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With the goal of harnessing the host’s immune system to provide long-lasting

remission and cures for various cancers, the advent of immunotherapy

revolutionized the cancer therapy field. Among the current immunotherapeutic

strategies, immune checkpoint blockades have greatly improved the overall

survival rates in certain patient populations. Of note, CTLA4 and PD-1/PD-L1 are

two major non-redundant immune checkpoints implicated in promoting cancer

immune evasion, and ultimately lead to relapse. Antibodies or inhibitors targeting

these two c+heckpoints have achieved some encouraging clinical outcomes.

Further, beyond the canonical immune checkpoints, more inhibitory checkpoints

have been identified. Herein, we will summarize recent progress in immune

checkpoint blockade therapies, with a specific focus on key pre-clinical and

clinical results of new immune checkpoint therapies for cancer. Given the

crucial roles of immune checkpoint blockade in oncotherapy, drugs targeting

checkpoint molecules expressed by both cancer and immune cells are in clinical

trials, which will be comprehensively summarized in this review. Taken together,

investigating combinatorial therapies targeting immune checkpoints expressed by

cancer cells and immune cells will greatly improve immunotherapies that enhance

host elimination of tumors.

KEYWORDS

immune checkpoints, programmed cell death protein 1 (PD-1), programmed cell
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Introduction

The concept of immunotherapy was first introduced by

McFarland Burnett and Louis Thomas in 1957, who proposed

that lymphocytes were the primary actors responsible for

mediating immune surveillance and tumor clearance (1–3). In

the ensuing decades, immunotherapy was advanced into several

major areas of study, including tumor infiltrating lymphocytes

(TILs), chimeric antigen receptor (CAR)-T cells, T cell receptor

(TCR)-T cells, oncolytic viruses, cytokine therapy, therapeutic

cancer vaccines, and immune checkpoint blocking antibodies.

The goal of these treatments was to unleash the power of the host

immune systems to fight back against the cancer.

With years of research and clinical trials, immune

checkpoint blocking therapies have been approved by the FDA

in the United States and elsewhere. Currently, administration of

immunotherapies has outweighed traditional therapeutic

regimes for a variety of reasons. Firstly, immunotherapy

exclusively targets immune cells and tumor cells, thus leaving

other cells unscathed. Secondly, the adverse effects of

immunotherapy are comparatively less severe than traditional

chemotherapy and radiotherapy-treatment regimens (4).

However, tumor cells are highly adaptable and can become

unresponsive to immunotherapies, and therefore they

continuously evolve mechanisms that evade host immunity

and promote tumor persistence. Furthermore, neo-antigens,

a hostile tumor microenvironment, T cell exhaustion, and

other factors contribute to immune checkpoint-blockade

resistance (5). Nevertheless, combinatorial use of immune

checkpoint blockade with a broad spectrum of chemicals and

antibodies can overcome therapy resistance, and has since

produced promising clinical results (6). In this review, we

comprehensively summarize the recent immunotherapy

literature, with a focus on immune checkpoint blockade.
Immune checkpoints

As mentioned above immune checkpoints (ICPs) could

overcome the limitations of conventional cancer therapy as

chemotherapy and radiotherapy. Therefore, followed by the

discovery of the first immune checkpoint named CTLA4, a

number of ICPs, including both stimulatory and inhibitory

molecules, have been identified. Systematic assessment on the

correlation between the ICPs of different cancers and the

treatment responses/outcomes revealed that the ICPs varied

across different cancers due to the cancer heterogeneity.

Meanwhile, ICPs could be potential prognostic factors and

therapeutic targets in certain types of cancer (e.g. breast cancer,

lung cancer and ovarian cancer) (7). Hence, we summarized the

ICPs according to their pivotal role in oncotherapy. Here is the

detailed information of the major ICPs (Figure 1).
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CTLA4

In response to foreign pathogens, T cell activation is

mediated by the T cell receptor (TCR) along with the

combination of co-stimulatory positive signals such as CD28

and inducible co-stimulator (ICOS), or inhibitory signals such

as cytotoxic T lymphocyte-associated antigen-4 (CTLA4, also

referred to as CD152) and programmed cell death protein 1

(PD-1). The final T-cell response is determined by the balance

between the positive and negative signals (8). T cell activation

requires 2 signals, including: 1) the engagement of the T cell

receptor (TCR) with major histocompatibility molecules

(MHC) on antigen presenting cells (APCs) and 2) co-

stimulation via binding of B7(CD80/CD86) on APCs to

CD28 on T cells (8). As the first immune checkpoint protein

discovered, CTLA4 plays a pivotal role in immune regulation

(8, 9). CD28 is predominately expressed in resting T cells, while

CTLA4 is absent or scarcely expressed in resting T cells.

However, following T-cell activation, CTLA4 is expressed

(10). Further study revealed that the intracellular localization

of CTLA4 in T cells plays an essential role in its function (11).

In naive T cells, CTLA4 protein is retained in the Golgi

apparatus of the cell, and therefore exerts no effect on T cell

activation (12). Upon engagement of TCR with MHC, CTLA4

is translocated from the cytoplasm to the plasma membrane,

where it competes with CD28 for binding with CD80/CD86

by trans-endocytosis (13). CTLA4 engagement inhibits T cell

activation and proliferation to maintain immune homeostasis,

and protect against aberrant immune responses to self-tissues

(14). In addition, CTLA4 also induces T-cell motility and

inhibits the binding of T cells with antigen presenting cells

such as dendritic cells (DCs) (15). CTLA4 competes with CD28

for B7 ligands for the inhibition of effector T cells, and

stimulates the transcription of Foxp3 for regulatory T cells

(Tregs) (16). Furthermore, by binding to its ligands B7-1

(CD80) and B7-2 (CD86), CTLA4 also reduces T cell

responses by an attenuation of the induction of memory T

cells (17). CTLA deficient mice show multi-organ lymphocyte

infiltration and tissue destruction, implying the critical role of

CTLA4 in down-regulating T cell activation and preventing

autoimmunity (18). A number of investigators have identified

the cytoplasmic binding partners of CTLA4 (19). The

endocytosis of CTLA4 depends largely on its adaptor

clathrin, where it binds to clathrin-associated adaptor

complex (adaptor protein-2, AP-2) to induce CTLA4

internalization (20). When CTLA4 is internalized, it cannot

deliver a negative signal. The binding domain of CTLA4

contains a YVKM motif, and when it is phosphorylated at

the tyrosine site of the YVKMmotif upon T cell activation, AP-

2 can disengage from the binding at the same tyrosine site of

CTLA4 (20, 21). With the disengagement of AP-2, CTLA4 is

activated and functions as a negative regulator of T cells.
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CTLA4 also plays an important role in the regulation of

regulatory T cells (Tregs) functions, including Treg suppressive

function, TCR hyposignaling and the induction of anergy (22).

Deficient CTLA4 expression by Tregs fails to expand effector

CD4+ T cells, even in the presence of interleukin-10 (IL-10) (23).

Treg specific CTLA4 deficiency leads to reduced expression of

CD80 and CD86 on dendritic cells (DCs), lymphocyte

proliferation, T-cell mediated autoimmune diseases, and

immunoglobulin E (IgE) production7 (24),. CTLA4 controls

both the functional-development phase and the effector phase

of Tregs (25). In addition, Tregs (which constitutively express

CTLA4) regulate the infiltration of CD4+ T cell into tumors via a

CTLA4/CD80-dependent manner (26).

