects were required to look
at the center of the screen during 4 min after making a button-
press indicating the start of the period. A gray background was
used to minimize glare on the screen and a gray fixation circle
with shadowing was placed at the center of the screen to assist
participants to fixate their eyes while preventing eye fatigue.

The letter-speech sound binding task is a probabilistic learning
task in which subjects learned new visual-sound associations

via feedback. We used the current format in a previous study
examining differences in overt feedback processing between
dyslexics and typical readers (Fraga González et al., 2019). In the
trials, participants had to learn whether the letter-like unfamiliar
symbol was matched with the simultaneously presented speech
sound by pressing Yes or No and receiving feedback after their
response. However, feedback was only response-related in half of
the trials (consistent trials) while in the other half the feedback
was random (inconsistent trials; see below in this section). The
visual stimuli consisted of 16 symbols from the Georgian alphabet
and the auditory stimuli were 16 Dutch phonemes. The complete
list of visual symbols and phonemes used in the task is presented
in Supplementary Appendix A. The phonemes were spoken by A
native Dutch male speaker. There were three groups of phonemes
with different durations; one group of four phonemes had a
mean (SD) duration of 172.66 (22.28) ms and another group
of four phonemes had a mean (SD) duration of 380.50 (19.47)
ms. The third group consisted of eight phonemes with a mean
duration of 451.97 (27.69) ms. The visual stimuli were presented
using an ASUS VG236H (resolution 1,920 × 1,080) 60 Hz
monitor with a Dell Optiplex 760 dual-core 3.0 GHz computer
and an ATI HD 6570, 2Gb graphic card. The symbols were
presented using “Arial Unicode MS” font (lower case, bold font
and font size 60). The software used to present the stimuli was
Presentation (Version 18.22). The sound stimuli were presented
through padded earphones.

A schematic of the trial structure is presented in Figure 1.
On each trial, a visual symbol and a phoneme were presented
simultaneously. The trials were terminated by the response. The
symbols were presented in white on a black background at the
center of the computer screen. Participants had to decide whether
the symbol and phoneme presented belong with each other by
pressing the buttons located at the right and left arms of the
chair. The mapping of YES and NO responses to the right and
left hand was consistent across blocks for each participant but
was counterbalanced across participants. Green and red stickers
were placed on the buttons to indicate whether they were YES or
NO buttons, respectively. The button-press was followed by blank
screen with 1,000 ms duration. The blank screen was followed
by feedback “GOED” (correct; presented in white upper case
“Times New Roman” font with size 48), “FOUT” (incorrect;
presented in red font), or “TE LANGZAAM” (too slow; presented
in upper case “Times New Roman” font with size 48). After
the feedback screen, a fixation cross was presented during the
inter-trial intervals (ITI) with equiprobable durations of 500,
750, or 1,000 ms.

There were 4 blocks of 200 trials. For each block, two
visual-sound pairs were consistently matched, and feedback
depended upon the response of the participant. The two
other visual-sound mappings were inconsistent and followed by
random feedback (50% positive and 50% negative feedback).
This feedback probability manipulation was included to analyze
differential feedback-responses for informative (consistent trials)
vs. uninformative (inconsistent trials) responses in a previous
study (Fraga González et al., 2019). Note that the current analysis

2www.neurobs.com
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FIGURE 1 | Schematic of a trial in the letter-speech sound binding task. A visual symbol and a phoneme are simultaneously presented and response terminated
(only limited by a maximum duration equal to the average reaction time during the practice block + 500 ms). Feedback is presented 1,000 ms after responses to
indicate whether the response is correct, incorrect or missed.

of task performance only uses consistent trials and the EEG
analysis is based on a segment during performance that includes
both type of trials. Each trial block contained 100 consistent
and 100 inconsistent mapping trials presented in random order
(50 replications of each individual trial). The duration of a trial
block was approximately 14 min. The task began with a practice
block of 30 consistent mapping trials. The average reaction time
(RT) on correct responses during practice + 500 ms was used
to determine the response window. The feedback “too slow”
was provided when responses were executed after this window.
Participants were told that they should infer the visual-sound
associations from the feedback provided to them and that each
trial block contained a new set of associations. In addition, they
were told that some associations would be more difficult to
learn than others.

The whole experimental session took around 3 h and 15 min
including the initial behavioral measurements and the montage
of electrodes. There were short rests between blocks and between
tasks and resting-baselines depending on the needs of the
participant. The participants were debriefed at the end of the
experiment and received a monetary reward for their services.

