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Abstract

Reliable attenuation and scatter compensation (ASC) is a pre-requisite for quantification and 

beneficial for visual interpretation tasks in SPECT. In this paper, we develop a reconstruction 

method that uses the entire SPECT emission data, i.e. data in both the photopeak and scatter 

windows, acquired in list-mode format and including the energy attribute of the detected photon, 

to perform ASC. We implemented a GPU-based version of this method using an ordered subsets 

expectation maximization (OSEM) algorithm. The method was objectively evaluated using 

realistic simulation studies on the task of estimating uptake in the striatal regions of the brain in a 

2-D dopamine transporter (DaT)-scan SPECT study. We observed that inclusion of data from the 

scatter window and using list-mode data yielded improved quantification compared to using data 

only from the photopeak window or using binned data. These results motivate further development 

of list-mode-based ASC methods that include scatter-window data for SPECT.

Index Terms—

SPECT; Reconstruction; Attenuation and scatter compensation; List-mode data; Brain; 
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1. INTRODUCTION

Single-photon emission computed tomography (SPECT) has an important role in the 

diagnosis and therapy of several diseases such as Parkinson’s disease, coronary artery 

disease, and many cancers. A major image-degrading process in SPECT is the scatter and 

resultant attenuation of photons as they traverse through the tissue before they reach the 

detector. Reliable attenuation and scatter compensation (ASC) is a pre-requisite for 

quantification tasks, such as quantifying biomarkers from SPECT images [1] or performing 

SPECT-based dosimetry [2, 3]. Also, ASC has been observed to be beneficial for visual 

interpretation tasks [4]. Thus, there is an important need for reliable ASC methods.

In this paper, we focus on developing ASC methods when an attenuation map is available 

from a transmission scan, typically a CT scan. Several such methods have been developed 

[5, 6, 7, 8]. However, typically existing methods do not use the precise value of the energy 

attribute of the detected photon, as is available when the data are stored in list-mode (LM) 

format. Using this precise value provides an avenue to improve the ASC. This was a major 

motivation for ASC approaches based on extensive spectral analysis and modeling [9, 10]. 
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Prior work in PET imaging has shown that using LM data and incorporating energy 

information led to improved ASC [11, 12]. More recently, we observed that SPECT LM 

emission data containing the energy attribute contains information to jointly estimate the 

activity and attenuation distributions [13]. Also, several studies have shown that LM data 

can yield improved reconstruction and quantification compared to binned data in SPECT 

imaging [14, 15, 16, 17, 18, 19]. These investigations motivate the use of SPECT LM data 

containing the energy attribute for ASC.

Existing SPECT reconstruction methods also typically use only the photo-peak (PP) window 

data for estimating the activity. In this context, recent studies have shown that addition of 

data from scatter window can provide more information to estimate the activity uptake 

compared to using data from only the PP window [13, 20]. Using data from PP and scatter 

windows for activity estimation also increases the effective sensitivity of SPECT systems, 

that otherwise, is typically very low (< 100 counts/million emitted counts). Based on these 

scientific premise, we hypothesize that processing the entire SPECT data from PP and 

scatter windows in LM format containing the energy attribute can provide improved 

quantification compared to using binned data or using only PP window data.

To investigate this hypothesis, we developed a method to perform ASC using the SPECT 

emission data acquired in LM format and containing the energy attribute. The method is 

inspired by the LM reconstruction approach for PET imaging proposed by Parra et al. [21] 

and extends upon theory originally briefly proposed by Jha et al. for jointly estimating the 

activity and attenuation distribution from SPECT LM data [22]. We developed this theory 

specifically for estimating the activity distribution with known attenuation and derived a 

maximum-likelihood expectation-maximization (MLEM) algorithm for this task. An 

ordered-subsets version of this algorithm was then developed, and implemented on GPU-

based hardware for computational efficiency. The method was objectively evaluated using 

simulation studies in the context of a quantitative 2D dopamine transporter (DaT)-scan 

SPECT study.

2. METHODS

2.1. THEORY

Consider a preset-time scintillation-detector-based SPECT system imaging an activity 

distribution denoted by the vector f. The system acquires and stores data in LM format over 

a fixed acquisition time, T. Let J denote the number of detected events. Note that the 

proposed technique is also applicable to a preset-count system. Denote attributes collected 

for the jth LM event by the attribute vector Âj. This vector contains attributes such as the 

position of interaction with the scintillator, energy deposited in the scintillator, time of 

interaction, and the angular orientation of the detector that interacted with the photon. 