Previous studies revealed that CTLA4 is constitutively

expressed on tumor cells, and, therefore, CTLA4 blockade

might stimulate tumor cell apoptosis and lead to the

regression of tumors (27). Because CTLA4-inhibited immune

activation relies primarily on the stimulation and activation of

Tregs, the therapeutic effect of CTLA4 blockade principally acts

via the regulation of Tregs (28). Administration of neutralizing

monoclonal antibodies against CTLA4 are able to selectively
Frontiers in Immunology 03
deplete FOXP3+ Treg cells, and thereby promote tumor

immunity by activating effector CD8+ T cells (29). Clinically,

treatment with anti-CTLA4 monoclonal antibodies (mAbs) does

not deplete Foxp3+ Tregs, but does increase CD4+ and CD8+ T

cell infiltration into tumors (30).
PD-1 and PD-L1

Programmed cell death protein 1 (PD-1) was named based

on its initial identification as a receptor inducing cell death in an

activated T cell hybridoma (31), and is now recognized as a

dominant negative regulator of T cells similarly to CTLA4 (32).

Like CTLA4, PD-1 is absent from naïve and memory T cells, but

is expressed upon TCR engagement (33). In contrast to CTLA4,

PD-1 is expressed on the surface of activated T cells, and

contains a conventional immunoreceptor tyrosine inhibitory

motif (ITIM) and immunoreceptor tyrosine switch motif

(ITSM). PD-1 engagement leads to the activation of the

inhibitory phosphatase SHP-2, thus resulting in the inhibition

of TCR mediated function, increased T cell migration, and
FIGURE 1

The interactions of immune checkpoints of cancers and immune cells, and the correlated immune checkpoint inhibitors (ICIs). TAN, tumor‐
associated neutrophil; TAM, tumor-associated macrophage; CAF, cancer associated fibroblast; MDSC, myeloid-derived suppressor cell; APC,
antigen-presenting cell; NK cell, natural killer cell; ATP, adenosine triphosphate; AMP, adenosine monophosphate; CD, clusters of differentiation;
IL, interleukin; IFN-g, interferon-g; TNF-a, tumor necrosis factor; COX-2, cyclooxygenase-2; TGF-b, transforming growth factor-b; GM-CSF,
granulocyte-macrophage colony stimulating factor; IFN-b, interferon-b; PDGFs, platelet-derived growth factors; HGF, hepatocyte growth
factor; SDF-1, stromal cell-derived factor-1; MMP9, matrix metallopeptidase 9; ECM, extracellular matrix; VEGF, vascular endothelial growth
factor; ROS, reactive oxygen species; TDO, tryptophan 2,3-dioxygenase; IDO1, indoleamine 2,3-dioxygenase1; HHLA2, The B7 family ligand
HERV-H LTR–associating protein 2; TMIGD2, transmembrane and immunoglobulin domain containing 2; B7-, B7 family. B7-1(CD80), B7-2
(CD86), B7-H1/PD-L1(CD274), B7-H2/ICOSL (CD275), B7-H3(CD276), B7-H4; 4-1BBL, 4-1BB ligand 4-1BB, CD137, a member of the TNF
receptor superfamily, is an activation-induced T-cell costimulatory molecule; ICOSL, inducible costimulator ligand; ICOS, inducible
costimulatory; MHC, major histocompatibility complex class; TCR, T cell receptor; PD-1, programmed cell death 1; PD-L1/L2, programmed cell
death ligand-1/2; CTLA4, cytotoxic T-lymphocyte-associated protein 4; Gal-9, galectin-9; CEACAM1, Carcinoembryonic antigen elated cell
adhesion molecule1; TIM-3, T cell immunoglobulin domain and mucin domain-3; LAG-3, Lymphocyte-activation gene 3; HVEM, Herpesvirus
entry mediator; BTLA, B- and T-lymphocyte attenuator; TIGIT, T cell immunoreceptor with Ig and ITIM domains; DNAM-1, DNAX accessory
molecule-1; HLA-E, major histocompatibility complex, class I, E; NKG2A, also called KLRC1, killer cell lectin like receptor C1; ITT, ITT-like motif;
ITIM, immunoreceptor tyrosine-based inhibitory motif; ITSM, immunoreceptor tyrosine-based switch motif; PIP2, phosphatidylinositol-3,4-
bisphosphate; PIP3, phosphatidylinositol-3,4,5-trisphosphate; Y265, a highly conserved tyrosine in the intracellular tail of Tim-3; KIEELE,
conserved regions of Lag3 cytoplasmic domain, KIEELE motif; NF-kb, nuclear factor kappa-B; Bcl-xL, B-Cell Lymphoma-extra-large; SHP1/2,
src-homology domain 2(SH2)-containing protein tyrosine phos-phatase-1/2.
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immune evasion within the tumor microenvironment (TME)

(34). Unlike the ligand of CTLA4, one of PD-1’s ligands known

as programmed death- ligand 1 (PD-L1), is broadly

overexpressed on tumor cells and infiltrating leukocytes (35);

this allows for the induction of PD-1 mediated T cell exhaustion

by tumor cells (36). However, this phenotype can be reversed via

blockade of either PD-1 or PD-L1, resulting in elevated

antitumor cytotoxic T cell responses and tumor regression

(35). Because CTLA-4 inhibits T cells at the early stages in the

lymph nodes, the CTLA4 deficient mice show severe

lymphoproliferative disease, lethal lymphocytic infiltration in

multiple organs and tissue destructions (37). However, because

PD-1 regulates in the immune response in the peripheral tissues,

the phenotypes of PD-1 and PD-L1 deficient mice are

comparatively milder, as evidenced by delayed onset of

inflammation and lack of severe organ destruction. These

differences highlight the importance of the PD-1 pathway,

specifically, in tumor immunotherapy (38, 39).

It is widely acknowledged that CTLA4 regulates T-cell

proliferation in lymph nodes (40). Therefore, CTLA4

antibodies (ipilimumab and tremelimumab) can induce

clinically unrestrained T-cell activation (41). And the major

immune-related adverse events (irAEs) of CTLA4 blockade have

been reported to be diarrhea, dermatitis, hepatitis, and

endocrinopathies. However, PD-1 suppresses T cells primarily

in peripheral tissues (40), and, hence, blockade of PD-1 or PD-

L1 exerts less frequent and mild autoimmune adverse effects

compared with CTLA4 mAb therapies (35). However, the

therapeutic outcomes of PD-1 blockade on solid tumors have

remained relatively poor, mainly due to the hostile TME, and the

presence of immunosuppressive Tregs (42). PD-L1 has been

implicated in the development and function of Tregs by

enhancing the expression of Foxp3. It also converts naive

CD4+ T cells to Tregs, and stimulates the immunosuppressive

function of Tregs (43). The expansion of Tregs could be

regulated by PD1 and PD-L1 via Notch signaling pathway

(44). Additionally, in myeloid tumor cells (K562) or T cells,

the PD-L1 expression was able to convert Th1 cells into Tregs

(45). Furthermore, PD-1 blockade stimulates the proliferation of

PD-1+ effector Treg cells, inhibiting the antitumor immunity

(46, 47). Therefore, the efficacy of PD-1 blockade therapy may be

predicted by the levels of PD-1 expression on effector T cells

(Teff) and Tregs (48), and should be used as a biomarker to

predict patient responsiveness.
Tim-3

T cell immunoglobulin and mucin-3 (Tim-3; also known as

HAVCR2) is broadly expressed on activated T cells, FoxP3+ Treg

cells, NK cells and monocytes (49). Tim-3, similarly to PD-1 and

CTLA4, suppresses the immune response upon interaction with

its ligand galectin-9 (49). The main functions of Tim-3 include
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promoting CD8+ T cell exhaustion, and inducing the expansion

of myeloid-derived suppressor cells (MDSCs) and Tregs. Co-

expressed with carcinoembryonic antigen cell adhesion molecule

1 (CEACAM1), the maturation and cell surface expression of

Tim-3 is regulated by CEACAM1 by forming a heterodimer to

mediate immune tolerance and T cell exhaustion (50). Blockade

of Tim-3 accelerates the pathogenesis of autoimmune diabetes in

nonobese diabetic (NOD) mice, and inhibits transplantation

tolerance induced by co-stimulation blockade (51), highlighting

Tim-3’s immunoregulatory role. As a T helper type 1 (Th1)–

specific cell surface marker, Tim-3 binds with its ligand galectin-

9, causes the hyperproliferation of Th1 cells and the release of

Th1 cytokine, and thereafter induces peripheral tolerance (52,

53). Activation of the Tim-3/galectin-9 pathway is also known to

increase the frequency of CD11b+Ly-6G+ myeloid cells, inhibits

immune responses (54). Clinically, Tim-3 promotes T-cell

exhaustion and is associated with the poor prognosis in

hepatocellular carcinoma (HCC) patients (55). Tim-3 blockade

also increases the pathological severity of the Th1-dependent

autoimmune disease of exper imenta l autoimmune

encephalomyelitis (EAE) in mice (56).