EEG Preprocessing
The graph analysis followed similar pipeline steps as in our
previous study (Fraga González et al., 2016). The sequence of
steps of this pipeline are shown in Figure 2. The continuous EEG
data were imported in EEGLAB v.12.5.4b, a Matlab-based open
toolbox (Delorme and Makeig, 2004). The averaged earlobes were
used as off-line reference when importing the data. In the baseline
analysis a segment with a duration of 4 min was selected, time-
locked to the button press indicating the start of the eyes-open

resting-state recording. In the task analysis we took the initial
4 min from the beginning of the task, after the practice period.
The data were high-pass filtered at 0.5 Hz using a zero-phase FIR
filter and channels containing excessive artifacts were removed
from the data to be interpolated later on in the pipeline (see
below in this paragraph). The data were then segmented into
60 epochs with a duration of 4 s each. The epochs were visually
inspected and those containing artifacts such as head or electrode
cable movement and jaw clinching were removed. Subsequently,
we performed an Independent Component Analysis (ICA)
decomposition (Makeig et al., 1996) in order to remove blinks,
eye-movements and other stereotyped artifacts from the data.
We used the “runica” algorithm available in EEGlab for ICA
decomposition (Lee et al., 1999) and the automatic algorithm
ADJUST to identify independent components associated with
artifacts (Mognon et al., 2011). The algorithm uses artifact-
specific spatial and temporal features to detect artifactual
components and has been previously validated (Mognon et al.,
2011). After removing the independent components selected
by the algorithm, data for typical readers and dyslexics were
reconstructed based on a mean (SD) of 52.67 (7.82) and 49.37
(14.02) components in the task and 52.23 (4.58) and 51.29
(5.90) components in the baseline, respectively. Afterward, the
data from previously removed channels were interpolated using
a spherical spline interpolation method (Perrin et al., 1989).
Finally, for each condition (baseline and task) a total of 30
epochs, each with a duration of 4 s, were selected per participant,3

3As the present analysis requires equal number of epochs across participants, we
chose to include 30 epochs to avoid excluding additional participants having an
insufficient number of artifact-free epochs.
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FIGURE 2 | Schematic of the graph analysis. First, visual inspection and Independent Component Analysis (ICA) were applied to remove artifacts. Then data were
filtered for each frequency band (A). Second, the functional connectivity matrix based on phase lag index (PLI) is calculated for each frequency band and epoch (B).
Kruskal’s algorithm is applied to obtain a minimum spanning tree (MST) matrix (C-left) which can be displayed on a scalp projection (C-middle). The tree view shows
the hierarchical structure of the graph starting from an arbitrary root node. The nodes color map from blue to red represents lower to higher betweenness centrality
(BC; C-right). For illustrative purpose this figure shows the MST obtained from a single epoch in one participant.

down-sampled to 1024 Hz and exported to ASCII files for the
subsequent EEG analyses.

The ASCII files were imported in Brainwave v0.9.152.4.1
(developed by C.S.; freely available at http://home.kpn.nl/
stam7883/brainwave.html) where data were re-referenced to
the average of all scalp channels and filtered for each
frequency band (see section “Spectral Power”) before performing
subsequent analyses.

Spectral Power
We calculated spectral power in each epoch using Fast Fourier
Transformation (FFT) with a frequency resolution of 1 / 4
s = 0.25 Hz. The power spectra were averaged across segments
and all the groups of electrodes described in section “EEG
Preprocessing.” The “area under the curve” values were calculated
for the following frequency bands: delta (0.5–4 Hz), theta (4–
8 Hz), alpha (8–13 Hz),4 and beta (13–30 Hz). Relative power was
computed as the ratio of the power of the corresponding band
and the total power.

Functional Connectivity
We used the Phase Lag Index (PLI) to calculate functional
connectivity between all pairs of electrodes for each frequency

4A broad alpha range was chosen instead of the lower alpha (8–10 Hz) and upper
alpha (10–13 Hz) to account for individual variability observed in alpha peak
frequencies.

band and epoch. In contrasts to other connectivity measures like
phase coherence, the PLI reduces the effect of volume conduction
by ignoring zero and π phase differences (Stam et al., 2007).
It captures the asymmetry of the distribution of instantaneous
phase differences, which are determined using the Hilbert
transformation (Stam et al., 2007). A symmetric distribution
centered around zero may indicate spurious connectivity and a
flat distribution indicates a lack of connectivity. A deviancy from
a symmetric distribution indicates dependency between sources.
The PLI is obtained from time series of phase differences1φ (tk),
k = 1. . .N by means of:

PLI = | < sign[sin(1φ(tk))] > |

Here “sign” is the signum function. The PLI ranges between
0 and 1. A value of 0 means no coupling or coupling with
a phase difference centered around 0 (mod π). A value of 1
indicates perfect phase locking at a value of 1φ different from
0 (mod π). Thus, PLI values closer to 1 indicate stronger nonzero
phase locking. In the current analysis we use the term mean
total PLI when referring to the average of the PLI between all
pairs of electrodes.

