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Neuromuscular disorders (NMDs) represent an important subset of rare diseases associated
with elevated morbidity and mortality whose diagnosis can take years. Here we present a
novel approach using systems biology to produce functionally-coherent phenotype clusters
that provide insight into the cellular functions and phenotypic patterns underlying NMDs,
using the Human Phenotype Ontology as a common framework. Gene and phenotype
information was obtained for 424 NMDs in OMIM and 126 NMDs in Orphanet, and 335 and
216 phenotypes were identified as typical for NMDs, respectively. ‘Elevated serum creatine
kinase’was the most specific to NMDs, in agreement with the clinical test of elevated serum
creatinine kinase that is conducted on NMD patients. The approach to obtain co-occurring
NMD phenotypes was validated based on co-mention in PubMed abstracts. A total of 231
(OMIM) and 150 (Orphanet) clusters of highly connected co-occurrent NMD phenotypes
were obtained. In parallel, a tripartite network based on phenotypes, diseases and genes
was used to associate NMD phenotypes with functions, an approach also validated by
literature co-mention, with KEGG pathways showing proportionally higher overlap than
Gene Ontology and Reactome. Phenotype-function pairs were crossed with the co-
occurrent NMD phenotype clusters to obtain 40 (OMIM) and 72 (Orphanet) functionally
coherent phenotype clusters. As expected, many of these overlapped with known diseases
and confirmed existing knowledge. Other clusters revealed interesting new findings,
indicating informative phenotypes for differential diagnosis, providing deeper knowledge
of NMDs, and pointing towards specific cell dysfunction caused by pleiotropic genes. This
work is an example of reproducible research that i) can help better understand NMDs and
support their diagnosis by providing a new tool that exploits existing information to obtain
novel clusters of functionally-related phenotypes, and ii) takes us another step towards
personalised medicine for NMDs.
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1 INTRODUCTION

Neuromuscular disorders (NMDs) encompass a range of
pathologies affecting muscle function (Roy et al., 2015) that
can be caused by problems in spinal motor neurones, peripheral
nerves, muscles, and neuromuscular junctions. They affect
6–8 million people worldwide (Scotton et al., 2014) and lead
to elevated morbidity and mortality (Mccormack et al., 2013).
Many result from genomic mutations (Laing, 2012), although
they can also be caused by autoimmune disorders and infections
(Kraker and Zivković, 2011). Around half manifest during
childhood and classification is often based on the affected
area (Turakhia et al., 2013). Updated details of known
mutations associated with NMDs are published yearly
(Benarroch et al., 2019) (http://www.musclegenetable.fr/
index.html). Table 1 illustrates the main types of NMDs and
shows their high heterogeneity in terms of clinical
manifestation.

Although diagnosis of NMDs has been aided in recent years by
advances in whole-exome/genome sequencing (Brown and
Meloche, 2016), it still requires a high level of medical
specialisation, due to the high phenotypic and pathophysiology
diversity, and large number of causal genes (McDonald, 2012;
Roy et al., 2015). Moreover, given that individual NMDs tend to
be rare, it can be hard to find sufficient patients to conduct well-
powered studies. As such, a range of diagnostic tests (including
electrophysiology, tissue biopsies, and measuring levels of certain
enzymes such as elevated serum creatinine kinase), andmolecular
imaging (Thavorntanaburt et al., 2018) must be used, and
diagnosis can be slow (Spuler et al., 2011). There is no cure
for most NMDs but rather symptomatic treatments to delay
progression. Current research is focused on gene therapies and
investigating new medications (Scoto et al., 2018). However,
efforts are hampered by their etiological heterogeneity and
phenotype diversity.

Further work is needed to better understand how NMDs are
related in terms of phenotypic overlap and underlying genes
and mechanisms, in order to facilitate diagnosis and improve
treatment. Although not specific to NMDs, previous studies
have compared phenotypic profiles between different diseases
to build clusters of related phenotypes (Sirota et al., 2009;
Bagley et al., 2016); others have focused on phenotype-
similarity based on co-morbidity across multiple diseases
(Rzhetsky et al., 2007; Hidalgo et al., 2009). Such studies
enable us to identify patterns between groups of diseases and
phenotypes by showing how they tend to co-occur. This has
multiple potential uses for disease classification and diagnosis.
Further studies have investigated the connection between
clinical manifestations in disease by integrating gene-disease
and protein-protein interaction data (Yang et al., 2011; Hwang
et al., 2012; Zhou et al., 2014), as well as connecting proteins
with phenotypes through the use of phenotypic clusters based
on similarity and by predicting proteins associated with the
phenotypes through machine learning (Ren et al., 2020). These
studies lead the way towards explaining the co-occurrence of
phenotypic patterns across diseases through common
underlying mechanisms.

There are several resources that map known diseases to their
pathological phenotypes and associated genes. For example,
MENDELIAN (https://www.mendelian.co/es/) allows the
symptom-guided search of rare diseases. OMIM (Online
Mendelian Inheritance in Man) gathers data obtained via
curation of the biomedical literature (Hamosh, 2004;
Amberger et al., 2019) to provide a clinical synopsis of all
known Mendelian traits and disorders, describing genes, allelic
variants and pathological phenotypes. Orphanet (http://www.
orphadata.org and https://www.orpha.net/) is based on expert
knowledge, gathering information about rare diseases specifically,
with the aim of collecting and unifying the scarce knowledge
available for such disorders, including NMDs of genetic origin.
There are several tools that exploit these databases to associate
disease-related phenotypes with genes, including Phen2Gene
(Zhao et al., 2020), AMELIE (Birgmeier et al., 2020), Phevor
(Singleton et al., 2014), Phenolizer (Yang et al., 2015) and
Phenomizer (Köhler et al., 2009). Such studies require the use
of common phenotype terminology in such a way that makes the
information amenable to computational analysis (Hoehndorf
et al., 2015). The Human Phenotype Ontology (HPO, https://
hpo.jax.org/), provides such a standardised vocabulary to
describe phenotypic abnormalities associated with more than
7 800 diseases (Köhler et al., 2021).

However, few studies have combined phenotype and gene
information for groups of heterogeneous diseases to look for
related phenotypes shared across multiple disorders with
common underlying mechanisms. Such an approach was
recently conducted by our group using patients with largely
undiagnosed rare disorders (Díaz-Santiago et al., 2020), taking
advantage of the rare-disease database DECIPHER (Firth et al.,
2009). This work showed that by using biomedical networks and
systems medicine approaches our understanding of rare diseases
can be improved based on phenotype co-occurrence patterns. It
also showed the power of the re-analysis of existing data from
public databases to obtain new knowledge, something that is
recommended in the research community whenever possible
(Kovalevskaya et al., 2016; Tan et al., 2020). In this work, the
automated workflow PhenoClusters is used to investigate
phenotype co-occurrence across NMDs and produce
functionally coherent clusters of phenotypes with similar
underlying biological functions. This can help differentiate
diagnosis (‘elevated serum creatine kinase’ is the most
significant NMD phenotype) and provide a better
understanding of NMDs (many clusters gather typical
phenotypes and functions of NMDs) based on the specific cell
functions (unanticipated phenotypes such as ‘macroglossia’ and
‘arthogryposis’ point to cell dysfunctions involved in an NMD),
including those affected by pleiotropic/multi-functional genes.

