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Abstract: Lymphoid enhancer-binding factor 1 (LEF1) is a key transcription factor mediating the
Wnt signaling pathway. LEF1 is a regulator that is closely associated with tumor malignancy and
is usually upregulated in cancers, including colonic adenocarcinoma. The underlying molecular
mechanisms of LEF1 regulation for colonic adenocarcinoma progression remain unknown. To explore
it, the LEF1 expression in caco2 cells was inhibited using an shRNA approach. The results showed
that downregulation of LEF1 inhibited the malignancy and motility associated microstructures, such
as polymerization of F-actin, β-tubulin, and Lamin B1 in caco2 cells. LEF1 inhibition suppressed
the expression of epithelial/endothelial-mesenchymal transition (EMT) relevant genes. Overall, the
current results demonstrated that LEF1 plays a pivotal role in maintaining the malignancy of colonic
adenocarcinoma by remodeling motility correlated microstructures and suppressing the expression
of EMT-relevant genes. Our study provided evidence of the roles LEF1 played in colonic adenocarci-
noma progression, and suggest LEF1 as a potential target for colonic adenocarcinoma therapy.

Keywords: LEF1; colonic cancer; cancer malignancy; cell microstructures; EMT

1. Introduction

Colonic adenocarcinoma is one of the leading causes of cancer-associated mortality
from the digestive system [1,2]. Due to improved diagnostic and therapeutic strategies, as
well as decreased societal risk factor exposure, the incidence rate of colonic adenocarci-
noma has been steadily decreasing. However, the survival rate for colonic adenocarcinoma
remains unsatisfactory [3]. The oncogenesis and progression of cancer involves multiple
genetic mutations. The molecular mechanisms and key regulators of colonic adenocar-
cinoma progression and metastasis remain elusive and need to be investigated. Further
exploration of the molecular mechanisms is essential to improve current diagnostic and
treatment strategies for colonic adenocarcinoma.

Lymphoid enhancer-binding factor 1 (LEF1) is a transcription factor primarily involved
in the canonical Wnt/β-catenin signaling pathway and is implicated in tumorigenesis
and progression of multiple neoplasms [4,5]. LEF1 belongs to the T cell Factor (TCF)/LEF
family of transcription factors [6], containing a highly conserved high mobility group
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(HMG) DNA-binding domain, and plays the role of nuclear effector in the Wnt/β catenin
signaling pathway [6,7]. In the absence of Wnt signaling, LEF1 is bound to Groucho-related
co-repressors, thus negatively regulating the expression of Wnt signaling genes [8]. Upon
stabilization from Wnt signals, β-catenin displaces the Groucho-related co-repressors and
promotes LEF1 transcription factor activity [5]. LEF1 is usually expressed in pre-B and T
cells [9,10] and plays an important role in embryogenesis and cancer development [11].
When expressed in normal cells, the LEF1 locus produces two protein isoforms from two
different RNA polymerase II promoters [12], which is a multifunctional protein that influ-
ences numerous cellular functions, such as regulation of Wnt signaling for cell proliferation,
apoptosis, motility, and gene transcription [13,14]. Abnormal expression of LEF1 has been
correlated with various tumors including colonic adenocarcinoma [15]. Particularly, while
the deficiency of its own transcriptional activation potential in cells, LEF1 can mediate the
expression of Wnt signaling genes via recruitment of β-catenin to the promoter of the target
genes. Numerous downstream target genes could be affected, such as c-myc, cyclin-D1,
survin, and VEGF [16,17].

Reorganization of the cell cytoskeleton is the basis for the development of cancer
progression [18]. The change of microstructure and morphology is one of the major core
features of tumor malignancy, and it includes the dramatic rearrangement of cytoskeletal
networks, polymerized actin/actomyosin contractility (both contribute to the enhanced
motility of cancer cells) [19,20]. Microfilaments and microtubules are critical cytoskeletal-
related microstructures (pseudopodia and filopodia) and are closely associated with cell
motility and cancer cell malignancy. The polymerization of F-actin and β-tubulin is essential
for the formation of microfilaments and microtubules [21].

Our study was designed to investigate the roles of LEF1 in regulating the cell behaviors
in colonic adenocarcinoma cells (caco2) using the RNAi method, and analyze the effects of
LEF1 expression on the proliferation, motility, and apoptosis of caco2 cells, as well as on the
development of the motility relevant microstructures, such as pseudopodia, filopodia, and
the polymerization of microfilaments and microtubules. The possible signaling pathway in
the process was also explored and discussed.