Minimum Spanning Tree Analysis
For our network analysis, we calculated a Minimum Spanning
Tree (MST) for each connectivity matrix (see Figure 2). We used
the MST as it allows for direct group or condition comparisons
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minimizing the bias caused by differences in connectivity
strength (e.g., Stam et al., 2014). The MST is a unique sub-graph
based on a weighted matrix that connects all nodes of the network
without circles or loops. Importantly, the MST always contains
m = N−1 links, where N is the number of nodes. The MST
was constructed by applying Kruskal’s algorithm (Kruskal, 1956)
which iteratively selects the links with the lowest distance (i.e.,
lowest weights) and adds the link to the tree only if no loops are
created. The result is a graph without cycles or loops in which all
nodes are connected. In our MST computation, we define a link
weight as 1-PLI. Thus, the MST represents the sub-network with
maximum connectivity.

There are a various MST metrics that are used to describe
the topological properties of the tree (Stam et al., 2014). We
examined the following metrics: degree, leaf fraction, diameter,
eccentricity, betweenness centrality (BC), tree hierarchy (Th),
degree correlation (R), kappa and mean. The degree of a node
refers to its number of links, and the leaf fraction represents
the number of nodes (N) on the tree with degree = 1. The leaf
number has a lower bound of 2 and an upper bound of N− 1.
It presents an upper bound to the diameter of the MST, which
is the largest distance between any two nodes of the tree. The
upper limit of the diameter is d = m− L + 2, where m refers to
the number of links on the tree. This formula implies that the
largest possible diameter will decrease with the increasing leaf
number. Eccentricity of a node is defined as the longest distance
between that node and any other node and is low if this node
is central in the tree. The BC of a given node u is the number
of shortest paths between any pair of nodes i and j that are
running through u, divided by the total number of paths between
i and j. The BC value ranges between 0 and 1 and relates to
the importance of a node within the network. The nodes with
the highest BC have the highest load, i.e., the highest number of
shortest paths between any two nodes run through these high
BC nodes. For example, a central node with a BC of 1 could
be easily overloaded. Degree, eccentricity and BC are different
measures for relative nodal importance and may indicate the
critical nodes in a tree. The measure of tree hierarchy Th reflects
a balance between efficient communication and prevention of
overload of hub nodes, reflected, respectively, by small diameter
and a maximal BC. This balance is proposed to be important
for optimal network performance (Boersma et al., 2013) and is
defined as:

TH =
L

2mBCmax

Where L is leaf fraction and m the number of links. Further, the
degree correlation R is an index of whether the degree of a node
is correlated with the degree of its neighboring edges to which
it is connected. The R is quantified by computing the Pearson
correlation coefficient of the degrees of pairs of connected nodes
(Newman, 2003). If R > 0 the graph is considered assortative,
and if R < 0 disassortative. Kappa is the width of the degree
distribution and relates to spread of information across the tree
(Stam et al., 2014). High kappa indicates the presence of high-
degree nodes, which facilitate synchronization of the tree but also
increase the network’s vulnerability if a hub is damaged (Otte

et al., 2015). Finally, we computed the MST mean, that is the
mean of the PLI weights of the tree.

Statistical Analysis
Experimental task performance was evaluated by calculating
accuracy and speed on consistent-mapping trials across four
bins of 25 trials for each trial block. These data were also
averaged across 4 experimental blocks. Mixed-model ANOVAs
were used to compare groups in accuracy and reaction
times across blocks with the within-subjects factor bin (1–
4). As behavioral, performance summary measures to correlate
with EEG measures we computed the total accuracy average
as well as the average RT of correct responses. A more
detailed analysis of performance in this task, together with
an additional control audiovisual binding task can be seen in
Fraga González et al. (2019).

Our main EEG analysis consisted of a mixed ANOVA
comparing the groups in task data. Additionally, we performed
the same comparisons in the resting-state baseline data. A third
analysis explored interactions between group and difference in
task vs. resting state with mixed ANOVAs with the within-
subjects factor condition (2 levels; baseline and task) and the
between-subjects factor dyslexia. Moreover, regression analysis
was performed between PLI and relative power. Greenhouse-
Geisser correction of degrees of freedom was used to calculate
p-values when the assumption of sphericity was violated
(Greenhouse and Geisser, 1959). To account for the multiple
comparisons performed in network metrics we used False
Discovery Rate (FDR; Benjamini and Hochberg, 1995). Given
the correlation between network metrics we accepted a 10% of
false discoveries (q = 0.10), we also report a more stringent FDR
correction at q = 0.05 (see footnotes in the corresponding tables).

Finally, we used stepwise multiple linear regression in the two
groups separately to explore whether EEG power, connectivity
and graph metrics could predict task performance, cognitive
skills and age. The inclusion criteria for the EEG variables to be
included in the regression models were p< 0.05 and the exclusion
criteria was p> 0.10.

RESULTS

Cognitive Measures
The scores for reading accuracy and speed measures are shown in
Table 1. The dyslexic group performed significantly worse than
typical readers on both reading tests and the deficit was more
pronounced on the word identification task. The two groups were
comparable in non-verbal IQ and age.