Denote the full LM dataset as a set of attribute vector A = Aj, j = 1, 2, …J . Since the 

detected LM events are independent, the LM data likelihood is given by
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pr(A, J ∣ f) = Pr(J ∣ f) ∏
j = 1

J
pr Aj ∣ f , (1)

Our approach to develop the reconstruction technique is to estimate f that maximizes the 

probability of A. While obtaining the expression for Pr(J|f) is easy since J is Poisson 

distributed, deriving an expression for pr(Âj|f) is complicated. To address this issue, we use 

the fact that each detected photon traverses through a specific discrete sub-unit of space after 

being emitted. We refer to this sub-unit as a path [13, 22]. For example, in Fig.1, P1, P2, and 

P3 denote 3 such paths. Note that we do not know in advance of the path that a photon takes. 

To address this issue while deriving our reconstruction method, we define a latent variable 

zj, ℙ as follows:

zj, ℙ = 1 if event j took the path ℙ .
0 otherwise.

Defining this latent variable enables developing an expectation-maximization (EM) 

technique to perform the reconstruction. Further, it enables deriving the expression for 

pr Aj ∣ ℙ . More specifically, we can expand the term in (1) in terms of a mixture model as

pr Aj ∣ f = ∑
ℙ

pr Aj ∣ ℙ Pr(ℙ ∣ f) . (2)

The number of detected events J is Poisson distributed with mean βT where β is the mean 

rate of detected photons. Using this fact and starting from Eq. 1, we can write the log-

likelihood of the acquired LM data, denoted by ℒ(f ∣ A, J) as

ℒ(f ∣ A, J) = ∑
j = 1

J
log ∑

ℙ
pr Aj ∣ ℙ Pr(ℙ ∣ f) + Jlog(βT) − βT − J ! . (3)

The term Pr(ℙ ∣ f) represents the radiation that is transmitted through the path ℙ. The 

expression for this term is given by [13]

pr ℙ f = f ℙ seff ℙ
∑ℙ′f ℙ′ seff ℙ′ , (4)

where f ℙ  denotes the activity of the starting voxel of the path, ℙ. The term seff ℙ  is 

independent of object activity, and models the sensitivity of the path to the detector surface. 

This term models the attenuation and scatter of photons in the tissue as well as the 

transmission of photons through the collimator. Using these expressions, we can derive the 

log-likelihood of the observed LM data and the latent variables, denoted by ℒC, as
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ℒC f ∣ Aj, zj j = 1, 2…J, J = ∑
j = 1

J
∑
ℙ

zj, ℙ

log pr Aj ∣ ℙ + log f(ℙ) + log seff(ℙ) − T ∑
ℙ

f(ℙ)seff(ℙ) .
(5)

Having defined the log-likelihood, we put forth the LM MLEM (LM-MLEM) technique. In 

the expectation (E) step of iteration (t+1), we take the expectation of (5) conditioned on 

observed data using the previous estimate of object activity distribution, f(t) The result is 

equivalent to replacing zj, ℙ in (5) with its expected value conditioned on the observed data. 

In the maximization (M) step, we maximize this conditional expectation of the log 

likelihood. This yields the following iterative update equation:

fq
(t + 1) =

∑j = 1
J ∑ℙq zj, ℙq

(t + 1)

T ∑ℙq seff ℙq
, (6)

where fq and ℙq denote the activity in the qth voxel and the paths that originate from the qth 

voxel, respectively.

2.2. THE ORDERED-SUBSET LM-MLEM (OS-LM-MLEM)

The proposed method is computationally expensive. To reduce the compute time, we 

developed an ordered-subsets (OS) version of the technique, and implemented this version 

on parallelized computing hardware. We first describe the developed OS version.

The technique of OS is widely used to achieve faster convergence of EM-based 

reconstruction methods [23]. To develop the OS version of the developed LM-MLEM 

technique, similar to conventional OSEM-based algorithms, we divided the LM data into 

subsets based on the detector angle of each LM event. In each sub-iteration, an estimate of 

the activity uptake is reconstructed using all the events in a subset. Denote the subset by the 

index i. Also, let Si
ℙ and Si

j denote the set of paths that reach the detector and the set of 

events that are detected at angles that are elements of the subset i, respectively. Then, 

starting from (6), the iterative update corresponding to the i’th subset and (t+1)’th iteration is 

derived to be

fq
(t + 1, i) =

∑ j = 1

j ∈ Si
j

J
∑ℙq ∈ Siℙzj, ℙq

(t + 1, i)

T ∑ℙq ∈ Siℙseff ℙq
; i = 1, 2…, Ns,          

, t = 0, 1, …, Ng − 1,

(7)

where Ng denote the number of global iterations and Ns is the number of sub-iterations or 

equivalently the number of subsets zj, ℙq
(t + 1, i) in (7) can be computed as follows:
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zj, ℙq
(t + 1, i) =

pr Aj ∣ ℙq Pr ℙq ∣ f(η)

∑ℙ′Pr Aj ∣ ℙ′ pr ℙ′ ∣ f(η) , (8)

where η is a 2-D vector denoting the iteration state given by

η =
t, Ns ,  if i = 0.