2. Results
2.1. LEF1 Was Excessively Expressed in Colonic Adenocarcinoma Tissues and Enhanced Colonic
Adenocarcinoma Progression

To demonstrate the potential functions of LEF1 in colonic adenocarcinoma, we used
IF and GEPIA to assess LEF1 expression levels between tumor tissues and paired nor-
mal tissues. LEF1 expression was distinctly (Figure 1A) and significantly (Figure 1B,C)
upregulated in colonic adenocarcinoma samples compared to normal colonic tissues.
Kaplan-Meier curves showed that LEF1 expression was negatively correlated with sur-
vival rates (Figure 1D,E). The results suggest that LEF1 might play a carcinogenic role in
colonic adenocarcinoma.

2.2. LEF1 Expression Was Efficiently Inhibited by Synthesized shRNA in Caco2 Cells

The LEF1 protein expressions highly increased in caco2 cells (p < 0.01) (Figure S1). To
select the most effective shRNA of LEF1, three shRNA constructs targeting LEF1 mRNA
were respectively transfected into caco2 cells, and shRNAscr was used as a control. The
results showed a high transfection efficiency (Figure 2A). The inhibition efficiency was
verified by Western blot analysis (Figure 2B). The results showed that three shRNAs
suppressed the LEF1 expression efficiently, and LEF1-shRNA3 was most effective (p < 0.01).

2.3. Downregulation of LEF1 Inhibited Cell Proliferation and Motility and Induced Apoptosis

To elucidate the function of LEF1 in caco2 cells, we used LEF1-shRNA3 to inhibit
endogenous LEF1 expression. The results of the MTT (Figure 3A) and colony formation
assays (Figure 3B,C) showed that cell growth was significantly suppressed in the shRNA3
group compared with the WT and shRNAscr groups (p < 0.01).
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Figure 1. LEF1 was overexpressed in colonic adenocarcinoma tissues and reinforced the progression of colonic adenocarci-
noma. (A): The expression level of LEF1 in colonic adenocarcinoma tissues was analyzed by IF staining (scale bar = 250 µm).
(B,C): The LEF1 mRNA expression level in tumor tissues and paired normal tissues (* p < 0.05). (D,E): Kaplan-Meier curves
showing the 10-year overall survival rate and disease free survival rate in patients with high LEF1 expression (n = 135) and
low LEF1 expression (n = 135). The data were analyzed by one-way ANOVA.

Active motility is an important malignant phenotype of cancer cells. The effect of
LEF1 inhibition on cell motility was evaluated by wound healing and Transwell assays. At
24 and 48 h following wound creation, cells in the shRNA3 group migrated significantly
slower than those in the WT and shRNAscr groups (p < 0.01) (Figure 3D,E). The results
of the Transwell assay (Figure 3F,G) showed that cells in the shRNA3 group had weaker
motility than cells in the WT and shRNAscr groups (p < 0.01).

The loss of mitochondrial transmembrane potential is a marker of early apoptosis.
MitoScene 633 staining showed that the inhibition of LEF1 potentially caused the mitochon-
drial membrane potential decrease in caco2 cells (Figure 3H). DNA damage is a trigger of
apoptosis and we assessed the extent of DNA damage following different treatments. As
shown in Figure 3I, cells in the shRNA3 group exhibited some degree of cellular retrac-
tion, while highly condensed chromatin, obvious cellular shrinkage, and abnormal shape
were observed.
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Figure 2. LEF1 expression was efficiently inhibited in caco2 cells. (A): The transfection efficiency
of shRNAscr detected using an inverted fluorescence microscope at 48 h post-transfection in caco2
cells (scale bar = 100 µm). (B): Western blot analysis revealed that the LEF1 expression levels of the
shRNA1, shRNA2 and shRNA3 groups were significantly inhibited compared with the WT and
shRNAscr groups. *** p < 0.01.
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Figure 3. Knockdown of LEF1 inhibited cell proliferation and motility and induced apopto-
sis in caco2 cells. (A): Cell viability determined by an MTT assay at 24, 48, 72, and 96 h af-
ter transfection. (B,C): The growth of caco2 cells analyzed by a colony formation assay post-
transfection (scale bar = 250 µm). (D,E): Wound healing assay at 0, 24, and 48 h after scratching
(scale bar = 200 µm). (F,G): Transwell assay at 60 h after transfection (scale bar = 100 µm). (H): Mito-
chondrial detection by MitoScene 633 staining (scale bar = 50 µm). (I): Nuclear detection by DAPI
staining (scale bar = 20 µm). *** p < 0.01.
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2.4. LEF1 Inhibition Remodeled Motility-Associated Microstructures