Experimental Task Performance
The descriptive statistics of the performance data (accuracy
and RTs averaged across blocks) are presented in Table 2 and
Supplementary Figure A2 and Supplementary Table A2 shows
the extended descriptives per block for the consistent trials).
The ANOVA performed on accuracy revealed a significant
main effect of Bin, F(3, 159) = 106.89, p < 0.001, η2 = 0.67,
indicating that accuracy increased with time-on-task, illustrating
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TABLE 2 | Task performance in letter-speech sound task for the consistent trials.

Typical readers (N = 31) Dyslexics (N = 24)

Accuracy Reaction time Accuracy Reaction time

M (SD) M (SD) M (SD) M (SD)

Letter-speech sound binding task

Mean over 4 blocks Bin1 76.81 (9.90) 886.63 (124.73) 74.71 (9.53) 928.32 (131.80)

Bin2 86.71 (8.65) 861.42 (138.27) 85.88 (10.27) 934.45 (134.80)

Bin3 87.68 (9.80) 868.31 (144.24) 87.58 (8.27) 932.66 (118.45)

Bin4 87.39 (9.92) 861.05 (131.42) 89.08 (9.22) 945.84 (112.73)

Bin 1 = trials 1–25; Bin2 = trials 26–50; Bin3 = trials 51–75; Bin4 = trials 76–100.
Reaction times to correct responses in milliseconds. Accuracy = percentage of correct responses.

probability learning. There were no significant group differences
or interactions with the factor dyslexia, ps > 0.124. The follow-
up pairwise comparisons between bins across groups showed
significantly increased accuracy from bin 1 to bin 2 (mean
difference 10.53, p < 0.001), but not between bin 2 and 3 or
bin 3 and 4 (ps > 367). The mean accuracy per bin and group
are presented in Table 2 and the Supplementary Figure A2. The
ANOVA performed on RTs yielded a trend for slower responses
in dyslexics relative to typical readers across all four bins, F(1,
53) = 3.85, p = 0.055, η2 = 0.07, all other ps > 0.121. The RTs are
shown in Table 2 (see also Supplementary Figure A2).

Group Differences in EEG
We performed a mixed ANOVA with the factor condition (task,
baseline) to examine group differences during task and resting
state, and the interaction between these factors.

Relative Power
The FFT power spectra per condition and group are presented in
Figure 3. As expected, there were significant differences between
the task and baseline recordings in theta [F(1, 53) = 41.83,
p < 0.001, η2 = 0.44], alpha [F(1, 53) = 109.88, p < 0.001,
η2 = 0.68] and beta relative power, F(1, 53) = 32.10, p < 0.001,
η2 = 0.38. Relative power was significantly larger in the baseline
compared to the task (see Figure 4). There was no evidence for
significant interactions or main effect of group in these analyses,
ps< 0.258.

Phase Lag Index Connectivity
The main analysis on PLI is presented on Table 3 (see
Supplementary Table A3 for all tests that were performed).
There was a significant main effect of condition in the alpha
band indicating larger PLI in the baseline compared to task
[F(1, 53) = 29.02, p < 0.001, η2 = 0.35], but no interactions
or main effect of group in that band, ps > 0.119. A significant
effect in the same direction was detected in the beta band
[F(1, 53) = 24.64, p < 0.001, η2 = 0.32], together with a trend
for lower values over both conditions in dyslexics compared
to typical readers, F(1, 53) = 3.1, p = 0.084, η2 = 0.06.
In the theta band there was no main effect of group or
condition (ps > 0.151) but, there was a significant interaction
between condition and group [F(1, 53) = 4.45, p = 0.040,
η2 = 0.08], indicating lower PLI in dyslexics vs. typical readers

during the task but not in the baseline. The task vs. baseline
in dyslexics but not in typical readers (see Figure 5 and
Table 3).

The condition and group interactions were followed by group
comparisons in task and baseline data separately (see Table 4
and Supplementary Table A4). In the task, PLI theta was
significantly lower in dyslexics compared to typical readers,
F(1, 53) = 7.63, p = 0.008, η2 = 0.13 (see left panel in
Figure 5). The mean (SD) total PLI theta was 0.167 (0.005)
and 0.170 (0.005) for dyslexics and typical readers, respectively.
The mean total PLI beta was lower in dyslexics compared to
typical readers, F(1, 53) = 5.88, p = 0.019, η2 = 0.10. The
mean (SD) total PLI beta was 0.090 (0.005) and 0.093 (0.006)
for dyslexics and typical readers, respectively. The analysis of
the baseline data showed no evidence for significant group
differences in PLI, although there was trend for stronger alpha
connectivity in dyslexics vs. typical readers at p = 0.091, all other
ps> 0.388.