2 MATERIALS AND METHODS

2.1 PhenoClusters Workflow
The PhenoClusters workflow described in this study is based on
OMIM, Orphanet and HPO data and is outlined in Figure 1. The
following sections describe its modules in more detail.
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2.1.1 Module A: NMD Datasets With Genes,
Phenotypes and Typical NMD Phenotypes
The OMIM and Orphanet databases (as of 15th-Nov-2019) were
used in parallel since they gather information from different
origins and with different goals. OMIM was searched with NMD
related keywords (muscular dystrophy, myopathy, myasthenic,
myasthenia, neuropathy, amyotrophic lateral sclerosis, spinal
muscular atrophy, spinal and bulbar muscular atrophy,
myotonia, periodic paralysis, myotonic dystrophy, mitochondrial
cytopathy, necrotizing encephalomyelopathy, mitochondrial DNA
depletion) to obtain a list of NMDs as complete as possible. Since
Orphanet organises diseases based on ORDO (Orphanet Rare
Disease Ontology) (Vasant et al., 2014), all diseases descendant of
the category neuromuscular diseases (Orphanet:68381) were
used. Hence, diseases in OMIM and Orphanet were assigned
to “All NMDs” or “All non-NMDs” (grey rectangles in Module A
of Figure 1 and Table 2). These were used to query HPO (v1.2;
15th-Nov-2019) to retain only those diseases (“Non-NMDs” and
“NMDs” in Table 2, corresponding to red rectangles in Module A
of Figure 1) for which both phenotype (white rectangles in
Module A of Figure 1) and gene (teal rectangles in Module A
of Figure 1) information was available.

Finally, phenotype frequencies between “NMDs” and “non-
NMDs” in Table 2 and Figure 1 were compared using Fisher’s
exact test (one-tail) with a threshold of P ≤ 0.05. A list of “Typical
NMD phenotypes” (Table 2 and Figure 1) was thus obtained.

2.1.2 Module B: Bipartite Network to Obtain
Phenotype Co-Occurrences
All diseases (“NMDs” and “non-NMDs”) as well as their
corresponding phenotypes were used to construct a standard
bipartite network (Pavlopoulos et al., 2018) of disease-phenotype
pairs to find common (co-occurring) phenotypes across diseases.
Phenotype co-occurrences (grey rectangle in Module B of
Figure 1) were extracted using NetAnalyzer (Rojano et al.,
2017) (see below). To recover only significant associations for

NMDs (pale magenta rectangle of “NMD co-occurring
phenotypes” in Module B of Figure 1), all phenotype-
phenotype co-occurrences were filtered using the “Typical
NMD phenotypes” obtained from Module A.

2.1.3 Module C: Tripartite Network to Obtain
Phenotype-Function Pairs
A tripartite network of all diseases (NMDs and non-NMDs), their
phenotypes and the affected genes was constructed to link, in first
instance, phenotypes with genes, based on their co-occurrence
across diseases. The network was constructed as described in
(Rojano et al., 2017) and then investigated using NetAnalyzer to
find significant phenotype-gene co-occurrences (grey rectangle in
Module C of Figure 1). Phenotype-gene pairs were converted into
phenotype-function pairs based on the biological process sub-
ontology from Gene Ontology (GO), KEGG (Kyoto
Encyclopaedia of Genes and Genomes) pathways and
Reactome pathways. To reveal those enriched functions
significantly associated with a given phenotype, all genes
associated with that phenotype were obtained and this gene
list was used for functional enrichment, based on over-
representation analysis (Yu et al., 2012). Association between
phenotypes and genes/functions was performed separately for
OMIM and Orphanet. This resulted in significant “phenotype-
function pairs” (pale cyan rectangle in bold in Module C of
Figure 1).

2.1.4 Module D: Functionally-Coherent Clusters of
Phenotypes in NMDs
The typical NMD phenotypes obtained in Module B were used to
detect communities of related, highly interconnected phenotypes
(grey rectangle at bottom centre of Figure 1) using the R package
linkcomm. Following the rationale proposed in (Díaz-Santiago
et al., 2020), phenotype communities for which at least 70% of the
constituent phenotypes shared the same functional annotations
obtained from the phenotype-function pairs of Module C were

TABLE 1 | Classification of NMDs including some examples.

Type Description Examples

Muscular
dystrophies (MDs)

Diseases causing weakness and degeneration of the skeletal muscles Myotonic dystrophy;facioscapulohumeral MD; EDMD; Duchenne MD;
Becker MD; LGMDs; congenital MDs

Myopathies Muscle diseases in which the muscle fibres do not function properly,
resulting in muscle hypotonia and weakness

Congenital myopathies; distal myopathies; endocrine myopathies;
mitochondrial myopathies; metabolic myopathies

Peripheral nerve
diseases

Diseases where motor and sensory nerves that connect the brain and
spinal cord to the rest of the body are affected, causing impaired
sensations, movements and muscular weakness

Charcot-Marie-Tooth disease; Giant axonal neuropathy

Motor neurone diseases Diseases where motor neurones progressively lose function, causing
the muscles they control to become weak and eventually non-
functional

Hereditary spastic paraplegias; spinal muscular atrophy; spinal-bulbar
muscular atrophy

Ion channel diseases Diseases associated with defects in ion channels, typically marked by
muscular weakness, absent muscle tone, or episodic muscle
paralysis

Andersen-Tawil syndrome; hyperkalemic periodic paralysis;
hypokalemic periodic paralysis; myotonia congenita; paramyotonia
congenita; potassium-aggravated myotonia

Neuromuscular junction
diseases

Neuromuscular junction disorders that result from the destruction,
malfunction or absence of one or more key proteins involved in the
transmission of signals between muscles and nerves

Congenital myasthenic syndromes; Lambert-Eaton myasthenic
syndrome; myasthenia gravis

EDMD: Emery-Dreifuss muscular dystrophy; LGMDs: limb girdle muscular dystrophies.
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retained. These were considered “functionally coherent clusters of
phenotypes in NMDs” (final dark rectangle in Module D of
Figure 1) and constitute the major result of the workflow. OMIM
clusters were tagged with “*”, while Orphanet clusters were tagged
with “#”.