Assembly and disassembly of the F-actin bundle may significantly affect the motility,
invasion, and metastasis of cancer cells [22]. The results (Figure 4A) showed that F-actin
was mainly bundled along the inner surface of the cell membrane in the WT and shRNAscr
groups, while in the shRNA3 group, the F-actin bundle was inhibited and disintegrated.
These results indicated that the downregulation of LEF1 inhibited the polymerization of
F-actin in caco2 cells. Microtubules are the critical structures to maintain cell proliferation
and motility and are closely associated with the maintenance of cancer cell malignancy. The
results (Figure 4B) indicate that the polymerization of β-tubulin was distinctly inhibited in
the shRNA3 group. The nuclear envelope serves as an important part of the malignancy
maintenance of cancer cells, and the Lamin family is an important component of the nuclear
envelope [23]. Lamin B is the type V intermediate filament that is closely associated with
cell proliferation [24]. Our results show that the inhibition of LEF1 visibly caused the
Lamin B1 expression to be reduced (Figure 4C).

Figure 4. Cell microstructures were remodeled by the inhibition of LEF1 in caco2 cells. (A,B): Immunofluorescence anal-
ysis revealed that F-actin and β-tubulin bundles were distinctly disassembled in the shRNA3 group (scale bar = 25 µm).
(C): Immunofluorescence analysis revealed that Lamin B1 expression was visibly decreased in the shRNA3 group
(scale bar = 10 µm). (D): Coomassie brilliant blue staining (scale bar = 50 µm). (E): Scanning electron microscopy images
(scale bar = 10 µm). (F): Transmission electron microscopy images (scale bar = 2 µm).
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Lamellipodia and filopodia are key structures that maintain cancer cell motility and
are closely related to cancer invasion and metastasis. The results (Figure 4D,E) showed that
the development of cell lamellipodia and filopodia in the shRNA3 group were distinctly
inhibited. Particularly, the filopodia were localized as discrete peripheral fibers-thin clusters
in the interfered group compared to longer, denser, and continuous dorsal stress fibers in
control groups. Most cellular events, such as metabolic pathways, including glycolysis and
cell division, occur in the cytoplasm. The results (Figure 4F) showed that the cytosol had a
bubble-like morphology in the shRNA3 group. The bubble-like morphology suggests that
some native components in the cytosol were lost, which may cause an abnormal state of
cellular activities.

2.5. Downregulation of LEF1 Suppressed the Expression of EMT Relevant Genes in Caco2 Cells

The effect of LEF1 inhibition on EMT was evaluated by Western blot analysis. The
results (Figure 5) indicated that the expression level of E-cadherin significantly increased,
while the vimentin and snail expression levels significantly decreased in the shRNA3 group
(p < 0.01).

Figure 5. Knockdown of LEF1 inhibited the expression of EMT-relevant genes in caco2 cells.
(A,B): EMT-associated gene expression analysis by Western blot. *** p < 0.01.

3. Discussion

LEF1 is generally excessively expressed in malignant tumors and may play a role
in tumor growth and metastasis [5]. LEF1 knockdown in glioblastoma multiforme cells
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inhibits invasion, migration, proliferation, and the self-renewal potential of stem-like
cells [25]. Myc induces the expression of LEF1 to activate the Wnt pathway in colon
cancer [17]. LSD1 (lysine-specific demethylase 1) promotes bladder cancer progression
by upregulating LEF1 and enhancing EMT [9]. LEF1 expression may contribute to cancer
development [26–28], but there is a lack of evidence to support malignant phenotype
changes, especially motility-associated microstructure changes, such as remodeling of
lamellipodia/filopodia based on F-actin/β-tubulin polymerization.