Minimum Spanning Tree Network Metrics
The results of the main ANOVA on MST metrics revealed
significant group differences across conditions (see Table 3
and Supplementary Table A3). Dyslexics showed lower theta
degree correlation, i.e., lower network integration, over both
task and baseline recordings, F(1, 54) = 6.36, p < 0.015. In
addition, there were significant main effects of condition for
all MST metrics except for betweenness centrality in theta and
MST mean in beta. The largest effect sizes for the change
across conditions were found on degree (alpha) leaf fraction
(theta, alpha and beta), kappa (alpha), tree hierarchy (theta and
alpha) and degree correlation (theta and alpha) with partial
eta-squared > 40. The direction of these differences suggests a
less integrated network configuration in task compared to the
pre-task baseline. There were significant interactions between
condition and dyslexia for theta tree hierarchy, alpha kappa
and beta MST mean and theta MST mean (see Table 3).
The follow-up analyses on these interactions are presented in
Table 4 (and Supplementary Table A4). These analyses showed
a trend for lower the tree hierarchy in dyslexics compared
to typical readers during task [F(1, 53) = 3.92, p = 0.053]
but not in the baseline p = 0.544. For alpha kappa, dyslexics
showed a trend for larger kappa than typical readers in
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FIGURE 3 | Power spectra averaged across 64 EEG scalp channels with 95% CI for the recording during task and the baseline recording for dyslexics (red) and
typical readers (blue). Vertical dotted lines indicate the boundaries for the frequency bands at 4, 8, 13, and 30 Hz.

FIGURE 4 | Relative power averaged across 64 scalp electrodes for each condition (indicated by color) and frequency band. Each plot shows data for typical
readers at the left side and for dyslexics at the right side. Error bars represent 95% CI. Asterisks indicate significant differences between conditions at p < 0.01.

baseline, p = 0.060, that was absent in the task 0.948 (see
Table 4).

Relation Between EEG Measures and
Cognitive Performance
Stepwise regressions examined whether EEG power, connectivity
and graph metrics could predict task performance, cognitive skills
and age in the two groups (p< 0.05 for inclusion of EEG variable
in the model, p> 0.10 for exclusion). The results are presented in
Table 5.

In typical readers there were significant regression models
including different combinations of EEG measures for task
RT and accuracy (maximum adjusted R2 = 0.596 in model 4
for mean accuracy) and the RAN subtasks of numbers, colors
and images (maximum adjusted R2 = 0.577 in model 6 for
RAN images). In the dyslexic group, age was predicted by
alpha degree during task (adjusted R2 = 0.432 in model 1),
IQ by baseline alpha tree hierarchy (adjusted R2 = 0.251

in model 1) and RAN total, numbers and colors were
predicted by several EEG variables combined (maximum
adjusted R2 = 0.661 in model 4 for RAN numbers). To sum up,
we did not a find a consistent pattern of associations between
a specific set of EEG measures and individual performance and
cognitive characteristics. Multiple combinations of EEG power,
connectivity and graph metrics from all three frequency bands
contributed to predict several individual characteristics, which
differed between the groups. A similar result was found when
using the data of both groups in the analysis, this is presented
in Supplementary Table A5.

Association Between Phase Lag Index
and Spectral Power
Since there were significant differences in power, connectivity
and MST measures between baseline and task, we also examined
the relation between PLI and relative power for each band and
condition. The regression analysis for the theta band revealed a
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TABLE 3 | Group (dyslexics, typical readers) and condition (baseline, task) comparisons for PLI and MST metrics.

Within-subjects Between-subjects

Condition Condition × Dyslexia Group

1Task F p η2 F p F p

Theta PLI 2.12 0.151 0.04 4.45 0.040 1.04 0.313

Degree ↓ 18.06 0.000** 0.26 3.45 0.069 1.60 0.211

Leaf ↓ 59.98 0.000** 0.53 3.60 0.064 1.10 0.163

TH ↓ 49.70 0.000*** 0.48 2.09 0.038 2.47 0.122

R ↓ 42.86 0.000** 0.44 3.20 0.080 6.36 0.015

MST mean ↑ 22.29 0.000** 0.30 5.70 0.021 0.90 0.766

Alpha PLI ↑ 29.02 0.000** 0.35 2.25 0.140 2.50 0.119

Degree ↓ 74.02 0.000** 0.58 4.09 0.048 1.29 0.261

Kappa ↓ 98.80 0.000** 0.65 5.68 0.021 1.47 0.230

MST meana
↓ 15.21 0.000** 0.22 2.63 0.111 3.30 0.075

Beta PLI ↓ 24.64 0.000** 0.32 2.66 0.109 3.10 0.084

MST mean . 3.42 0.070 0.06 5.27 0.026 1.04 0.312

PLI, phase lag index; Ecc, Eccentricity; BC, betweenness centrality; TH, tree hierarchy; R, degree correlation; ↑ indicates increase in task vs. baselines; ↓ indicates
decrease in task vs. baselines. aDirection of effect differs between frequency bands. **Significant effects after FDR correction at q = 0.05; bold text represents significant
effects at uncorrected p < 0.05; italic text represents trends.