Regarding Tregs, Tim-3+ Treg is highly effective at inhibiting

T-cell proliferation (57, 58), and the blockade of Tim-3 induces a

reduction in the frequency of CD4+CD25+Foxp3+ Tregs (59).

Experiments using murine tumor xenograft models suggest that

Tim-3 is expressed on PD-1 expressing CD8+ TILs. Functionally,

Tim-3+PD-1+ TILs are severely exhausted, as evidenced by a

failure to secrete interferon-g (IFN-g), tumor necrosis factor-a
(TNF-a), and interleukin-2 (IL-2) (60). Therefore, compared

with the inhibition of CTLA4 pathway or PD-1/PD-L1 pathway

alone, combinatorial Tim-3 and PD-1 blockade has been

demonstrated to be more effective (60). For example,

combinatorial therapy reverses tumor-induced T-cell

exhaustion and dysfunction in patients with colorectal cancer

by increasing the proliferation of tumor antigen-specific CD8+ T

cells and decreasing immunosuppressive Treg populations (61).

In patients with advanced melanoma, increased expression of

Tim-3 and PD-1 correlates with tumor antigen-specific CD8+ T

cell dysfunction (62). A recent study using triple therapy (PD-1

blockade, Tim-3 blockade and anchored granulocyte-

macrophage colony- stimulating factor (GM-CSF) vaccination)

demonstrated tumor regression levels higher than 50% (63).

This was associated with reduced apoptosis of CD8+ TILs,

decreased production of tumor-promoting cytokines, and

improved cytotoxicity in bladder cancer (64) and prostate

cancer (65). In another study, combinatorial Tim-3/Lag-3/PD-

1 blockade significantly improved antitumor immunity in gastric

cancer cell-T cell coculture models, suggesting the therapeutic

potential of combinatorial therapy in gastric cancer patients

(66). Tim-3 could also be used as a biomarker for cancer therapy

responsiveness. In medullary thyroid cancer, a cohort study of

200 patients revealed that Tim-3, CTLA4 and PD-1/PD-L1 are

promising biomarkers for tumor recurrence (67). In head and
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neck cancer, increased PD-1+ and Tim-3+ CD8+ TILs were

inversely correlated with clinical outcome of cetuximab

therapy (68). Ultimately, Tim-3 blockade has been proven in

pre-clinical studies to be beneficial in improving current

immune-checkpoint blockade therapies when applied in

combination. These promising results provide precedence for

assessing the use of Tim-3 blockade in clinical trials so as to

improve clinical outcomes of cancer patients.
Lymphocyte activation gene 3

Discovered in 1990, lymphocyte activation gene-3 (Lag-3;

also referred to as CD223), is an immune checkpoint molecule

expressed by activated T cells, Tregs, NK cells and B cells (69–

72). Lag-3 is structurally homologous to the CD4 co-receptor

and competes with CD4 for its binding with MHC class II (73).

Inhibition of Lag-3 results in the expansion of T cells, B cells,

macrophages, granulocytes, and DCs (74), and increases

activation of CD8+ T cells (75). With respect to Lag-3’s

regulatory functions, a study by Workman et al. revealed an

inability of Vb7/8+ (T cells bearing Vb7 and Vb8 (Vb7/8) T cell

receptors) Lag-3-deficient T cells to expand, even when

stimulated with staphylococcal enterotoxin B. Expansion of

Lag-3 deficient T cells was subsequently restored by the

constitutive expression of Lag-3 (76). Lag-3 is differentially

expressed on induced Tregs and is required for Treg function.

Upon activation, natural CD4+CD25+ Tregs express Lag-3 to

suppress effector cells, whereas CD4+CD25+ Tregs from Lag-3

knockout mice exhibit reduced regulatory activity (77). Lag-3 is

also a biomarker for active CD4+CD25highFoxp3+ Tregs (78).

CD49b and Lag-3 are stably and selectively co-expressed on

CD4+ type 1 Tregs (Tr1), which induce and maintain immune

tolerance (79). Moreover, Lag-3 is expressed on CD11cl°w/

B220+/PDCA-1+ plasmacytoid DCs, and regulates their

homeostasis (80). Lag-3 binds with MHC II expressed within

plasma membrane lipid rafts of immature human DCs, and

promotes their maturation and activation (81). Due to the

pivotal role of Lag-3 in immune regulation, several diseases

including autoimmune diseases, cancer, chronic viral infection,

and parasitic infection are correlated with aberrant Lag-3

expression (82–84). Given the immunoregulatory role of Lag-

3, the combinatory therapies targeting both Lag-3 and PD-1

have gained some encouraging clinical outcomes (85–87). Lag-3

and PD-1 contribute to the rapid trafficking of the

immunological synapse upon T-cell activation, and lead to a

synergistic inhibitory effect on T-cell signaling (88). Dual

blockade of Lag-3 and PD-1 resulted in the clearance of

multiple established tumors, which were resistant to PD-1

blockade alone (89). Another study in renal cell carcinoma

revealed that the inhibition of PD-1 resulted in a significant

upregulation of Lag-3, and the blockade of both immune

checkpoint proteins leads to increased IFN-g secretion,
Frontiers in Immunology 05
emphasizing the significance and the potential of combination

therapy (90). Therefore, to overcome the resistance of PD-1

blockade in resistant cancers, the synergistic blockade of Lag-3

and PD-1 may provide a promising therapy.
TIGIT

Discovered by genome-wide association studies (GWAS), the

co-stimulatory molecule CD226 together with T cell

immunoreceptor with immunoglobulin and ITIM domain

(TIGIT) forms a striking pathway similarly to the CD28-CTLA4

pathway, and is correlated with multiple autoimmune diseases

(91, 92). TIGIT is expressed by the activated T cells, Tregs, and

NK cells (93). The ligand for TIGIT is poliovirus receptor (PVR)

CD155, which also binds to CD226. Hence, in the TIGIT-CD226

axis, TIGIT can bind and disrupt CD226 homodimerization, and

therefore directly inhibits T-cell activation, proliferation, and

effector function by competing with CD226 for binding to

CD155 (94, 95). TIGIT has been shown to suppress antitumor

immunity by increasing the frequency of Tregs that express the

co-inhibitory receptor Tim-3 and that induce CD8+ T-cell

dysfunction (96). TIGIT+ Tregs selectively suppress the

responses of proinflammatory Th1 and Th17 cells via the

upregulation of fibrinogen-like protein 2 and the secretion of

IL-10 (97). TIGIT represses IFN-g secretion, promotes the nuclear

translocation of forkhead box O1 (FoxO1), inhibits protein kinase

B (PKB, also called Akt) function, and restores suppressor

function of Tregs (98). TIGIT also plays an important role in

regulating NK cell responses. In mouse models, the blockade of

TIGITs interaction with its ligand PVR leads to increased NK-cell

mediated cytotoxicity (99). In tumor models, TIGIT exerts its

regulatory function and inhibits NK-mediated cytotoxicity on

tumor cells to promote immune evasion (100). Antibody

blockade of TIGIT could inhibit NK cell exhaustion and

promote NK cell dependent tumor immunity (101). Clinically,

dual blockade of TIGIT and PD-1 could increase the frequency of

CD8+ TILs and tumor antigen specific CD8+ T cells in established

melanoma patients (102). Dual PD-1 and TIGIT blockade

treatment in glioblastoma multiforme (GBM) patients showed

decreased effector T cell function, increased Tregs, and increased

tumor infiltrating dendritic cells (TIDCs) (103). In B-cell non-

Hodgkin’s lymphoma patients, the response rates (RRs) of PD-1

blockade are comparatively low, and these patients display

increased CD8+ and CD4+ T effector memory cells expressing

TIGIT and PD-1 with limited IFN-g, TNF-a, and IL-2 production
(104). In gastric cancer patients, TIGIT and PD-1 were found to

be upregulated on infiltrating CD8+ T cells in tumor tissues,

suggesting that TIGIT may serve as an emerging biomarker (105).