(t + 1, i − 1) , otherwise.
(9)

At any iteration, the number of calculation scales linearly as number of non-zero voxels, 

Nnz. The reconstruction time was reduced by mimimizing Nnz in the initial estimate of the 

activity map. This was done by generating an initial crude estimate of phantom boundary 

using OSEM reconstruction from binned sinogram. Further, the computational complexity 

increases exponentially as the order of scatter. To reduce the number of paths, we considered 

only up to first-order scatter events and all the scatter was assumed to occur in plane.

To further increase the computational speed up, the method was parallelized and 

implemented on NVIDIA GPU hardware. In each iteration of the OSEM, the evaluation of 

the denominator of (8) and the numerator of (7) for a fixed voxel q were performed in 

parallel using reduction algorithm.

3. OBJECTIVE EVALUATION OF PROPOSED TECHNIQUE

The proposed method was evaluated in the context of a quantitative 2-D DaT-scan SPECT 

study, where the task was to estimate the mean activity uptake in the caudate and putamen 

regions of the reconstructed SPECT image. There is much interest in exploring whether 

uptakes in these regions can help with improved diagnosis of Parkinson’s disease. A 2D 

clinical SPECT scanner with a geometry similar to the Optima 640 parallel-hole collimator 

and imaging uptake of Ioflupane (I-131) tracer within the brain was simulated [13]. Patient 

anatomy and physiology were modeled using the Zubal digital brain phantom [24]. The LM 

data acquisition was modeled using a Monte Carlo-based code, where for each photon, we 

collected the position of interaction, energy of the photon, and the angular orientation of the 

detector. To simulate a low-dose setting, we collected around one-third of the number of 

photons typically acquired clinically.

The proposed OS-LM-MLEM reconstruction method was used to estimate the activity map. 

The experiments were repeated for multiple noise realizations. The normalized root-mean-

square error (RMSE) of the estimated activity uptakes were computed.

We evaluated the effect of including data from the scatter window on estimating the activity 

map. For this purpose, we considered three configurations, namely, using data only from PP 

window, using data only from photons with energy higher than 120 keV, and using data from 

entire energy spectrum.
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We also evaluated the effect of binning the energy and position attributes of the LM data on 

quantification performance. The position attribute was binned into 64 bins and the energy 

attribute into 2 and 3 bins in different experiments.

4. RESULTS

In Fig. 2, the normalized RMSE plots for the activity uptake in the caudate and putamen 

regions are shown as a function of iteration for the different configurations. Figs. 2a and 2b 

show that as we increased the range of energies considered, the RMSE reduced. For 

example, including data from the entire energy spectrum resulted in approximately 5% 

decrease in the RMSE for activity uptake in both caudate and putamen compared to using 

only data from PP window. Figs. 2c and 2d show that using LM data yielded lower RMSE 

for both caudate and putamen regions. For example, when using LM data, the RMSE of 

activity uptake decreased by 6% in caudate and 5% in putamen compared to using two 

energy bins. Representative reconstructed images with different configurations are shown in 

Fig. 3. Visually also, the results with LM data and using the entire energy spectrum appear 

to have improved quality. Overall, these results demonstrate that data processed in LM 

format and encompassing all the emission and scattered photons yielded superior 

performance.

A pure LM-MLEM based technique was also developed and compared to the OS-LM-

MLEM technique. We found that the reconstruction results were similar and as expected, the 

OSEM technique with four subsets yielded close to four-times computational speedup.

5. CONCLUSIONS AND FUTURE WORK

In this manuscript, we proposed an OS-LM-MLEM-based reconstruction method that uses 

both the scattered and photopeak data acquired in LM format to perform ASC in SPECT. 

Results from realistic simulation studies conducted in the context of measuring regional 

activity uptakes in a 2-D DaT-scan SPECT study demonstrated that inclusion of data in the 

scatter window yielded improved quantification compared to using only PP data. Further, 

processing data in LM format yielded improved quantification compared to binning the 

energy and position attributes. A challenge with the proposed method is the large 

computational time. To address this, improved optimization strategies will need to be 

developed. Additionally, further development of the method for 3D imaging, and application 

of the method to myocardial perfusion SPECT as well as other clinical SPECT imaging 

applications are important research frontiers. Overall, these results motivate further 

development of LM-based ASC methods that include data from the scatter window.
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Fig. 1: 
A schematic of SPECT system demosnstrating the definition of a path.
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Fig. 2: 
Normalized RMSE plot as a function of iteration number for (a,b) different configurations of 

energy window and (c,d) different number of enrgy bins. The left and right side plots are for 

caudate and putamen, respectively.
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Fig. 3: 
(a) True activity and reconstructed image using OS-LM-MLEM (b) with LM data and the 

entire energy spectrum; (c) with the entire energy spectrum but binned data with 2 energy 

bins; (d) with LM data only from PP window. The reconstructed images (b,c,d) are 

represented on the same scale.
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