significant relation between PLI and relative power for baseline
theta (R = 0.55, R2 = 0.31, p < 0.001) and task theta (R = 0.39,
R2 = 0.15, p = 0.003). The same pattern was observed for the
alpha band; baseline (R = 0.73, R2 = 0.54, p < 0.001) and
task (R = 0.86, R2 = 0.47, p < 0.001). It can be observed that
the strength of the correlation between PLI and power differed
between the groups. In theta band, the strength of this relation
was moderate in dyslexics and in typical readers the relation was
weak or negligible (these results are plotted in the Supplementary
Figure A3). In the alpha band, typical readers show moderate to
strong correlations between PLI and power, while in dyslexics
these values were lower. This result is plotted in Figure 6,
which also shows the regression lines and coefficients per group.
There was no significant relation between PLI and relative power
for the beta band.

DISCUSSION

The aim of the current study was to examine whether letter-
speech sound binding task-based EEG network measures could
discriminate dyslexics from typical readers and/or relate to
reading abilities or task performance. In addition, task vs. resting-
state differences in functional connectivity and graph measures
were explored. The latter examination allows us to extend our
discussion on reliability and dependency on FFT power issues
that can affect interpretation.

Group Differences in Theta and Beta
Connectivity During Task
We found task-specific group differences in theta connectivity.
Dyslexics showed lower mean connectivity in theta compared
to typical readers. In general terms, oscillatory activity in
lower frequency bands such as theta is proposed to reflect

long distance synchronization while in higher frequencies it
would relate to shorter distances or smaller networks (Buzsáki
and Draguhn, 2004). Here, due to our focus on large scale
networks, we used the PLI measure which is shown to be
more robust against group differences in volume conduction
than other measures, albeit at the expense of a higher risk of
missing meaningful phase differences at short distances (Stam
et al., 2007). Our results regarding PLI theta suggest decreased
overall long-range connectivity in dyslexics during the current
task simulating reading acquisition. The available literature on
functional connectivity has revealed mixed alterations in dyslexia,
showing evidence for both increased and decreased connectivity
depending on region and task (Marosi et al., 1995; Nagarajan
et al., 1999; Shiota et al., 2000; Arns et al., 2007; Dhar et al., 2010).
Our finding would be in agreement with previous findings of
impaired functional connectivity in dyslexics compared to typical
readers across major pathways (e.g., Finn et al., 2014) and the
hypothesis that general oscillatory mechanisms may play a role
in dyslexia (Hancock et al., 2017a).

Another result in the theta band that emerged from the task
data refers to the lower degree correlation in dyslexics compared
to typical readers. The graph metric of degree correlation reflects
the extent to which connected nodes have similar degrees.
A previous EEG study found lower degree correlation (R) in
alpha between patients with Alzheimer and controls (de Haan
et al., 2009). That finding was interpreted as indicating loss of
network structure in the patient group. In addition, an MEG
study found an association between lower R and decreased
neurocognitive performance in glioma patients (Bosma et al.,
2009). In that study higher R in delta was associated with better
attentional functioning and R in lower alpha was associated with
verbal memory performance. The R of a randomly organized
network is close to 0, thus the authors interpreted that result
as reflecting deviation from optimal organization of a network.
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FIGURE 5 | Averaged PLI (top row) and mean MST (bottom row) in the theta (left panels), alpha (middle panels) and beta band (right panels) per condition. Red color
indicates data from dyslexics and blue those from typical readers. Error bars represent 95% CI. Black asterisks indicate comparisons between groups significant at
p < 0.05. Gray asterisk indicates main effect of condition at p < 0.05. TYP, typical readers; DYS, dyslexics.

The current group differences in R theta might therefore
indicate a suboptimal network structure in dyslexics during task
performance. However, we did not find a reliable association
between R and performance measures in the current task.
Moreover, the groups did not show significant differences in
task performance, although the current trend for longer RTs in
dyslexic readers reached statistical significance in our previous
work using this task in a sample largely overlapping the present
(Fraga González et al., 2019). It is possible that our performance
analysis did not capture differences in specific components of
learning that impose different attentional and cognitive demands
in dyslexics and typical readers and can thus be related to theta
networks (this is further discussed in the section “Limitations”).
Theta oscillatory activity has been previously associated with
working memory and attentional functioning (Klimesch, 1999;

von Stein and Sarnthein, 2000; Gootjes et al., 2006). More
relevant to the present results, theta activity has been linked to
dyslexia and reading difficulties in other studies (Arns et al., 2007;
Spironelli et al., 2008; Goswami, 2011; Fraga González et al.,
2016). In our previous work using resting-state data showed
that several MST metrics in theta related to network integration
could discriminate between typical readers and dyslexics in
children (Fraga González et al., 2016) but not in adults (Fraga
González et al., 2018). The current findings expand previous
results and support the involvement of theta oscillations in
cognitive performance and dyslexia.