In follicular lymphoma, increased numbers of TIGIT+ T cells are

associated with poor survival, therefore TIGIT may serve as a

predictive marker for therapeutic clinical outcomes (106).
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BTLA

The B and T lymphocyte attenuator (BTLA) is an

immunoglobulin superfamily member, which downregulates

T-cell activation (69). BTLA contains a glycoprotein with two

immunoreceptor tyrosine-based inhibitory motifs. The ligand

for BTLA is B7x, a peripheral homolog of B7. BTLA is not

expressed in naïve T cells, but it is expressed on Th1 cells upon

activation (107). After crosslinking BTLA with antigen

receptors, BTLA attenuates IL-2 secretion, and therefore it

functions as an inhibitory receptor similar to CTLA4 and PD-

1 (108). Blockade of BTLA in T-cells increased T-cell

proliferation, and BTLA deficient mice display increased

incidence and severity of autoimmune diseases, such as EAE.

A recent report suggests that PD-1 and BTLA can suppress T

cell signaling via SHP-1 and SHP-2 (109). BTLA also

functions as a negative regulator of B cell receptor (BCR)

signaling by binding with its ligand herpesvirus entry

mediator (HVEM). Engagement of BTLA4 leads to

recruitment of the tyrosine phosphatase Src homology 2

domain containing phosphatase 1, and reduces the

activation of BCR-signaling pathways (108). Furthermore,

BTLA4 engagement inhibits the activation of B cells by

targeting Syk and B cell linker proteins (110).

BTLA is also expressed on DCs and macrophages (111,

112). BTLA plays a regulatory role in peripheral tolerance,

evidenced by the ability of BTLA+ DCs to induce CD8+ T cell

tolerance that could alleviate the severity of type 1 diabetes

(113). Regarding Tregs, BTLA governs the cell differentiation

and activation of Tregs (114). BTLA deficient mice have fewer

Tregs and develop autoimmune diseases such as EAE.

Interestingly, adoptive transfer of myelin oligodendrocyte

glycoprotein fused reovirus protein s1-B220+CD5+ Bregs,

which express elevated BTLA levels, protects against EAE

development, suggesting that BTLA plays a critical role in

the activation of Tregs and Bregs (115). Therapeutically,

several studies have explored the application of BTLA4

blockade in improving clinical outcomes in patients with

colorectal cancer, epithelial ovarian cancer, lung cancer,

gastric cancer, and other cancers (116–119). BTLA blockade

inhibits IL-6 and IL-10 secretion, induces CD19hi B cells

through AKT and STAT3 signal ing pathways, and

significantly improves the therapeutic outcomes in epithelial

ovarian carcinoma patients (117). Another study revealed that

up-regulation of BTLA occurs independently of functional

exhaustion, which is induced by high antigen load.

Combinatorial blockade of PD-1, Tim-3 and BTLA could

enhance the expansion, proliferation, and cytokine

production of CD8+ T cells (120). Taken together, BTLA

should be further explored to enhance the clinical

responsiveness to immune checkpoint blockade therapies.
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Other immune checkpoints

In addition to the immune checkpoints mentioned above,

other immune checkpoint molecules have been identified

including B7 family molecules (B7-H3, B7-H4 and HHLA2),

indoleamine 2,3-dioxygenase 1 (IDO-1), V-domain Ig

suppressor of T cell activation (VISTA), and inducible T cell

co-stimulator (ICOS). B7-H3, also known as CD276, is a newly

discovered immune checkpoint protein, and plays a crucial role

in the adaptive immune response in human cancers (121, 122).

As a transmembrane glycoprotein, B7-H3 contains single

variable and several constant immunoglobulin domains. It

binds with its receptor CD28 which is universally expressed on

T cells, B cells, monocytes, NK cells, and APCs including DCs

and myeloid-derived suppressive macrophages (123, 124).

Moreover, it is also constitutively expressed on the surface of

tumor cells fibroblasts, tumor endothelial cells, osteoblasts and

amniotic fluid stem cells (125). Upon interaction with CD28, B7-

H3 ultimately leads to immune evasion by inhibiting the

activation of T cells. B7-H3 deficient mice have increased

frequencies of differentiated Th1 cells associated with severe

inflammation in the respiratory system and the development of

autoimmune encephalomyelitis earlier than wild type littermates

(126). However, B7-H3 also possesses a co-stimulatory role by

inducing IFN-g production, increasing T cell proliferation (121),

and stimulating the differentiation of CD8+ T cells that drive

antitumor immunity (127). CD4+CD25+Tregs inhibit DC

activation via up-regulation of inhibitory B7-H3 on DCs. B7-

H3 engagement also results in decreased MHC-peptide

complexes and impairs T cell activation (128). The expression

of B7-H3 and B7-H4 has been reported to be correlated with

metastasis by stimulating the expression of immunosuppressive

IL-10 and TGF-b1 (129). Studies in tumor metabolism revealed

that B7-H3 increases the expression levels of hypoxia-inducible

factor 1 a (HIF1a), lactate dehydrogenase A (LDHA), and

pyruvate dehydrogenase kinase 1 (PDK1), and therefore

stimulates the Warburg effect by increasing glucose uptake and

lactate production (130). These studies provide evidence that

B7-H3 can regulate aspects of both cancer persistence and

immune regulation, and should be considered as a potential

target in the next stage of immune checkpoint blockade

therapies for cancer.

B7-H4, also referred to as B7x and B7-S1, is a highly

conserved immunoglobulin superfamily and belongs to the B7

family (131). It is ubiquitously expressed by tumor tissue and

immune cells, including T cells, APCs, DCs, peritoneal

macrophages and B cells (131, 132). B7-H4 negatively

regulates T cell activation by decreasing T cell proliferation,

inhibiting the production of IL-2 and inducing cell cycle arrest of

T cells (133, 134). B7-H4 regulates pro-inflammatory T-cell

responses by inhibiting CD4+ T-cell proliferation and
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differentiation to both Th1 and Th17 cells, inducing the

production of IL-10, and increasing Treg activation (135).

Deficiency of B7-H4 leads to elevated Th1 and Th17 responses

(136). The expression of B7-H4 was shown to be up-regulated in

various cancers, including breast, pancreatic, ovarian, lung, renal

cell, and endometrial cancers (137–140). The expression levels of

B7-H4 have also been recognized to constitute a prognostic

indicator associated with poor overall survival in pancreatic

cancer patients (137).

HHLA2 (HERV-H LTR-associating 2; also referred to as

B7H5 and B7H7) belongs to the B7 family and is expressed by

macrophages and DCs. As a novel co-stimulatory molecule,

HHLA2 binds with CD28H (also known as Transmembrane and

Immunoglobulin Domain Containing 2 (TMIGD2)), stimulates

T cell proliferation and increases cytokine production via

induction of the Akt signaling pathway (141–143). When

combined with TCR and CD28 stimulation, it plays a co-

inhibitory role comparable to PD-L1 (144). In T cells and NK

cells, it also binds with KIR3DL3 (killer cell immunoglobulin-

like receptor, three immunoglobulin domains and long

cytoplasmic tail 3) to mediate tumor immune evasion

independently from PD-L1 (145). HHLA2 inhibits T-cell

proliferation and cytokine production including IFN-g, TNF-
a, IL-5, IL-10, IL-13, IL-17A, and IL-22 (146). Therefore, it has

been reported to be a novel prognostic predictor, similar to PD-

1, in tumor immunotherapy (147, 148).