2.2 PubMed Co-Mention to Validate the
Co-Occurrence Approach
Phenotypes co-occurring in NMDs from Module B and
phenotype-function pairs from Module C were investigated in

terms of co-mention in the scientific literature, by comparing how
many PubMed abstracts mention both terms in a given pair, to
how many abstracts mention only one of them. To do so, the
NCBI Entrez Programming Utilities API was used as previously
described (Díaz-Santiago et al., 2020). In brief, the different
textual descriptions for a given i) phenotype as described in
HPO, ii) GO term from the biological process vocabulary, iii)
KEGG pathways, and iv) Reactome pathways, were retrieved. All
these terms were queried separately in PubMed (the complete
database) to obtain the lists of PMIDs (PubMed identifiers) of
abstracts mentioning each given term. PMID lists were then

FIGURE 1 | Flowchart of the PhenoClusters workflow. Module (A): all diseases in OMIM and Orphanet were classified as “NMDs” or “non-NMDs”. HPO is then
queried with those disease, retaining only those diseases (red boxes) for which both a gene (teal boxes) and a phenotype (white boxes) are known. Module (B): a bipartite
network was constructed and analysed to obtain the typical “NMD co-occurring phenotypes” that tended to occur in NMDs. Module (C): a tripartite network enabled the
obtention of new, significant phenotype-gene pairs that were translated to “phenotype-function pairs”. Module (D): communities of highly related phenotypes were
filtered based on shared function to obtain the final set of “functionally coherent clusters of phenotypes in NMDs”. PubMed co-mention was used to assess the reliability
of the co-occurrence approach. Dark grey cylinders correspond to databases; yellow boxes are relevant analyses; inverted triangles indicate process merging; light grey
rectangles are intermediate sets of results; coloured rectangles with text in bold mark relevant results.
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compared for each pair of terms (phenotype-phenotype,
phenotype-GO, phenotype-KEGG or phenotype-Reactome)
using Fisher’s exact test to detect the significantly (P ≤ 0.05)
co-mentioned pairs. The numbers of significant pairs obtained
for each set was then compared to the number of significant pairs
obtained from random models, by calculating whether the
probability of finding as many significant pairs in the random
dataset was at least as high as that detected using real data.

2.3 Tissue Expression Testing
Genes in phenotype-gene associations were further analysed to
see if they were more likely to be expressed in neuronal or
muscular tissues, both highly relevant for NMDs. To do so,
expression location of genes paired with NMD phenotypes
was compared to that of genes paired with non-NMD
phenotypes. Expression locations were obtained from the
normal tissue expression dataset (normal_tissue.tsv.zip file) at
The Human Protein Atlas version 20.0 (Uhlén et al., 2015)
(http://www.proteinatlas.org). A gene was considered as
expressed in neuronal or muscular tissue if it showed medium
or high expression in one of the following tissue types:
cerebellum, cerebral cortex, hippocampus, caudate neuronal
cells, skeletal muscle or heart muscle. The relative proportions
of genes from each set that showed expression in neuronal or
muscular tissue were compared using Fisher’s exact test.

2.4 PhenoClusters Architecture and
Execution Details
All the above calculations have been implemented as an
automated workflow named PhenoClusters that is based on
PhenCo (Díaz-Santiago et al., 2020) and uses additional scripts
from (Jabato et al., 2020). The Picasso supercomputer of
University of Malaga was used for code implementation and
testing. It consists of an OpenSUSE LEAP 12.3 with Slurm queue
system and Infiniband network (54/40 Gbps) containing 216
nodes with Intel E5-2670 2.6 GHz cores for a total of 3 456 cores
and 22 TB of RAM. The code is available from GitHub at https://
github.com/Elenadisa/PhenoClusters. The main requirements
are Python 3, Ruby 2.4.1, R 4.0.0 or higher, Bioconductor 3.4
(Huber et al., 2015) or higher, scripts from sys_bio_lab (Jabato
et al., 2020), and Anaconda Individual edition (https://docs.

anaconda.com/anaconda/install/) as package and environment
manager. The workflow was managed using AutoFlow (Seoane
et al., 2016).

For co-occurrence analysis, PhenoClusters requires
NetAnalyzer (Rojano et al., 2017). Although many co-
occurrence methods are available, previous work suggests that
the hypergeometric index (HyI) (Fuxman Bass et al., 2013), which
can be considered analogous to a contingency table based
approach, is the most suitable for co-occurrence studies
(Rojano et al., 2017; Bueno et al., 2018). Hence, HyI ≥ 2 was
set to calculate associations within the layers of a network and
obtain phenotype-phenotype or phenotype-gene associations
that were considered significant co-occurrences (Díaz-Santiago
et al., 2020).

Functional enrichment was performed using the genes
associated with each phenotype. The Bioconductor package
clusterProfiler 3.18.0 (Yu et al., 2012) was used to extract the
biological process subontology fromGO and the KEGG pathways
and conduct over-representation analysis for these resources. The
Bioconductor package ReactomePA 1.34.0 (Yu and He, 2016) was
used to extract Reactome pathway data and perform over-
representation analysis for this resource. Both packages were
executed with default parameters (pvalueCutoff � 0.05,
pAdjustMethod � “BH”, universe, qvalueCutoff � 0.2,
minGSSize � 10, maxGSSize � 500) and only the assignments
with P ≤ 0.05 after Benjamini-Hochberg multiple testing
adjustment (Benjamini and Hochberg, 1995) were considered
significant.

Highly interconnected phenotype communities were obtained
using the R-CRAN package linkcomm 1.0.13 (Kalinka and
Tomancak, 2011) with default parameters for undirected
networks. R-CRAN packages required for graphical
representations and data management are ggplot2 3.3.2,
RColorBrewer 1.1.2, igraph 1.2.6, dplyr 1.0.2 and VennDiagram
1.6.20. The final, user-friendly HTML reports were produced
using R markdown packages rmarkdown 2.6, knitr 1.30 and
kableExtra 1.3.1.

Details about PhenoClusters execution can be found at https://
github.com/Elenadisa/PhenoClusters. As can be seen, diseases
from OMIM and Orphanet were considered separately in
different scripts. One run usually takes at least 6 h 45 min
without the co-mention verification, since literature analysis

TABLE 2 | Summary of diseases found in OMIM and Orphanet databases and the retained diseases, phenotypes and genes after the HPO query.

OMIM Orphanet

HPO HPO

Diseases Phenotypes Genes Diseases Phenotypes Genes

Total 26 943 - - 3 431 - -
All non-NMDs 26 387 - - 3 204 - -
All NMDs 556 - - 227 - -

Complete information in HPO 5189 6385 4015 2020 5430 2730
Non-NMDs 4765 6183 4015 1894 5312 2730
NMDs 424 1314 345 126 1007 222
Common 0 1112 345 0 889 222
Typical in NMDs - 335 0 - 216 0

“-”: not considered or not relevant for the analysis.
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takes a very long, heterogeneous amount of time depending on
the PubMed server overload. The resulting reports are named
omim_report.html (Supplementary Material S1) and orphanet_
report.html (Supplementary Material S2). To simplify cluster
inspection, they are also saved as independent files in omim_
clusters_report.html and orphanet_clusters_report.html including
the cluster ID, the phenotype graph together with HPO IDs and
descriptions, as well as the associated functions and the genes
identified within them. Clusters showing functional coherence
are given at the top of the file. For the sake of simplicity, “*” is
used to tag OMIM clusters, while Orphanet clusters are tagged by
“#”, as indicated in Module D.