Further, the analysis in the beta band revealed group
differences in PLI, suggesting that in dyslexics connectivity was
lower during task compared to typical readers. Although the role
of beta band activity is less clear, Engel et al. (2001) suggested
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TABLE 5 | Significant stepwise regressions of performance, age and cognitive skills to EEG metrics.

SE Adj. R2 1R2 F change

Typical readers

Mean RT Model 1 Task theta power 118.47 0.139 0.168 5.84*

Mean accuracy Model 1 Baseline Beta BC 8.31 0.124 0.153 5.23*

Model 2 + Baseline Alpha BC 7.62 0.264 0.160 6.51*

Model 3 + Task Alpha BC 6.90 0.396 0.144 7.15*

Model 4 + Task beta Th 5.64 0.596 0.194 14.42***

RAN numbers Model 1 Task theta Mean 3.93 0.105 0.135 4.51*

RAN colors Model 1 Baseline Theta PLI 4.22 0.172 0.199 7.21*

Model 2 + Baseline Beta BC 3.92 0.288 0.136 5.73*

RAN images Model 1 Task alpha Th 5.14 0.143 0.171 5.99*

Model 2 + Task beta Kappa 4.84 0.240 0.120 4.73*

Model 3 + Baseline Beta BC 4.58 0.320 0.097 4.30*

Model 4 + Baseline Theta PLI 4.30 0.402 0.094 4.71*

Model 5 + Baseline Alpha R 3.97 0.488 0.092 5.37*

Model 6 + Task theta R 3.61 0.577 0.088 6.25*

Dyslexics

Age Model 1 Task alpha degree 1.73 0.432 0.456 18.48***

IQ Model 1 Baseline Alpha Th 4.08 2.51 0.284 8.72**

RAN total Model 1 Task theta BC 3.45 0.261 0.293 9.13**

Model 2 + Baseline Theta Diameter 3.11 0.401 0.160 6.16*

Model 3 + Baseline Theta PLI 2.80 0.513 0.123 5.83*

Model 4 + Task alpha power 2.49 0.584 0.080 4.40*

RAN numbers Model 1 Task theta BC 3.47 0.226 0.260 7.72*

Model 2 + Baseline Beta R 3.01 0.469 0.210 8.30**

Model 3 + Task Beta Leaf 2.75 0.579 0.110 5.21*

Model 4 + Task Alpha R 2.53 0.661 0.081 4.56*

RAN colors Model 1 Baseline Beta BC 4.13 0.187 0.223 6.30*

SE, standard error of the estimate; Adj. R2, adjusted R squared; 1R2, change in R squared; + indicates variable is added to those of preceding models. BC, betweenness
centrality; PLI, phase lag index; Th, tree hierarchy; R = degree correlation. *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 6 | Averaged PLI in the alpha band (A) mean PLI plotted against mean relative power. Dashed lines are regression lines for typical readers (blue) and
dyslexics (red). (B) Mean PLI for task and baseline recordings. DYS, dyslexics; TYP, typical readers. Error bars indicate 95% CI.
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TABLE 4 | Group comparisons per condition for PLI and network metrics.

Task Baseline

F p Dys vs. Typ F p Dys vs. Typ

Theta PLI 7.63 0.008 < 0.14 0.715

TH 3.91 0.053 0.37 0.544

R 7.33 0.009* < 1.23 0.272

Alpha PLI 0.78 0.383 2.97 0.091

Degree 0.77 0.383 3.10 0.084

Kappa 0.00 0.948 3.71 0.060

Beta PLI 5.89 0.019 < 0.76 0.388

MST mean 4.27 0.044 < 0.23 0.879

PLI, phase lag index; Dys, dyslexics; Typ, typical readers; TH, tree hierarchy; R,
degree correlation.
*Significant effects after FDR correction at q = 0.10; italic text represents trends;
bold text represents significant effects at uncorrected p < 0.05.

that beta activity might be associated to maintenance of motor
actions and cognition. Specifically, that report indicated a role of
beta synchronization in top-down prediction. It is thus possible
that our finding in the beta band relates to differences in task
engagement between the groups, although we did not find
correlational evidence to further support this interpretation. The
following discussion on task vs. resting-state comparisons and
limitations to our analytic approach to task recording is also
relevant to this interpretation.