V-domain Ig-containing Suppressor of T cell Activation

(VISTA; also referred to as PD-1H, DD1a, c10orf54, Gi24,
Dies1 and SISP1) is a transmembrane protein containing a

single N-terminal immunoglobulin (Ig) V domain (149).

Phylogenetically, VISTA is similar to PD-1, CD28, and CTLA4

(150). It is the most conserved molecule among the B7 family

members, sharing similar domains with CD28 and CTLA4

within its cytoplasmic tail (149). Studies on VISTAs Src

homology 2 (SH2) binding motif suggest that it functions as

both a ligand and receptor in controlling immune responses

(149, 151). VISTA is mainly expressed on cells of the

hematopoietic lineage, including macrophages, DCs,

monocytes, and circulating neutrophils (152). Albeit absent in

B cells, it is unanimously expressed in naïve T-cells, CD4+

memory T- cells and Tregs (150). Weak expression of VISTA

is also observed in CD8+ T cells and NK cells (149). VISTA

deficiency results in enhanced activation of T-cells with

increased production of IFN-g, TNF-a and IL-17, and

contributes to the onset of overt autoimmunity (151, 153).

Within the TME, VISTA plays a crucial role with increased

expression observed on myeloid DCs, myeloid-derived

suppressor cells (MDSCs) and Tregs (154). Blockade of VISTA

decreases the number of MDSCs, increases activated DCs, and

reduces the frequency of tumor specific Tregs (155).

The immune checkpoint molecules indoleamine 2,3-

dioxygenase-1 (IDO-1) and tryptophan dioxygenase (TDO)

belong to the tryptophan catabolic enzyme family. They
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catalyze the degradation of tryptophan (Trp) into kynurenine

(Kyn) (156, 157). IDO-1 plays an immunosuppressive role in

various cancers (158) by suppressing CD8+ T effector (Teff) cells

and NK cells (159, 160). Further, it stimulates the proliferation of

Tregs and MDSCs (161), decreases the ratio of Th17 cells versus

Tregs, inhibits Th17 related cytokine production, and decreases

the number of Th1 and Th22 cells (162, 163). Moreover, IDO-1

regulates the recruitment, polarization and phagocytosis

capabilities of macrophages (164, 165). TDO has also been

reported to be an immunosuppressive molecule capable of

reducing CD8+ T cell viability, stimulating the secretion of

cytokines such as IFN-g, TNF-a, IL-10 and IL-17 by TDO

reactive CD4+ T-cells, and contributes to the tumor metastasis

(166–168).

Inducible Co-Stimulator (ICOS), a homodimeric protein

expressed on activated T cells, is an inducible T-cell co-

stimulator (169). Specifically, it shares common signaling

mechanisms with CD28, and increases T cell responses by

stimulating T-cell proliferation and cytokine secretion (169).

By binding with its ligand (B7-H2, B7RP-1), ICOS stimulates

the response of T effector cells and T cell-dependent B cells

(170). Further, this interaction promotes IL-10 secretion by

effector T cells even in the presence of mature DCs (171). ICOS

blockade attenuated T cell proliferation and inhibited Th

effector responses by decreasing Th2 cytokine secretion

(172). Inhibition of ICOS attenuates cytokine productions as

IL-2, IL-4, IL-5, and IFN-g, and decreases the Th2 mediated

mucosal inflammation (173). Deficiency in ICOS fails to form

T follicular helper (Tfh) cells. Therefore, inhibition of ICOS

decreases the immunosuppressive function of Tregs and

decreases the expression of Tfh markers of the lymphoid

tumor cells (174, 175). Beyond the canonical immune

checkpoints of CTLA4 and PD-1/PD-L1, other immune

checkpoints may, therefore, also be crucial in reducing

immune responses in numerous cancers. Combination

therapy with classical inhibition of CTLA4 and PD-1/PD-L1

may, thus, result in a durable clinical response in

cancer therapy.
Drugs targeting the immune
checkpoints

Tremendous progress has been achieved in cancer

immunotherapy over the past few decades. To date, the most

widely applied immunotherapeutic drugs are antibodies that

block immune inhibitory receptors such as CTLA4, PD-1, and

PD-L1 (Supplementary Table 1). Although the FDA has

approved these drugs to treat various cancer types, a

large number of immune checkpoint inhibitors (ICIs)

targeting other inhibitory receptors are in clinical

development. In this section, we will summarize these drugs in

cancer immunotherapy.
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CTLA4 inhibitors

Ipilimumab was the first FDA approved CTLA4 inhibitor to

hit the market (176). In humans, a phase III clinical trial in 2010

(MDX010-20, NCT00094653) in patients with unresectable or

metastatic melanoma evaluated the efficacy and safety of

ipilimumab (3 mg/kg) and found it alone extended the median

overall survival (OS) of patients by more than three months

compared with the control group, showing that a single ICI can

have potent antitumor effects (177). In 2011, ipilimumab was

approved by the FDA for the treatment of late-stage (metastatic)

melanoma patients (176), and 3 mg/kg administered once every

3 weeks (Q3W) for four cycles was adopted as the standard of

care based on the results of several clinical trials (177–179).

Besides melanoma, clinical trials using single-dose, 3 mg/kg

ipilimumab have been conducted in patients with ovarian

cancer (180, 181) and prostate cancer (182), but the its effect

was not as effective in these cancer types compared to the success

rates for melanoma patients. Thus, use of ipilimumab in

combination with other treatment modalities, such as

addi t ional immunotherap ies , chemotherap ies and

radiotherapies, are being tested in the clinic to improve

success rates in multiple cancers. For example, 10 mg/kg

ipilimumab plus dacarbazine (a chemotherapeutic agent)

prolonged the median OS from nine months to 11 months in

patients with previously untreated metastatic melanoma

compared with dacarbazine plus placebo (183).

Another CTLA4 inhibitor, tremelimumab, is a fully human

mAb containing an IgG2 Fc domain in order to minimize Fc

domain effector functions such as complement fixation and

antibody-dependent cytotoxicity (184, 185). Tremelimumab

alone has displayed potential antitumor effects in advanced

melanoma patients in phase I, I/II and II trials (186–188).

However, in a phase III trial in patients with unresectable

stage IIIc–IV melanoma who had not received prior systemic

treatment, tremelimumab was found to not be superior to

standard of care chemotherapy regimens (median OS 11.8

months vs 10.7 months, hazard ratio (HR) 0.96) (189). These

disappointing results led to early termination of the study and

has limited available data of tremelimumab in melanoma

patients. Besides melanoma, tremelimumab monotherapy has

been studied in several other solid tumors, including metastatic

esophageal and gastric adenocarcinoma, locally advanced or

metastatic non-small cell lung cancer (NSCLC), treatment-

refractory colorectal cancer (CRC), etc, but no satisfactory

results have been obtained (190–193).
PD-1 inhibitors

Currently there are three anti-PD-1 and three anti-PD-L1

antibodies approved by the FDA for treatment of more than 10

cancer indications. The first PD-1 inhibitor to enter the clinic
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was nivolumab in 2006, and the first to receive FDA approval

was pembrolizumab in 2014 for the treatment of advanced

melanoma patients (194). Both of these PD-1 inhibitors

contain human IgG4 Fc regions containing mutations in the

stabilizing hinge region (195). Nivolumab was tested in 2010 in a

phase I trial in 39 patients with advanced solid tumors that were

treatment-refractory (196). These tumor types included

metastatic melanoma, prostate cancer, NSCLC, renal cell

carcinoma (RCC) and CRC. Different doses (0.3, 1, 3, 10 mg/

kg) of nivolumab were used and antitumor activity was found in

1 CRC (complete response (CR), 3 mg/kg), 1 melanoma (partial

response (PR), 10 mg/kg) and 1 RCC patient (PR, 10 mg/kg).