3 RESULTS

3.1 Typical NMD Phenotypes Reflect
Neuromotor Impairments
Diseases in OMIM and Orphanet were classified as NMD or
non-NMD (Table 2). All downstream analysis treated the
resources separately (Supplementary Material S1, S2). The
total numbers of diseases in each resource for which genes
and pathological phenotype information was available are
shown in Table 2; full details can be found in
Supplementary Material S3, S4. It can be seen that relatively
few diseases were considered NMDs with known genes and
phenotypes in HPO (424 and 125 in OMIM and Orphanet,
respectively). Many phenotypes were shared by both NMDs and
non-NMDs (row “Common” in Table 2). Fisher’s exact test was
then performed to compare the relative occurrence of each
phenotype between disease groups to find those relatively
more common in NMDs. This resulted in 335 and 216
typical NMD phenotypes for OMIM and Orphanet. Overlap
between the two is shown in Figure 2, where Panels B and C
show that the proportion of common phenotypes in both sets
increases with decreasing cutoff p-values. This reinforces the
suitability of the co-occurrence approach to extract typical
NMD phenotypes.

The top over-represented phenotypes are shown in
Supplementary Material S5. The most significant in both
resources is ‘elevated serum creatine kinase’, which reflects the
important role of muscle decay in NMDs, given that the normal

location of this enzyme is the cytoplasm and mitochondria, not
serum (Moghadam-Kia et al., 2016). This result is reassuring with
respect to the approach of PhenoClusters, as elevated serum
creatine kinase is routinely tested when diagnosing NMDs as a
consequence of muscle injury (Thavorntanaburt et al., 2018).

The top phenotypes (Supplementary Material S5) seem to
be more indicative of muscular impairment than neuronal
dysfunction, pointing to proximal or distal muscular
weakness, both very typical in the clinical history of NMD
patients (McDonald, 2012; Mukherjee et al., 2019). Other
important phenotypes are related to specific diseases, such as
Duchenne/Becker muscular dystrophy (‘calf muscle
hypertrophy’, ‘Gowers sign’), where muscle hypertrophy can
exaggerate postural instability and joint contracture (Kornegay
et al., 2012). In contrast, the absence of ‘hypotonia’-related
phenotypes in this top ten list is notable. However, it should
be made clear that such phenotypes were also significantly over-
represented among NMDs, just not included in the top ten
(Supplementary Material S3, S4). To conclude, the
PhenoClusters approach to obtain statistically over-
represented phenotypes for NMDs extracts phenotypes
characteristic of these disorders.

3.2 Typical NMD Phenotypes Tend to
Co-Occur Across Diseases
Bipartite networks were created (one for OMIM diseases and
another for Orphanet), with nodes representing diseases and
phenotypes, and edges representing known relations in OMIM or
Orphanet respectively. The network was analysed to identify pairs
of typical NMD phenotypes that tend co-occur across diseases
(Module B in Figure 1). Around a quarter of all phenotype pairs
co-occurring in at least one disease showed significant co-
occurrence (27.61% in OMIM and 21.20% in Orphanet). Only
a small subset (≤1 %) of all phenotype pairs represent significant
co-occurrence between NMD phenotypes. However, this value
was far lower for the random sets of non-NMDphenotypes, being
almost negligible (Table 3), showing that pairs of NMD
phenotypes are far more likely to significantly co-occur across
multiple diseases than pairs of randomly selected phenotypes.
These results point to the presence of comorbidity between NMD
phenotypes.

FIGURE 2 | Common and distinct disease-associated HPO-phenotypes in OMIM and Orhpanet described in Table 2. (A): Distribution of the 6 385 HPO
phenotypes for OMIM and the 5 430 phenotypes for Orphanet for all NMDs and non-NMDs. (B): Distribution of the typical 335 OMIM and 216 Orphanet phenotypes
significantly (P <0.05) associated with NMDs. (C): Same as B, but using the increased significance (P <0.001) NMD-associated phenotypes (172 for OMIM and 110 for
Orphanet).
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3.3 Co-Occurring Phenotypes Tend to be
Co-Mentioned in Research Papers
As well as showing that the typical NMD phenotypes tended to
co-occur across diseases much more frequently than non-NMD
phenotypes, further validation was performed based on co-
mention analysis for each phenotype pair within PubMed
abstracts. The NMD phenotype pairs were shown to be co-
mentioned in the literature much more frequently than equal
numbers of pairs of randomly chosen non-NMD phenotypes
(Table 3). Fisher’s exact test analysis revealed that 1 173 OMIM
pairs and 689 Orphanet pairs (Supplementary Tables S1, S2)
were significantly co-mentioned. Conversely, for non-NMDs, the
numbers of significant pairs were much lower (333.08 ± 34.63 in
OMIM and 110.0 ± 13.47 in Orphanet, Supplementary Tables
S1, S2, respectively). These differences were also supported by the
distribution of their p-values (Supplementary Figures S1, S2)
that were clearly more dense at P ≤ 0.05 for NMDs than in non-
NMDs. These results demonstrate the validity of the
PhenoClusters approach to find pairs of NMD-related
phenotypes that tend to co-occur together.

3.4 Phenotype-Function Associations are
Robust
Associations between NMD phenotypes and genes and functions
were calculated in order to uncover potential underlying
mechanisms leading to the expression of a pathological
phenotype. This was done by initially connecting phenotypes
with genes using a tripartite network based approach (Module C
in Figure 1) by combining all disease-phenotype pairs and all
disease-gene pairs in OMIM and Orphanet separately. The
networks were then analysed in order to connect genes with
phenotypes based on co-occurrence across multiple diseases.

Using a threshold of HyI ≥ 2, 34 139 and 36 218 phenotype-
gene associations were obtained for OMIM and Orphanet,
respectively; from these, a total of 1 078 and 611 distinct
genes were associated with NMD phenotypes, respectively.
There was significant overlap between OMIM and Orphanet
in terms of genes associated with NMD phenotypes
(P < 2.2 × 10− 16, Fisher’s exact test using all phenotype-
associated genes as background). Moreover, a significantly
greater proportion of the NMD associated genes (84.41% in
OMIM, 86.73% in Orphanet) were shown to be expressed in
neuronal or muscle tissue than the non-NMD associated genes
(70.32% in OMIM. 72.88% in Orphanet), which is a statistically

significant difference (P � 2.2 × 10− 16 and P � 6.3 × 10− 11, for
OMIM and Orphanet, respectively). The same kind of test was
performed for the remaining non-relevant tissues, revealing in
this case that there was no significant difference between NMD
and non-NMD genes after a Fisher’s test (P > 0.9 for both
databases).

The genes associated with each phenotype were then used for
functional enrichment analysis using clusterprofiler and
ReactomePA to find over-represented (P ≤ 0.05) GO terms
(biological process ontology), and KEGG and Reactome
pathways (Table 4). As with gene-based analysis, there was
significant overlap between OMIM and Orphanet
(P < 2.2 × 10− 16, 6.842 × 10− 8, and 2.381 × 10− 14, respectively,
using Fisher’s exact test with all phenotype-associated
functions used as background). Supplementary Material S6
shows the overlap between the different resources using Venn
diagrams. Therefore, genes associated with NMD phenotypes are
significantly expressed in neuronal and muscle tissue, the most
relevant for NMDs, supporting the robustness of the phenotype-
function pairs obtained by PhenoClusters.