Network Configuration Differences in
Task and Resting-State
The comparisons across conditions revealed a less integrated
network configuration and reduced mean connectivity during
task performance compared to baseline in all frequency bands
and for both groups. This overall pattern may reflect more
specialized processing, i.e., recruitment of specific networks,
which would be expected during performance of a specific task.
In a previous study, surface EEG signals were compared between
rest and during a mental arithmetic task in adults vs. children
using both static and time-varying networks (Dimitriadis et al.,
2015). In that study, inconsistent with our findings, the static
network measures of local and global efficiency did not show
sensitivity in the task vs. resting-state comparisons, although
such difference was found in dynamic measures related to
transitivity between network “microstates.” A potential reason
for the apparent discrepancy in the results is the network
construction approach (weighted graph derived directly from
the connectivity measures vs. MST graph in the current study).
Another issue complicating a direct comparison refers to the
task nature (arithmetic vs. association learning) and difficulty:
ceiling levels of performance are reported in their study while our
behavioral analysis suggests that our task was, to some extent,
more challenging to participants. Additional aspects of task
design, like trial and feedback structure might have contributed
also to these differences. Interestingly, the impact of task difficulty
in several MST metrics has been previously studied in another
experiment using an arithmetic task (Vourkas et al., 2014). That
study suggested more distributed networks in theta and more

integrated configuration in alpha with increasing task difficulty,
as well as significant, albeit weak, correlations between graph
measures and task performance. Unfortunately, our current
design did not include a difficulty manipulation. We did find
statistically significant association between theta power during
task and performance RT in typical readers that would point at
the same direction in that group. However, the low strength of
this association does not warrant further interpretation.

Another relevant issue when interpreting task vs. baseline
network changes relates to FFT power. Our regression analysis
(see Figure 6) shows that there is a moderate influence of
power in the estimation of functional connectivity. This seems
especially relevant in alpha where a large drop in power is
expected during task- vs. resting-state. This is evident in the
mean FFT plots in Figure 3 as well as in the density plots in
Figure 4, showing large individual variability in relative alpha
power for baselines compared to a narrower distribution with
lower values for task data. This result is in agreement with the
proposed inhibitory role of alpha activity (Jensen and Mazaheri,
2010; Mathewson et al., 2011). Despite this association and in
support of the additional value of mean connectivity measures,
there were no significant group differences were found in spectral
power. However, such group differences in alpha power were
reported during a visuospatial orientation task (Van der Lubbe
et al., 2019) and in numerous resting-state studies, although with
inconsistent findings (see summary table in Lui et al., 2021). An
important consideration derived from the above studies and our
regression analysis is the necessity for examining spectral power,
often underreported in network studies. This was further brought
into attention in a short communication (Demuru et al., 2019).

Limitations
There are some limitations to note for the present this study.
A first limitation relates to EEG montage and sensor-level
analysis. But as mentioned in our previous work, our choice
of PLI as connectivity measure aims at minimizing the impact
of volume conduction and it seems to allow reliable network
topology estimates (Lai et al., 2018). A second, more specific
limitation, is the analysis of task-related activity using measures
which have been primarily applied to resting-state data. Here
we used a rather “coarse” approach, analyzing epochs derived
from a broad segment of the task recording matched in duration
to our 4 min baseline period. This approach, used in previous
work (Vourkas et al., 2014) ignores the structure of events
or task trials and assumes that in order to perform the task,
participants must sustain a cognitive and attentional state that is
relatively constant during the block. However, it is obvious that
levels of concentration, alertness, processing speed and fatigue
among other factors, may vary at different levels from each block
to the whole experimental session. Other studies used a more
event-related approach segmenting a time window preceding and
following the event (Vourkas et al., 2011; Wang et al., 2016)
which has another set of problems, i.e., related to the amount
of data points per segment and network stability (Fraschini
et al., 2016). Direct comparisons between these two methods
would require a more constrained design beyond the scope
of the present work. Finally, using more advanced models for
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analyzing task performance may yield behavioral indices of the
trial-by-trial learning process that can be better associated with
large-scale oscillatory activity. The contribution of model-based
cognitive neuroscience in the context of networks and dyslexia
remains underexplored.

CONCLUSION

We found reduced theta connectivity strength during task in
dyslexics compared to typical readers and trends for group
differences in both task and resting state in several network
metrics. These differences were not detected when examining
EEG power and support that overall connectivity in theta activity
during task performance may be implicated in dyslexia. This is
also suggested by the differences between task and resting-state in
theta connectivity that also seem to diverge between the groups.
However, it remains unclear whether these group differences
in EEG connectivity reflect atypical activations of specific hub
regions, recruitment of different networks, or they involve
more widespread oscillatory mechanisms. More spatially resolved
techniques might clarify some of these questions. In addition, the
EEG group differences were not reflected in learning differences
during the task and a robust association between functional
network metrics and cognitive performance remained elusive.
Model-based analyses and tasks that can capture variability in
reading skills will be important to further develop a cognitive
interpretation of these EEG measures. In this direction, other
network metrics that can be derived across frequencies and tasks
may offer more promising neural correlates of literacy (Lui et al.,
2021). Further, our findings emphasize the need to consider
the unique contribution of each set of measures (i.e., overall
strength of functional connectivity and graph-derived metrics),
their intercorrelation across recordings, as well as the influence of
spectral power. This would benefit the interpretability of network
findings in future studies.
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