The drug was well-tolerated and common AEs observed were

reduced lymphocyte numbers, fatigue, and musculoskeletal

symptoms (196). In a subsequent study, a multidose (ranging

from 0.1 to 10 mg/kg) clinical trial with expanded patient

numbers (N=296) was conducted in the same tumor types

(197). CR or PR was observed in melanoma (28%), RCC

(27%) and NSCLC (18%) patients, and phase III trials were

then initiated for these indications (198–201). Considering the

promising results from these trials, the FDA approved

nivolumab for the treatment of refractory melanoma in 2014

and NSCLC in the following year (202). Since then, nivolumab

has gained FDA approval for the treatment of multiple solid

tumor types (Supplementary Table 1). Interestingly, in classical

Hodgkin’s lymphoma (cHL), the surface of tumor cells also

overexpresses PD-L1/PD-L2 due to genetic alterations on

chromosome 9p24.1 (203, 204). In a phase I study, nivolumab

showed beneficial responses in 87% (20/23) of relapsed/

refractory cHL patients (205). In a phase II study, the overall

objective response rate (ORR) was 69% and median PFS was

14.7 months (206). Thus nivolumab was also approved for

treating cHL patients in 2016 as the first PD-1 inhibitor (207).

Pembrolizumab was produced by grafting the variable

region sequences of a mouse mAb onto a homologous human

IgG4-k isotype framework containing a stabilizing S228P Fc

mutation to reduce the immunogenicity of the mouse variable

region (208). In a Phase I trial of patients with advanced

ipilimumab-refractory melanoma, 26% of patients in the

pembrolizumab group showed either CR or PR (209). Later in

a Phase III trial in patients with advanced melanoma, the RR was

significantly higher in pembrolizumab 10 mg/kg Q2W (33.7%)

and Q3W (32.9%), compared with ipilimumab (11.9%) (210). In

NSCLC patients (untreated, advanced), a Phase III trial showed

the median PFS was 10.3 months in pembrolizumab, compared

to 6.0 months in chemotherapy groups and the RR was 44.8%

and 27.8%, respectively (211). Pembrolizumab was well

tolerated, and the most common AEs reported were fatigue,

pruritus, and rash. Similar to nivolumab, pembrolizumab is

approved for treatment of patients with multiple cancer

types (202).

Cemiplimab is another human IgG4 antibody that is

approved for treating cutaneous squamous cell carcinoma
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(cSCC), basal cell carcinoma and certain types of NSCLC (212,

213). In a meta-analysis comparing the efficacy of cemiplimab

and pembrolizumab in advanced cSCC patients, cemiplimab

treatment was associated with better OS (HRs ranging from

0.21–0.52) and PFS (HRs ranging from 0.49–0.55) (214).

However, this conclusion should be interpreted with caution

as its results were from indirect comparison without evidence

from head-to-head clinical trials. The overall number of

comparator studies included in this meta-analysis was low,

and some studies enrolled small numbers of patients. While

data from nivolumab or pembrolizumab trials treating locally

advanced or metastatic vulvar SCC has been scarce, a phase III

trial (NCT03257267) investigated cemiplimab in patients with

recurrent/metastatic (RM) cervical cancer, who were resistant to

first-line platinum-based therapy. Results from the overall

population highlighted a 31% reduction in the risk of death as

well as a 25% reduction in disease progression and an ORR of

16% (n = 50) [6% (n = 19) in the chemotherapy-treated cohort].

Further, the median OS in the cemiplimab group was 12 months

compared to 8.8 months with chemotherapy, and the drug was

well tolerated (215). According to these data, cemiplimab was

granted priority review by the FDA for patients with RM cervical

cancer who have experienced disease progression while on or

after chemotherapy treatment regimes.

Besides the anti-PD-1 mAbs discussed here, a number of

other anti-PD-1 mAbs have been approved by China or the

European Union for treatment of different cancers, such as

sintilimab, camrelizumab, toripalimab, tislelizumab,

zimberelimab, prolgolimab, or dostarlimab; all of which have

shown promising therapeutic effects for various cancer related

indications (216).

In addition to PD-1 blocking agents, antibodies targeting

PD-L1 also have potent antitumor qualities. Currently, three

anti-PD-L1 antibodies, atezolizumab, avelumab, and

durvalumab, are approved by the FDA to treat several cancers

(217). Atezolizumab is a human IgG1 that has an N297A

mutation to eliminate the unwanted fragment crystallizable

(Fc)-mediated functions such as antibody-dependent

cytotoxicity (ADCC) by aglycosylation (218). Durvalumab also

contains a modified Fc region to prevent depletion of PD-L1

expressing T cells (217). In contrast, avelumab owns a native Fc

region which can bind to Fc-g receptors on NK cells to initiate

ADCC (217). Their approved indications, time and dosage are

summarised in Supplementary Table 1.
Non- CTLA4 and PD-1 ICIs

Despite the success of CTLA4 or PD-1/PD-L1 inhibition, a

majority of patients develop drug resistance. Thus, the

identification of novel and non-redundant pathways of

immune inhibition is important for advancing therapies that

promote anti-tumor immunity. In a phase III clinical trial of
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anti-Lag-3 (relatlimab, 160 mg Q4W) combined with nivolumab

(480 mg Q4W) for melanoma patients, patients receiving dual

Lag-3/PD-1 blockade showed an increased PFS than those

receiving nivolumab alone (median PFS 10.1 months vs 4.63

months, and PFS rates 47.7% vs 36.0% at 12 months). The

combined regimen was well tolerated and total AEs were not

significantly increased: 18.9% vs 9.7% grade 3/4 TRAEs and

14.6% vs 6.7% treatment discontinuations (219). Thus, this

fixed-dose combination trial laid the foundation for dual

inhibition apart from anti-CTLA4/anti-PD-1 pathways for

clinical use and was recently FDA approved for patients with

unresectable or metastatic melanoma (220).

Monalizumab is a humanized anti-NKG2A antibody that

has the ability to enhance the anti-tumor activity of NK cells

(221). In A20 tumor-bearing mice, combined treatment with

anti-NKG2A and anti-PD-L1 mAbs rescued 75% of the mice

from death compared to 40% in the anti-PD-L1 alone group

(221). Although monalizumab alone was tested in patients with

RM squamous cell carcinoma of the head and neck (SCCHN) in

a phase II trial (222), the study did not meet its primary endpoint

(no OR was observed) and it was terminated at the interim as

ineffective (222). The safety profile of monalizumab was

favorable, and it is now being tested in combination with

durvalumab in a biomarker-based study in RM SCCHN

patients. Cetuximab, an anti-EGFR mAb, promoted ADCC by

binding to CD16/FcgRIII (223), and the ADCC induced by

cetuximab was enhanced by monalizumab through NK cell

stimulation, providing greater anti-tumor activity than

cetuximab alone (221). A phase II trial of monalizumab plus

cetuximab in SCCHN patients showed a 31% ORR, with the

most common AEs being fatigue (17%), pyrexia (13%), and

headache (10%) (221). These results led to an ongoing phase III

(INTERLINK-1) trial for RM HNSCC patients who underwent

prior ICI- and platinum-based chemotherapy treatments.

Although monalizumab has not yet gained FDA approval, it

has shown benefit in enhancing the effects of other ICIs.

However, future studies are needed to carefully define the

suitable tumor types and to determine which type of

combination therapy provides the optimal benefits.