The polymerization of F-actin and β-tubulin is essential for the formation of micro-
filaments and microtubules. These are the crucial cytoskeletal related microstructures
(lamellipodia and filopodia) and are closely associated with cell motility and cancer ma-
lignancy [19]. The rearrangement of cytoskeletal networks contributes to the enhanced
motility of cancer cells [21]. In this study, the changed cytoskeletal structures caused by
LEF1 knockdown are probably related to the inhibition of cell motility. The analysis of
F-actin and β-tubulin showed that downregulation of LEF1 inhibited the polymerization
of F-actin and β-tubulin (Figure 4A,B). These results imply that knockdown of LEF1 in-
hibits microfilaments/microtubules assembly for microtentacle formation in caco2 cells,
sustaining their proliferation and metastatic potential. Our results revealed that down-
regulation of LEF1 inhibited the development of lamellipodia/filopodia in caco2 cells
(Figure 4D,E). These findings indicate that LEF1 expression is important for maintaining
enhanced cell motility for the invasion and metastasis of caco2 cells, and it may be crucial
to the malignancy of caco2 cells.

Strong viability and growth are essential malignant phenotypes of cancer cells. Muta-
tions that lead to constitutive activation of the Wnt pathway drive colorectal cancer [17].
Activation of the Wnt pathway ultimately leads to the nuclear translocation of β-catenin,
which binds to TCF/LEF factors to promote transcription of genes required for growth [5].
LEF1 is a transcription factor involved in the Wnt/β-catenin signaling pathway and is
implicated in oncogenesis and progression of cancer [6]. LEF1 has been reported as an
oncogene in tumors and may play a role in cancer invasion and metastasis [5]. In this study,
we constructed LEF1 shRNA expression plasmids to estimate the roles of LEF1 in regulating
the cell behaviors in colonic adenocarcinoma cells. The results demonstrated that downreg-
ulation of LEF1 inhibited the proliferation, motility, and induced apoptosis of caco2 cells
(Figure 3). Lamin B1 deficiency alters the chromatin distribution and chromonema location
in the nucleus in tumorigenesis [29]. Our results indicate that downregulated LEF1 impairs
Lamin B1 expression and Lamin B1 plays a role in the oncogenesis and development of
colonic adenocarcinoma (Figure 4C).

EMT is known to play an important role in tumorigenesis and metastasis. Cells
undergoing EMT display decreased expression level of epithelial genes [such as E-cadherin,
ZO-1, and occludin) and increased expression level of mesenchymal genes (such as N-
cadherin, vimentin, and fibronectin) [30]. Several key signaling pathways, including TGFβ,
Wnt, Notch, and Hedgehog, are known to be involved in EMT [31]. The activation of
Wnt signaling inhibits the destruction complex containing glycogen synthase kinase 3 beta
(GSK-3β) through Disheveled (DSH), facilitating β-catenin to enter the nucleus and activate
the snail transcription [32]. LEF1 belongs to the TCF/LEF family of transcription factors
and plays the role of nuclear effector in the Wnt/β-catenin signaling pathway [6,7]. We
suspect that LEF1 is closely related to EMT. Our results revealed that E-cadherin expression
level was increased, and the expression levels of vimentin and snail were suppressed by
LEF1 inhibition in caco2 cells (Figure 5).

Our results described above support that LEF1 may play important roles during the
oncogenesis and development of colonic adenocarcinoma. LEF-1 is one of the DNA-binding
transcription factors in the Wnt signaling pathway, recruiting β-catenin to the transcription
of Wnt target genes. Wnt signal transduction plays a key role during the oncogenesis and
development of cancers, especially cancers from the digestive system [33]. Wnt signal was
reported to take a crossing talk with Notch signal transduction [34–36]. Notch signal is
aberrantly activated in various human cancers [37,38], and its inhibition can decrease the
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proliferation and induce apoptosis of colon cancer cells [39]. VEGF-A/Notch signaling
regulates the formation of functional podosomes of endothelial cells [40]. Combining other
reports with our results in the current study, LEF1 may enhance the malignancy of colonic
adenocarcinoma cells intermediated by the activated Wnt/Notch signal crossing talk. The
roles LEF1 plays in the merged signal regulation is schematically shown in Figure 6.

Figure 6. The signaling pathway of LEF1 in tumor progression.