In spite of the robustness of these novel associations between
phenotypes and functions, additional validation was performed
based on co-mention analysis using PubMed abstracts as a sign
of relevance. Term co-occurrence of a given phenotype
alongside its corresponding function was looked for within
the same abstract (Supplementary Figures S1, S2). Only a
subset of the phenotype-function pairs obtained from the
network were significantly co-mentioned (“Confirmed”
columns in Table 5). However, this subset was several times
larger than the number of co-mentioned pairs within the
“random” pairs, and this difference was significant for all
comparisons (P < 2.2 × 10− 16) using Fisher’s exact test.
Consistent results were found for both OMIM and Orphanet:
respectively i) 5% and 4% of phenotype-GO pairs, ii) 10.5% and
9% of KEGG pairs, and iii) 4% and 3% of Reactome pairs were
significantly co-mentioned. As such, PhenoClusters (Figure 1)
appears to produce robust and reliable associations between
NMD phenotypes and functions based on phenotype and gene
co-occurrence across diseases. Even though only a small fraction
could be confirmed in PubMed abstracts, this was several times
more than would be expected by chance. The analysis showed
much higher co-mention for the KEGG associations as a
proportion of the total pairs. This supports our previous
work suggesting that information in KEGG is more reliable
for functional studies in certain situations (Luque-Baena et al.,
2014).

TABLE 3 | Numbers of pairs of co-occurring phenotypes for the OMIM and Orphanet databases. Significantly co-occurring pairs defined as having a hypergeometric index
value ≥2.

Category OMIM Orphanet

Total co-occurring phenotype pairs 455 379 467 899
Significant co-occurring pairs (HyI≥2) 125 720 99 193
Significant co-occurring pairs, NMD phenotypes 4 579 2 314
Significant co-occurring pairs, non-NMD phenotypesa 655 ± 46.4 173 ± 16.43

aThis result is expressed as the average ± SD for 100 sets of 335 randomly chosen OMIM non-NMD phenotypes and 216 random Orphanet non-NMD phenotypes; the non-NMD
phenotypes were selected to have a similar prevalence to the NMD phenotypes.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2021 | Volume 8 | Article 6350747

Díaz-Santiago et al. Co-Occurrence Clusters in Neuromuscular Disorders

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


3.5 Clusters Formed Between NMD
Phenotypes are Functionally Coherent
The pairs of significantly co-occurring NMD phenotypes (pale
magenta rectangle of Module B in Figure 1) were processed to
extract communities of highly interconnected phenotypes
(Module D in Figure 1). As summarised in Table 6, the
number of communities and average number of phenotypes
per community is higher using the modules based on NMD
phenotypes compared to non-NMDs. This indicates that the co-
occurring NMD phenotypes tend to form groups of related
phenotypes.

The phenotype communities were combined with the
phenotype-function associations obtained previously (light
cyan rectangle of Module C in Figure 1) to evaluate their
functional coherence. In total, 40 OMIM communities and 72
Orphanet communities (Table 6) showed coherent function,
defined as having shared functional enrichment for at least
70% of their constituent phenotypes; they constituted the

“functionally coherent clusters”. The complete list of
functionally coherent clusters is provided at the end of the
reports given in Supplementary Material S1, S2. In terms of
cluster properties, some have high interconnection (*193,
*138, *219, #115, #150), others show spoke-hub structure,
with a central node connected to a number of other nodes
which do not then connect to each other (clusters *58, *1, *3,
*4, *91, *26, #144, #2, #3, #21, #60, #22), and others have near
linear topology (*146, *85, #97). Compared to their
respective random non-NMD models Table 6, OMIM
presents a similar number of clusters, in stark contrast
with Orphanet, for which 5 times more clusters were
found. The coherence threshold must be decreased to 50%
to find a substantially different number of coherent clusters
in OMIM compared to the random datasets (Supplementary
Figure S1), This difference may be due to the OMIM clusters
being larger than for Orphanet (16.75 vs. 13.63 phenotypes,
respectively) or related to the nature of the diseases
considered NMDs in each dataset. These results support
the approach presented here in which the information
from the different databases is considered separately, with
Orphanet arguably providing more confident results with
respect to how well the typical NMD phenotypes in these
clusters represent realistic and useful groupings of co-
occurrent phenotypes that reflect co-morbidity with shared
underlying cellular functions.

3.6 Clinical Application I: Functionally
Coherent Clusters Help Direct Diagnosis
The functionally coherent clusters found by our approach
(Supplementary Material S1, S2) were inspected by clinicians

TABLE 4 | Numbers of genes and functions associated with phenotypes. Total: all genes in each dataset. “Any”: genes/functions associated with any phenotype. “Only
NMD”: genes/functions associated with a typical NMD phenotype.

Feature OMIM-based Orphanet-based OMIM-Orphanet overlap

Genes GOs KEGG Reac Genes GOs KEGG Reac Genes GOs KEGG Reac

Total 4015 - - - 2730 - - - 2452 - - -
Any 3870 6398 214 1397 2700 6281 209 1356 2374 6260 208 1348
Only NMD 1078 3747 142 821 611 3618 123 631 360 2666 102 451

“-”: not considered or relevant in the analysis.

TABLE 5 |Co-mention validation of phenotype-function pairs. “All” corresponds to all pairs including a function from Table 4. “Confirmed” refers to the number of these pairs
that were significantly co-mentioned in PubMed. “Random” refers to the number of pairs in a randomised list based on “All” pairs that were significantly co-mentioned in
PubMed; average of 100 random datasets ± SD is shown in this case.

Paired Phenotypes

function OMIM Orphanet

All Confirmed Randoma All Confirmed Randoma

GO 567 721 26 841 10 814 ± 80.5 535 389 21 863 9613 ± 93.4
KEGG 17 679 1 858 627 ± 22.1 17 104 1 556 628 ± 21.2
Reactome 82 826 3 278 1001 ± 166.3 78 409 2 402 816 ± 28.7

aThe randomised phenotype-function pair set was formed by shuffling the links between the pairs in each list, keeping the total number of links per phenotype/function unchanged. This
sampling procedure was repeated to produce 100 different replicas of randomised phenotype-function pairs. These sets were used in the corresponding Fisher’s exact tests.

TABLE 6 | Overview of communities (numbers and average sizes) generated with
the co-occurrent phenotype pairs for OMIM and Orphanet. Values shown for
communities obtained using pairs of NMD phenotypes and equal numbers of
randomly generated pairs of non-NMD phenotypes (average ± SD).

Community OMIM Orphanet

NMD non-NMDa NMD non-NMDa

Total number 231 94.98 ± 9.6 150 23.85 ± 4.293
Phenotypes per community 16.75 5.55 ± 0.6 13.63 4.15 ± 0.278
Functionally coherent clusters 40 41.21 ± 7.72 72 14.51 ± 3.189

a
‘non-NMD’ results correspond to the grouping obtained using the 100 random sets
described in Table 3.
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with expertise in paediatric neuromuscular diseases, finding
clusters with sets of expected phenotypes for NMDs, and
others with unexpected phenotypes. Clusters are grouped in
Table 7 based on the area in which the constituent phenotypes
manifest, followed by further subdivision by group of NMD.
Since they represent direct links between NMDs, their
symptoms and their underlying mechanisms, they could be
used for clinical diagnosis, by suggesting novel phenotypes to
test for, should a patient present other phenotypes within a
cluster. They also suggest potentially affected genes, useful for
directing genetic analysis, and potentially affected functions.
Although this analysis necessarily has a subjective aspect,
given that clinicians differ in training and experience, it is
remarkable that PhenoClusters produces functionally
coherent clusters easily recognised by clinicians. In
summary, there are multiple clusters that fit in with our
current knowledge about NMDs as shown in Table 7,

which reinforces once again the coherence of the results
generated by the presented approach.