In several preclinical cancer models, TIM-3 blockade

displayed a slight advantage in terms of efficacy, especially

when combined with PD-1 blockade (60, 224). Several-in-

human Phase I/II trials have been initiated for numerous

TIM-3 antibodies in patients with solid tumors or lymphoma

(225). Most of them have been tested in conjunction with anti-

PD-1/PD-L1 mAbs. TSR-022 (TIM-3 antibody, Tesaro) plus

TSR-042 (anti-PD-1 antibody) demonstrated improved

antitumor immunity in NSCLC patients who failed to respond

to anti-PD-1 treatment alone previously (226). A SCLC patient

who received LY3321367 (a novel TIM-3 mAb) 1200 mg Q2W

as a single agent also achieved PR (227). All in all, these early

data suggest that blocking TIM-3 alone or together with PD-1/

PD-L1 is generally safe, well tolerated, and provides a slight
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advantage in efficacy compared to anti-PD-1/PD-L1

therapies alone.
Combinatorial use of immune
checkpoint blockade and other
drug therapies

Despite the PD-1/PD-L1 pathway being recognized as a key

checkpoint in the immune response of various cancer types,

most patients do not benefit from PD-1/PD-L1 pathway

blocking therapies due to primary or acquired resistance (228).

The immune system can paradoxically suppress or promote

cancer development and growth. Therefore, removing or

blocking the factors that promote immune tolerance and boost

anti-tumor immunity may facilitate better responses to anti-PD-

1/PD-L1 therapy. Based on this conception, combinations of

anti-PD-1/PD-L1 mAbs with chemotherapies, targeted

therapies, or CTLA4 blockade have been tested clinically and

some regimes become the standard of care for several cancer

types including metastatic melanoma, kidney, lung, head and

neck, triple negative breast (TNB), and liver cancers. Herein,

we will briefly discuss the progress that has made with

dual combination of ICIs and alternative therapeutic

regimes (Table 1).

Combinatorial targeting of the CTLA4 and PD-
1/PD-L1 pathways

Although CTLA4 and PD-1 are both immune checkpoints,

they can suppress the activation of T-cells in non-redundant

manners, and therefore dual blockade may work synergistically

to enhance anti-tumor immune responses. Neoadjuvant

ipilimumab plus nivolumab in patients with macroscopic stage

III melanoma showed a 2-year estimated recurrence-free

survival rate of 84% in all patients, a 97% estimated survival

rate in patients who achieved a pathologic response, and a 36%

estimated survival rate in non-responding patients (229). In

addition to melanoma, many neoadjuvant ipilimumab plus

nivolumab trials have been conducted in solid tumors, and

have demonstrated enhanced responses in advanced RCC

(230), microsatellite high/deficient mismatch repair colorectal

cancer (mCRCMSI-H/dMMR) (231), HCC (232), NSCLC [at 12

months (233) and 24 months (234)], and malignant pleural

mesothelioma (MPM) (235). Based on these clinical trials, the

FDA has approved the combination of ipilimumab and

nivolumab for the six cancer types mentioned above.

The combination of tremelimumab and durvalumab are

being tested in several phase 3 trials (236–248). Although

some results were unsatisfactory, this combination significantly

improved OS in patients with advanced, unresectable HCC and

NSCLC patients who had a high tumor mutation burden (TMB)

(248, 249), showing the importance of selecting appropriate

treatment regimens for specific patient subsets.
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Combinatorial use of anti-PD-1/PD-L1 and
other ICIs

Early in 2022, the FDA approved a fixed-dose combination

of nivolumab and relatlimab for the treatment of unresectable or

metastatic melanoma based on a phase II/III study

(NCT03470922) (220). Data from the clinical trial showed a

significantly superior PFS (median 10.2 months) in the

combination group over nivolumab alone (4.6 months,

p=0.0055). Combination therapy also reduced risk of death by

20% and improved OS rates versus nivolumab, although it did

not reach statistical significance. The outcomes of patients with

features often associated with poor prognosis such as high tumor

burden, visceral metastases, increased serum LDH levels, or

mucosal or acral melanoma, were improved in the dual-

inhibition group compared with nivolumab alone (220). The

safety profile of this combination was generally manageable and

no novel or unexpected safety concerns were noted, although

grade 3 or 4 TRAEs (such as fatigue, hepatitis, and adrenal

insufficiency) were more frequently noted in patients receiving

relatlimab-nivolumab than those receiving nivolumab (250).

However, the efficacy of combined therapy in real-world

patient needs to be further investigated since some populations

of patients are often excluded from clinical trials, including

patients with untreated or active brain metastases or with

certain melanoma subtypes (e.g., uveal melanoma).
Combinatorial use of anti-PD-1/PD-L1
blockade and chemotherapy

Chemotherapeutic drugs slow tumor growth primarily by

inhibiting DNA replication, interfering with cellular

metabolism, inducing cell cycle arrest, or inhibiting

microtubule assembly (251). In addition, some cytotoxic drugs

such as oxaliplatin and anthracyclines can induce cell death of

immunogenic cells, thereby stimulating anti-tumor immune

responses (252, 253). Based on these effects, chemotherapeutic

drugs may be suitable partners for combinatorial administration

with anti-PD-1/PD-L1 to achieve rapid and long-term control of

cancers. A large number of clinical trials have tested the efficacy

and safety of chemotherapy plus anti-PD-1/PD-L1, with FDA

approved combinations summarized in Supplementary Table 1.

In general, pembrolizumab combined with chemotherapy has

had great clinical benefit for a wide range of cancer indications,

followed by atezolizumab combined with chemotherapy.
Combinatorial use of anti-PD-1/PD-L1
blockade and angiogenesis inhibitors

The hypoxic tumor microenvironment (TME) leads to the

upregulation of vascular endothelial growth factor (VEGF) and

angiopoietin 2 (ANGPT2), which are key mediators in

angiogenesis (254). By inhibiting these pro-angiogenic

pathways, angiogenesis inhibitors can promote vascular

normalization, restore oxygenation within the typically
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hypoxic TME, improve perfusion and oxygenation in tumors,

and enhance the delivery of antitumor drugs (255, 256). Several

tyrosine kinase inhibitors that target the VEGF-signalling axis

have been approved in the United States and European Union,

including sorafenib, sunitinib, pazopanib, axitinib, lenvatinib,

and cabozantinib (257).

The FDA recently approved the use of nivolumab plus

cabozantinib, pembrolizumab/avelumab plus axitinib, and

pembrol izumab plus lenvat inib in advanced RCC;

pembrolizumab plus lenvatinib in advanced endometrial

carcinoma; atezolizumab plus bevacizumab (anti-VEGF mAb)

in unresectable or metastatic HCC; and atezolizumab plus

bevacizumab and chemotherapy in non-squamous and

metastatic NSCLC based on the results of these clinical trials

(258–264).
Adverse effects of ICIs
With the use of ICIs for cancer treatment rising, several side

effects associated with treatment have raised concerns.

Compared to treatment with standard chemotherapy or other

biologics, ICIs have a different toxicity profile and most of these

AEs are caused by aberrant immune responses against normal

self-tissues due to impaired self-tolerance from the loss of T-cell

inhibition, a phenomenon known as immune-related adverse

events (irAEs) (265). Three drugs (ipilimumab, nivolumab and

pembrolizumab) were reported to account for nearly 60% of

reported irAEs in patients receiving immune checkpoint

blockade therapies (266).