4. Materials and Methods
4.1. Colonic Adenocarcinoma Tissues

Surgical specimens were obtained from Xijing Hospital (Xi’an, China). The trial was
approved by the Human Research Ethics Committee of Shaanxi Normal University (Project
ID: 2021-061; Approval Date: 9 March 2021).

4.2. Immunofluorescence (IF)

Tissue specimens were sectioned at a thickness of 4 µm. The sections were deparaf-
finized with xylene and hydrated using a graded series of alcohol, and antigen retrieval
and blocking were performed. The sections were incubated with primary antibody LEF1
(ab53293, Abcam, diluted 1/50 dilution) at 4 ◦C overnight, followed by incubation with
a secondary antibody. The sections were incubated with 4′,6-diamidino-2-phenylindole
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(DAPI, Roche, Frankfurt, Germany) for 10 min for nuclear staining. Finally, the sections
were imaged under a laser scanning confocal microscope (TCS SP5, Leica, Jen, Germany).

4.3. GEPIA Data Collection

Publicly available colonic adenocarcinoma data were obtained from the Gene Expres-
sion Profiling Interactive Analysis (GEPIA) database (http://gepia.cancer-pku.cn (accessed
on 2 August 2021)). mRNA expression data were obtained from 624 colonic tumors and
normal samples.

4.4. shRNA Plasmid Construction

The shRNAs targeting LEF1 were designated as described in Table 1. The shRNA
expression plasmids, pU6H1-GFP-shLEF1-1, -2, -3, and controls were constructed by
Biomics Biotechnologies Co. Ltd. (Nantong, China). Consequently, the pU6H1-GFP-
shLEF1-3 (shRNA3) plasmid was used in subsequent experiments due to its efficiency.

Table 1. Sequences of shRNAs targeting LEF1.

shRNAs Sequences (5′-3′)

shRNA1 GCGATTTAGCTGACATCAA
shRNA2 AGATGTCAACTCCAAACAA
shRNA3 GTTGCTGAGTGTACTCTAA

shRNAscr TTCTCCGAACGTGTCACGT

4.5. Cell Culture and Transfection

The caco2 human colonic adenocarcinoma cell line was purchased from ATCC (Rockville,
MD, USA) and cultured in DMEM medium containing 10% fetal bovine serum (FBS) at 37 ◦C
with 5% CO2. Cells in the exponential phase were used for each experiment. The cells
were transfected with S-TranG (Aosheng, Nanjing, China) following the manufacturer’s
instructions.

4.6. Western Blot

Total proteins were extracted from transfected cells using RIPA lysis buffer contain-
ing protease inhibitors (Roche, Indianapolis, IN, USA). The protein concentration of the
lysate was quantified using a bicinchoninic acid protein assay (BCA). Equal amounts of
proteins were separated on a 7–10% SDS-PAGE gel and subsequently transferred to a
methanol-activated NC membrane (Whatman, Dassel, Germany). The membranes were
blocked with 5% non-fat milk in Tris-buffered saline with Tween-20 (TBST) for 1 h at room
temperature and then incubated overnight with the following antibodies: LEF1 (ab53293,
Abcam, 1/5000 dilution), E-cadherin (Cell Signaling Technology, 1/1000 dilution), vimentin
(GTX100619, GeneTex, 1/5000 dilution), Snail (GTX100754, GeneTex, 1/500 dilution) and
GAPDH (ab181602, Abcam, 1/10,000 dilution). GAPDH was used as a loading control.
Then, the membranes were incubated with HRP-conjugated anti-rabbit secondary antibod-
ies (Biosynthesis Biotech, Beijing, China). Next, the membranes were imaged using an ECL
Kit (Pierce, Shanghai, China) following the manufacturer’s instructions.

4.7. MTT Assay

Tumor cells were seeded into 96-well plates at a density of 5000 cells/well in
200 µL/well complete medium. After transfection, MTT (3-(4,5-dimethyl-2-thiazolyl)-
2,5-diphenyl-2-H-tetrazolium bromide) working buffer was added to the wells. The cells
were incubated at 37 ◦C for 5 h, and the supernatant was discarded and replaced with
150 µL dimethyl sulfoxide (DMSO) to solubilize the converted dye. Cell viability was ana-
lyzed at a wavelength of 562 nm on an ELISA reader (Bio-Tek ELX800, BioTek Instruments,
Inc., Winooski, VT, USA). DMSO-treated cells were used as a control.

http://gepia.cancer-pku.cn
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4.8. Colony Formation Assay

At 48 h post-transfection, cells were harvested and reseeded in 6-well plates at a
density of 1000 cells/well. After 2 weeks of growth, colonies were stained with 0.1% crystal
violet, counted, and normalized to the control group.