3.7 Clinical Application II: Unexpected
Phenotypic Relationships in NMDs
Other clusters provided by PhenoClusters contained more
unusual groupings of phenotypes. Clinicians were surprised by
the presence of ‘macroglossia’ (HP:0000158) and ‘arthogryposis’
(HP:0002804) (Figure 3). Macroglossia is usually associated with
non-neuromuscular syndromes and in metabolic disorders such
as glycogen storage disease type II (Pompe disease),
mucopolysaccharidosis, oligosaccharidosis, mucolipidoses,
sphingolipidoses and galactosidosis. However, macroglossia
appeared as a hub node in the cluster *58 (Figure 3), strongly
associated with highly representative NMD phenotypes, such as
‘congenital muscular dystrophy’ and ‘achilles tendon contracture’.

TABLE 7 | Known associations between NMDs, clusters and underlying cell function, sorted by topological and pathophysiological levels.

Topological or pathophysiological level Group of NMD Cluster ID: main cell function involveda References

Peripheral nervous system
2nd motor neuron in the anterior horn of the
spinal cord

Spinal muscular atrophy *82: R-HSA-191859 snRNP Assembly Bäumer et al. (2009), Rossoll and
Bassell (2009)*82: R-HSA-194441 Metabolism of non-

coding RNA
Peripheral nerve Peripheral neuropathies *3: GO:0042552 – myelination Kamil et al. (2019), Zhou and

Notterpek (2016)*23: GO:0008366 – axon ensheathment
*67: GO:0042552 – myelination
*200: GO:0008366 – axon ensheathment
*47: GO:0008366 – axon ensheathment

Neuromuscular junction Myasthenic syndromes *97: GO:0007274 – neuromuscular synaptic
transmission

Rodríguez Cruz et al. (2018), Souza
et al. (2016)

*166: GO:0007271 – synaptic transmission,
cholinergic
*166: GO:0007528 – neuromuscular junction
development

Muscle Congenital or developmental
myopathies

*15: GO:0048747 –muscle fiber development Sarnat (1994), Cassandrini et al.
(2017)*6: GO:0051146 – striated muscle cell

differentiation
*6: GO:0048747 – muscle fiber development

Myotonic syndromes/
dystrophies

*193: GO:0003012 – muscle system process Meola and Cardani (2015)

Muscular dystrophies (non-
congenital)

#13: GO:0048747 – muscle fiber
development

Lovering et al. (2005)

#13: GO:0007517 – muscle organ
development
#112: GO:0007517 – muscle organ
development
#112: GO:0048747 – muscle fiber
development
#60: hsa05414 – dilated cardiomyopathy
#60: hsa05410 – hypertrophic
cardiomyopathy
#60: R-HSA-390522 – Striated Muscle
Contraction

Mitochondrial target
Mitochondrial genome maintenance Mitochondrial myopathy or

disease
*205: GO:0000002 – mitochondrial genome
maintenance

Pfeffer and Chinnery (2013)

Mitochondrial inheritance Mitochondrial myopathy or
disease

*48: GO:0006119 – oxidative phosphorylation
*48: GO:0022900 – electron transport chain
*48: GO:0045333 – cellular respiration

a
“*” tag for OMIM clusters. “#” tag for Orphanet clusters.
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This phenotype also appears in clusters *26, and *53, with
macroglossia occupying a peripheral position (Figure 3). In
macroglossia-containing clusters, 70%–80% of phenotypes show
significant enrichment for the “protein O-linked mannosylation”
biological process (GO:0035269), suggesting that the clinical
observation of macroglossia in patients with NMDs may prompt
practitioners to ask forO-linkedmannosylation tests. This contrasts
with cluster *211 (Supplementary Material S1) that also contains
congenital muscular dystrophy and ankle flexion contracture, as
well as ‘increased endomysial connective tissue’, but not
macroglossia, the functions for this cluster being ‘focal adhesion’
(hsa04510) and ‘ECM proteoglycans’ (R-HSA-3000178) but not
“protein O-linked mannosylation”. Hence, cluster *211 seems to be
related to processes involved in physically connecting (‘focal
adhesion’) cells to the extracellular matrix (‘ECM proteoglycans’).
Therefore, functionally related clusters may help to discriminate
disorders presenting with the macroglossia phenotype from other
muscular dystrophies caused by the disruption of other cell
functions. This finding shows the potential clinical utility of our
approach to identify phenotypes whose presence alongside a given
set of other phenotypes can indicate distinct underlying processes,
with implications for diagnosis and treatment.

‘Arthogryposis’ represents another phenotype of potential use
for NMD diagnosis (Figure 3). Arthrogryposis multiplex

congenita consists of contractures in multiple body areas
(Ambegaonkar et al., 2011). Cluster #117 shows a range of
clinical phenotypes with arthrogryposis as the central node
(Figure 3), while #59 and #88 are cases where this phenotype
appears in a peripheral position. Interestingly, cluster #115
(Supplementary Material S2) presents almost all phenotypes
observed in cluster #117, except arthogryposis. Hence, it can be
inferred that when arthogryposis is present, the pathways
associated with the majority of phenotypes in the cluster are
more specific to muscle fibre-related processes including
contraction dysfunction. However, when arthogryposis is
absent, the cluster phenotypes share additional pathways
related to cardio-myopathies and the regulation of
pseudopodium assembly, indicating a broader aetiology in the
genetic systems involved. As such, the presence or absence of
arthogryposis alongside other symptoms may help inform NMD
diagnosis and treatment, by indicating distinct underlying
processes.

3.8 Research and Clinical Application:
Clarifying Gene Involvement
The genes underlying the enriched functions were further
investigated. It was noted that some of them occur in multiple

FIGURE 3 | Example clusters including the unexpected but key macroglossia (HP:0000158) and arthrogryposis multiplex congenita (HP:0002804) phenotypes
identified in OMIM and Orphanet, respectively. These phenotypes are marked in red boxes. The relevance of these phenotypes for differential diagnosis is further
described in the text.
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clusters but are linked to different functions depending on the
affected phenotypes. For example, DAG1 is a pivotal component
of the dystrophin-glycoprotein complex and its dysfunction is
related to many muscular dystrophies, amongst other diseases
(Durbeej et al., 1998; Sciandra et al., 2003). It can be considered a
pleiotropic gene due to its role in glycosylation, a process which is
involved in myriad cellular functions. For NMDs, it seems that
glycosylation pathways are affected when DAG1 appears in
clusters *1, #29 and #113, in agreement with previous studies
(Barresi and Campbell, 2006). However, the involvement of
DAG1 in clusters *198, #2, #144, #112, #103, #118, #11, #89
and #63 (Supplementary Material S1, S2), appears to be related
to cardiomyopathy (Michele et al., 2009), while it is more focused
on ‘ECM proteoglycan components’ in cluster *211. Hence,
depending on the cluster in which DAG1 appears, it seems to
be involved in different pathways and functions, showing how
PhenoClusters facilitates the identification of genes with multiple
putative roles in NMDs depending on context.