IrAEs can affect any organ system, most commonly the skin,

colon and endocrine systems (267). The onset time usually

ranges from a few days after treatment initiation to ≥1 year

after completion of treatment, with a median time of 2–16 weeks

(268–270). Most irAEs occurring soon after administration (3

weeks after initiation of therapy) of CTLA4 and PD-1 inhibitors

typically involves the skin (271). Serious and often life-

threatening AEs include pneumonitis and colitis (272). In

general, there are fewer AEs associated with anti-PD-1/PD-L1

drugs than CTLA4 inhibitors (273), potentially due to their

different mechanisms of action. CTLA4 is expressed on T cells

(including Tregs), and its activation primarily suppresses the

immune response in the early stages of T cell activation in

lymphoid tissues. As CTLA4 blockade of Tregs would also result

in the loss of immune suppression, CTLA4 inhibition would

result in widespread, nonspecific activation of immune response

that might explain the broad spectrum of AEs (274, 275). In

contrast, PD-1 inhibitors target T cells more specifically in the

tumor microenvironment and tissues, resulting in a more

restricted spectrum of AEs (274, 276).

Colitis and hypophysitis often occur in patients receiving

CTLA4 inhibitors, while less common AEs (pneumonitis and

thyroiditis) may occur in patients using drugs targeting PD-1/

PD-L1 pathway (271, 277, 278). A meta-analysis of the irAEs of
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individual ICIs revealed that the most common side-effects

associated with ipilimumab included dermatological,

gastrointestinal, and renal toxicities; and side-effects associated

with nivolumab often involved endocrine toxicities. Similarly,

side-effects associated with pembrolizumab included arthralgia,

pneumonitis, and hepatotoxicity; and irAEs associated with

atezolizumab included hypothyroidism (279). Most AEs

resolved without intervention or responded to appropriate

treatment (280). Severe irAEs usually require the treatment of

systemic glucocorticoids or other immunosuppressive

medicines, such as anti-TNF blockers.

The combination therapy such as dual PD-1/PD-L1 and

CTLA4 blockade can also lead to severe irAEs such as colitis,

pneumonitis, hypophysitis, and thyroiditis (267). Therefore, in

these combined regimens, the dose of ipilimumab is usually

reduced, which may impair the efficacy of the combination

therapy (281). In a preclinical study, prophylactic TNF

blockade reduced the toxicity of dual PD-1/PD-L1 and CTLA4

blocking antibodies (282). When ICIs are combined with

chemotherapies, the reported irAEs were consistent with those

of each drug (283, 284). In order to minimize the potential

toxicity of dual PD-1/PD-L1 and CTLA4 blockade, Dovedi et al.

developed a bispecific anti–PD-1/CTLA4 antibody, MEDI5752

(285, 286). The antibody could inhibit the signal transduction

through PD-1 axis and preferentially block CTLA4 on activated

PD-1+ T cells over PD-1- T cells, which means that CTLA4 is

inhibited only in T cell populations that have already been

exposed to the antigen. Therefore, the additive toxicity of this

bispecific antibody is reduced compared with traditional dual

blockers (285). In an ongoing in-human study in patients with

advanced solid tumors, one patient with gastric cancer in whom

five prior lines of chemotherapy had failed showed PR with 60%

tumor reduction, and another patient with treatment-naïve renal

clear cell carcinoma had PR with 68% tumor reduction. Both of

the patients had manageable toxicity (285). However, more

clinical studies are needed to determine the safety and efficacy

of this bispecific agent or other combination therapies.
Potential biomarkers of ICI response

We are now in an era of innovation in cancer

immunotherapy that is transforming the field of clinical

oncology. Sustained durable responses from ICIs provide new

hope as a treatment option for patients previously diagnosed

with terminal illnesses. However, only a small percentage of

tumors are responsive to these therapies and the overall response

rates are low. There might be several reasons for this (1). The

corresponding TMB. High TMB accompanied by elevated

neoantigen expression might induce cytotoxic responses

against tumor cells (287, 288). Thus tumors with low TMB

and poor immunogenicity such as prostate and pancreatic

cancers would be more resistant to ICIs (287) (2). Intratumor
frontiersin.org

https://doi.org/10.3389/fimmu.2022.982026
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2022.982026
heterogeneity may lead to the selection of subclones that lack

neoantigen expression and confer resistance to immune

therapies (289, 290) (3). Genetic instability such as alterations

in DNA-mismatch repair genes can increase immunogenicity

and enhance response to ICIs (291, 292). For example,

melanoma patients responded better to anti-PD-1 therapy

when their tumor cells were rich in mutations in BRCA2, a

gene important for homologous recombination in DNA repair

(293). Mutation of B2M was also reported to be associated with

initial resistance to anti PD-1 therapy in melanoma patients

(294, 295) (4). Potential biomarkers may predict the response to

ICIs. For example, the greater the number of tumor-infiltrating

lymphocytes (TIL) in the tumor microenvironment, the better

the anti-tumor effect (296); and tumors manifesting PD-L1

overexpression usually portend clinical outcomes superior to

those of ICI compared with those with lower levels of ligand

(297) (5). Complex interactions of immune cells and cytokines

in the TME. For example, Tregs promote self-tolerance by

inhibiting the function of Teff through inhibitory cytokines

and direct contacts (298), and in some cancers, the infiltration

of Tregs suggest an immunosuppressive environment (299).

Myeloid-derived suppressor cells (MDSCs) in the TME can

promote tumor growth and immune evasion (300, 301) (6).

Alterations to a patient’s gut microbiome have also been

associated with response or resistance to immune-checkpoint

blockade, although the exact mechanism remains unknown

(302) (7). The presence of tertiary lymphoid structures (TLS)

might indicate improved survival in some tumor types (303,

304). Higher densities of TLS were associated with increased

tumor-infiltrating CD8+ T cells density and also with an

activated and cytotoxic immune signature (304–306). The

existence of mature TLS was associated with improved

outcomes in cancer patients treated with ICIs, regardless of

their PD-L1 status and tumor-infiltrating CD8+ T-cell level after

adjustment (307).

There are also other factors that could influence the anti-

tumor effect of ICIs, including T-cell exhaustion (308),

chromatin remodeling (309), and upregulation of alternative

negative immune-checkpoint molecules (310). Resolving these

issues is posited to elevate the efficacy of ICIs to a higher level.

For example, personalized vaccines composed of an individual

patient’s tumor neoantigens might be taken up and presented by

activated APCs, leading to the activation of specific T cells

that target these neoantigens, and thereby enhancing the

efficacy of PD-1/PD-L1 inhibitors (311). Targeting other

immunomodulatory cells or cytokines such as MDSCs, anti-

TGF-b, and PI3Kg are currently in clinical trials (311, 312). Since
some results are not promising, we still need to advance our

overall understanding of the molecular biology of tumors.

In addition, it is necessary to explore how to better predict

patient responses to improve clinical outcomes. Although the

expression of PD-L1 on tumor cells, TIL status, and the

assessment of mutational burden are presently used markers
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(290, 313–317), they often have poor specificity and sensitivity.

Accurate prediction using biomarkers therefore remains a major

clinical challenge and necessitates further investigation due to

the complexity of antitumor immune responses and the

heterogeneity among patients and tumors.
Conclusions and perspective

The therapeutic landscape of oncology has been

revolutionized with the advent of immunotherapies targeting

immune checkpoints. A growing number of ICIs have been

approved to treat different cancers. They can be used alone or in

combination, or combined with other chemotherapies, vaccines

and tumor immunotherapies, etc. Although these ICIs can bring

survival benefits, their response rates and PFS are not high, and

they also have a variety of adverse effects. A better understanding

of the regulatory pathways of immune checkpoints will improve

the success and efficacy of ICIs.

With in-depth investigations into immunotherapy, more

novel immune checkpoints, regulators, and receptor-ligand

pathways between tumor and host immune cells will continue

to be discovered and further advance our understanding of the

mechanisms leading to tumor immune evasion or resistance.

Individualized therapeutic strategies based on a patient’s genetic

background may suppress overactive T-cell responses more

robustly, and thereby assist in patient selection. Further

research is urgently needed to elucidate the mechanisms

underlying tumor biology and immunotherapy, how one ICI

affects another, and the development of novel sequential

treatment options, so as to facilitate the successful use of ICIs

in treating cancer patients.
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