4.9. Wound Healing Assay

Cell motility was assessed using the scratch wound healing method. Transfected cells
were scratched using a tip after the cells grew as a single layer with 90% confluence. Using
the area of the scratch as the cell motility parameter, the results were quantified using the
online software ImageJ.

4.10. Transwell Assay

The cell culture and transfection methods were the same as the abovementioned
methods. Cells were transferred into the top chamber (2× 104 cells/well) containing 600 µL
DMEM medium without FBS, and the bottom chamber was filled with DMEM medium
supplemented with 10% FBS. After incubation for 16 h, non-migrated cells were removed
from the upper surface of the top section by scraping. Migrated cells attached on the other
side of the top section of the membrane were stained with 0.1% crystal violet, imaged, and
counted (five random fields of view per well) using an inverted microscope (Leica, Jena,
Germany). The total number of cells attached on the other side of the top section of the
membrane was used to evaluate the motility of the cells with different treatments.

4.11. Apoptotic Morphology

Cells were cultured and transfected using the abovementioned procedures. At 48 h
post-transfection, the cells were incubated in DMEM with 100 nM MitoScene 633 (US
Everbright Inc., Suzhou, China) or DAPI diluted in blocking buffer (1:500 dilution) at 37 ◦C
for 30 min. The supernatant was discarded and replaced with PBS. Finally, the cells were
imaged under an inverted fluorescence microscope (Leica, Jena, Germany).

4.12. Staining of the Microstructure-Associated Proteins

The methods for cell culture on a glass cover slip and transfection were the same
as the abovementioned methods. The cover slips were incubated in 2% BSA for 1 h and
then incubated with rhodamine-labeled phalloidin (1:200 dilution) and rabbit anti-human
β-tubulin (1:50 dilution) or Lamin B1 (1:50 dilution) overnight at 4 ◦C. After 3 washes
in PBS, the cover slips were incubated with a Cy3-labeled goat anti-rabbit antibody for
β-tubulin and Lamin B1 staining and with DAPI for 10 min for nuclear staining. Finally,
the cover slips were imaged under a laser scanning confocal microscope.

4.13. Coomassie Brilliant Blue Staining

Cells were cultured and transfected using the abovementioned procedures and fixed
in 4% paraformaldehyde. The fixed cells were permeabilized with 0.1% Triton X-100 and
then stained with 0.2% Coomassie brilliant blue R-250 (Dingguo, Xi’an, China) for 45 min
at room temperature. The cover slips were imaged under an inverted microscope.

4.14. Observation of the Microstructural Changes

Cells were cultured on glass cover slips for 72 h after transfection. The cover slips
were washed using PBS, fixed in 2.5% glutaraldehyde (Sigma, St. Louis, NY, USA) for 1 h
at 4 ◦C and dehydrated in a gradient of diluted ethanol solutions (30, 50, 70, 80, 90, 95,
and 100%). Finally, the cover slips were imaged under a scanning electron microscope
(Quanta2000, Philips-FEI, Hillsboro, OR, USA) and a transmission electron microscope
(JEM-2100, Tokyo, Japan).
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4.15. Statistical Analysis

SPSS22.0 statistics software was used for all statistical analyses. Each grouped experi-
ment was repeated 3 times and the averaged data from each group were compared with the
other groups. The data are presented as the mean ± SD. Statistical analyses were carried
out using ANOVA followed by the Dunnett’s post hoc test. Differences were considered
statistically significant at p < 0.05.

5. Conclusions

In summary, our study has demonstrated that LEF1 enhances the motility of colonic
adenocarcinoma cells via remodeling of lamellipodia/filopodia and the polymerization of
F-actin/β-tubulin. LEF1 maintains the viability and growth of colonic adenocarcinoma
cells through increasing proliferation, Lamin B1 expression, and decreasing apoptosis.
In addition, LEF1 is closely related to EMT. These findings further support LEF1 as a
potentiator and potential therapeutic target for colonic adenocarcinoma. LEF1 can be
considered a novel biomarker for the evaluation and therapy of colonic adenocarcinoma.
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