Other clusters suggest that members of the solute carrier (SLC)
family can perform many roles within NMDs. SLCs mediate the
transport of a wide range of essential nutrients and metabolites,
performing many different functions in cells and tissues (Zhang
et al., 2019). SLC proteins were found to be associated with
nutrient supply in cluster #93; metabolic transformation in
clusters *85, *128, and *218; energy homeostasis in cluster
*138; oxidative stress in cluster *205; and neurological
regulation in clusters *97 and *166. These findings show how
the phenotypic components of the functionally coherent clusters
defined using PhenoClusters can point to the disruption of
different cell functions in relation to NMDs involving genes
from the SLC protein family.

4 DISCUSSION

4.1 PhenoClusters Generates Reproducible
Results and can be Extended to Other
Diseases
As the use of bioinformatics analysis becomes more routine
within biomedicine, it is crucial that published studies are
accompanied by workflows that allow the analysis to be
recorded and reported in a reproducible manner that can be
applied to similar datasets, if applicable. PhenoClusters is based on
phenotype co-occurrence, incorporating randomisation using
matched non-NMD phenotypes to generate control datasets
and including literature co-mention for validation of the
approach. It also uses known NMD-causing genes to provide
functional support to the co-occurring phenotypes. It produces a
HTML report that can be easily interpreted, following the
proposed Reproducible Research System (Mesirov, 2010;
Piccolo and Frampton, 2016). Although there are many
articles in the bioinformatics and systems biology fields
presenting modular software tools and packages, in many
cases code and data are not provided, despite the importance
of reproducible research in health sciences (Harris et al., 2018). As
it is essential for the present study, the necessary code to conduct

the workflow as described in Figure 1 has been provided in full.
Since the analysis starts by downloading diseases from OMIM
and Orphanet, it can be adapted to study phenotype/gene/
function co-occurrences in other diseases. PhenoClusters is
thus an example of the re-analysis of previously published
data using a new approach that produces new results and
confirms already known facts. As such, it has achieved the
goals of reproducible research (Mesirov, 2010; Piccolo and
Frampton, 2016) in the health sciences (Harris et al., 2018)
and exploiting already published results (Kovalevskaya et al.,
2016).

4.2 Network Analyses Should Rely on More
Than One Database
PhenoClusters did not mix data from OMIM and Orphanet
based on two main facts. The first one is that OMIM and
Orphanet are populated in different ways. For example, the
variability of the phenotypic series of OMIM was high, with
PS253600 (muscular dystrophy, limb-girdle, autosomal
recessive) presenting 28 entries, while PS118220 (Charcot-
Marie-Tooth disease) has 70 entries. The second one is that
OMIM was searched with somewhat arbitrary keywords, whilst
Orphanet NMDs were obtained based on its ontology structure.
As a result, there are more OMIM-specific phenotypes and less
Orphanet-specific phenotypes (Figure 2), and fewer
functionally coherent clusters in OMIM than in Orphanet
(Table 6). Besides these discrepancies, both databases
rendered a similar ratio of shared phenotype pairs (Table 3)
and the same top specific phenotype for NMDs, ‘elevated serum
creatine kinase’ (Supplementary Material S5), in agreement
with the importance of the creatine kinase test often used in
NMD diagnosis (Thavorntanaburt et al., 2018). Other common
phenotypes include muscle weakness, contractures, altered gait,
functional difficulties, and respiratory issues, in agreement with
recognised phenotypes for these diseases (Norwood et al.,
2009). However, the interesting phenotypes ‘macroglossia’
and ‘arthogryposis’ (Figure 3) emerged from database-
specific group of phenotypes. In any case, despite the
mentioned discrepancies, it is striking that, when the
phenotypes were associated with genes and functions, there
was high overlap (Table 4, Supplementary Material S6).
Therefore, we believe it is preferable to use the information
from OMIM and Orphanet separately and to compare to
contrast the results.

Co-mention validation in Table 5 revealed that even though
GO contains many terms to describe biological functions and
Reactome contains more pathway descriptions than KEGG, 2-
fold more phenotype-KEGG pathway pairs (percentage-wise)
were validated by literature co-mention. Moreover, when
comparing functional annotation between OMIM and
Orphanet, a proportionally larger overlap was found between
the two resources for KEGG pathways (Supplementary Material
S6). These findings supports our previous finding that KEGG
produces better bioinformatic models in genetic algorithms for
clinical diagnosis and prognosis (Luque-Baena et al., 2014), as
well as for the outcome of diseases (Urda et al., 2018). Hence,
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KEGG pathways should always be considered in functional
analyses.

4.3 Co-Occurrences and Associations
Appear Consistent
Due to the etiological heterogeneity of NMDs, each disease is
defined by its own set of clinical phenotypes. Phenotypes serve to
understand life and disease, but it is not always easy to translate
them to molecular mechanisms and vice versa (Yu et al., 2016).
Taking advantage of the huge amount of data available in
databases, bipartite networks (phenotype-disease, disease-gene)
have been used in biomedicine to model factors that influence
human diseases, explore their molecular complexity, reveal novel
molecular relationships and disease susceptibility genes, uncover
the biological significance of disease-associated mutations
(Pavlopoulos et al., 2018) and, more recently, discover
phenotype/disease clusters that can predict protein-phenotype
associations and reveal the underlying mechanisms that link
them (Ren et al., 2020). Bipartite gene-disease network
analysis was revolutionised with the diseasome and related
studies (Goh et al., 2007) which showed that genes associated
with similar disease phenotypes have a higher propensity to
interact physically with each other, forming distinct disease-
specific functional modules, and that disorders tend to form
clusters on the basis of similar pathophysiology (Oti and
Brunner, 2007). Other studies revealed that phenotypes and
gene co-regulation accurately predict unknown disease-gene
relations (Deelen et al., 2019) since genes causing a specific
disease or disease symptom often have similar molecular
functions or are involved in the same biological process or
pathway.

With all these facts in mind, the systems biology approach
implemented in PhenoClusters lies in bipartite and tripartite
networks (Modules B and C in Figure 1) to extract co-
occurring phenotypes in NMDs (Supplementary Material S3,
S4) that were consistent with i) clinical histories (Norwood et al.,
2009) (Table 7), ii) creatine kinase tests (Moghadam-Kia et al.,
2016; Thavorntanaburt et al., 2018) (Supplementary Material
S5), iii) proximal or distal muscular weakness (McDonald, 2012;
Mukherjee et al., 2019), and iv) postural instability and joint
contracture (Kornegay et al., 2012), as usually found in the
clinical history of NMD patients. The genes significantly
associated with NMDs by PhenoClusters were largely expressed
in neuronal and/or muscle-related tissues. For those that were
not, it is tempting to speculate that this is due to incomplete
information in The Human Protein Atlas, however it may also
indicate genes involved in development or other regulatory
processes that lead to the manifestation of the NMD
phenotypes. There is currently much interest in the
relationship between tissue/cell-type specificity and disease
progression (Hekselman and Yeger-Lotem, 2020). Functional
enrichment of the NMD-associated genes was used to provide
phenotype-function associations that were then combined with
the co-occurrent phenotype communities to produce functionally
coherent clusters. Gene-to-function translation reduced the
degrees of freedom of the analysis (several genes were required

to assign a significantly enriched function to a phenotype),
increasing statistical power and allowing the detection of
shared functions between phenotypes, even if the underlying
genes differ. The comparison of NMD-specific associations with
randomised data in Tables 3, 4, 6 demonstrates that the findings
were well-founded, as discussed below.

4.4 Co-Mention in Abstracts is a Valuable
Approach Validation
There is an absence of gold-standard datasets for phenotypic
relationships, particularly for rare diseases. As such, Ren et al.
(2020) applied systems biology methods to obtain phenotype/
disease clusters to seed machine learning models to predict
protein-phenotype associations without any objective
validation, assuming that they were relevant since authors can
find biological support for some of the clusters. Here, abstract co-
mention was proposed as a source of external validation for
phenotype-phenotype and phenotype-function pairing approach.
There were far fewer co-mentions for randomly paired terms
than for specific pairs (Table 5), even though only a small fraction
of phenotype-phenotype and phenotype-function pairs (< 10%
in the second) showed significant co-mention in the literature.
This is likely due to a combination of the following reasons: 1)
term relationship existed, although not yet described in literature;
2) the co-mention appeared in the main body, but not in
abstracts, of articles; 3) phenotypes were co-mentioned with
genes rather than functions; and 4) abstract co-mention
existed, but using slightly different terms or natural language
synonyms that escape the search. In any case, these issues also
apply to the randomised/non-NMD associations. In conclusion,
although the abstract co-mention is not perfect, the fact that the
amount of significant literature co-mention was much higher for
NMD-specific pairs than controls (Table 5) shows it to provide
suitable validation of the described approach and that real
relationships were found.

4.5 Functionally Related Clusters Provide
Insight Into NMDs
Many PhenoClusters clusters are in clear agreement with
current medical knowledge about the relationships between
phenotype comorbidity, NMDs, their pathophysiology and
genetic causes (Table 7). This serves to further support the
bioinformatic approach presented here. Regarding differential
diagnosis and treatment, the clusters for which the presence/
absence of a specific phenotype (Figure 3) could change the
nature of the associated functions are particularly interesting:
these have potential applications for differential diagnosis and
treatment selection. As such, ‘macroglossia’ can be used to
identify O-mannosylation alterations in a given NMD
dysfunction (Spence et al., 2002; Martin, 2007; Moore and
Winder, 2010; Dobson et al., 2013; Goody et al., 2015), while
‘arthogryposis’ (Ambegaonkar et al., 2011) may facilitate NMD
diagnosis in other situations, as its presence may indicates that
the disease is more specific to muscle fibres and contraction
dysfunction.
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The advantages of using functions rather than genes only is
particularly evident in the findings related to pleiotropic genes and
gene families involved in multiple functions. DAG1 is involved in
many diseases because it participates in glycosylation, whose
malfunction affects many cellular processes and can produce
several NMDs (Durbeej et al., 1998; Sciandra et al., 2003).
However, its specific involvement in the proteoglycan
components of the ECM seems to be related to cardiomyopathy.
Additionally, despite the clear relevance to health and disease of the
190 different SLCs foundmutated in human diseases, it is considered
an understudied family (César-Razquin et al., 2015). Functionally
related clusters from PhenoClusters reveal which particular role can
be putatively assigned to the present members of the SLC family.
Taken together, these results encourage future research lines directed
to systematically exploit co-occurrence and clusters of co-occurrent
phenotypes and functions in other diseases, as well as further study
of a number of presented clusters to obtain more details on the
functional implications.

4.6 Clinical Implications of Clusters
It has been shown that functionally coherent clusters have
potential utility in NMDs in terms of better understanding
clinical presentation in these diseases and obtaining clues as to
the underlying molecular genetic mechanisms. The former has
important implications for diagnosis and patient classification;
the latter will help researchers better understand these diseases
and search for potential new therapeutic targets.

Their potential for diagnosis is clear: given a patient that
presents a number of phenotypes corresponding to one of the
clusters, one can make inferences about other clinical phenotypes
that the patient may also suffer and that should be tested for. This
will help obtain a better clinical profile for the patient, aiding
diagnosis. Moreover, genes and functional terms associated with
the same cluster can be of use for guiding genetic diagnosis and
indicate further pathological examination. For example, multiple
clusters in the peripheral neuropathy group in Table 7 contain
phenotypes associated with myelination and axon ensheathment
related genes (Zhou and Notterpek, 2016; Kamil et al., 2019). As
such, given a patient showing phenotypes belonging to one of
these clusters, but for whom full diagnosis has not yet been
achieved, the clinician could refer the patient for the appropriate
assays, such as MRI, to look for demyelination and guide genetic
studies to focus on related genes.

A further clinical application is related to differential diagnosis
based on the phenotypic profile presented by a patient. The
presence/absence of phenotypes ‘macroglossia’ and ‘arthogryposis’
(Figure 3) has been thoroughly explained as examples of phenotypes
indicating differing underlying mechanisms that lead to disease
manifestation. However, many other examples undoubtedly exist
among the clusters presented in Supplementary Material S1, S2.

Nevertheless, there are several limitations in our bioinformatic
approach, largely related to the external databases from which the
information is acquired. OMIM and Orphanet are both
incomplete resources: there are undoubtedly multiple diseases
suffered by people around the world whose description and
genetic basis have not made their way into these databases.
This means that we are likely to miss co-occurrent phenotypes

as the diseases in which they co-occur have not yet been added.
Similarly, the resources used for functional enrichment analysis,
used to ascribe function to the NMD phenotypes in this study, are
also incomplete. We do not yet know the function of all genes in
the genome, and this has effects on the enrichment procedures.
As these resources improve, the potential of our workflow to find
clusters of co-occurrent phenotypes and fully characterise their
underlying basis will no doubt improve with them. However,
regarding the information of clusters, this approach can only
extract functions from genes known to be involved in NMDs, and
cannot hypothesise about other genes even if they are working in
the same pathway. And as already mentioned above, there is a
limitation concerning literature co-mention validation (Table 5),
as a higher proportion of confirmed pairs it would be desirable.

In conclusion, our approach and the resultant functionally
coherent clusters of NMD phenotypes (Supplementary Material
S1, S2) can 1) relate phenotype co-occurrence across NMDs to the
underlying genes and mechanisms involved in the NMD (or other
diseases); 2) provide clinicians with hints about clinical tests to
produce a more reliable diagnosis based on the presence or absence
of some specific phenotypes that have not yet been reported by the
patient or the clinician, in the comorbidity context of the patient; 3)
give researchers clues to perform new experiments to discover the
underlying biological mechanisms of a disease; and 4) help in
selecting optimal treatment. Therefore, PhenoClusters can be
considered a new tool for more accurate diagnosis and an
advance towards personalised medicine for NMDs.
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