
Dendritic computations captured by an effective point
neuron model
Songting Lia,b,c, Nan Liud,e, Xiaohui Zhangd,e,1, David W. McLaughlinf,g,h,i,j,1, Douglas Zhoua,b,c,1, and David Caia,b,c,f,g,h,k

aSchool of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; bInstitute of Natural Sciences, Shanghai Jiao Tong University,
Shanghai 200240, China; cMinistry of Education Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240,
China; dState Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; eIDG/McGovern Institute for Brain
Research, Beijing Normal University, Beijing 100875, China; fCourant Institute of Mathematical Sciences, New York University, New York, NY 10012; gCenter
for Neural Science, New York University, New York, NY 10012; hInstitute of Mathematical Sciences, New York University Shanghai, Shanghai 200122,
China; iNew York University Tandon School of Engineering, New York University, Brooklyn, NY 11201; jNeuroscience Institute of New York University
Langone Health, New York University, New York, NY 10016; and kNYU Abu Dhabi Research Institute, New York University Abu Dhabi, Abu Dhabi, United
Arab Emirates

Contributed by David W. McLaughlin, May 31, 2019 (sent for review March 14, 2019; reviewed by Larry Abbott and Dario L. Ringach)

Complex dendrites in general present formidable challenges to
understanding neuronal information processing. To circumvent
the difficulty, a prevalent viewpoint simplifies the neuronal mor-
phology as a point representing the soma, and the excitatory
and inhibitory synaptic currents originated from the dendrites
are treated as linearly summed at the soma. Despite its exten-
sive applications, the validity of the synaptic current description
remains unclear, and the existing point neuron framework fails
to characterize the spatiotemporal aspects of dendritic integra-
tion supporting specific computations. Using electrophysiological
experiments, realistic neuronal simulations, and theoretical anal-
yses, we demonstrate that the traditional assumption of linear
summation of synaptic currents is oversimplified and underesti-
mates the inhibition effect. We then derive a form of synaptic
integration current within the point neuron framework to capture
dendritic effects. In the derived form, the interaction between
each pair of synaptic inputs on the dendrites can be reliably
parameterized by a single coefficient, suggesting the inherent
low-dimensional structure of dendritic integration. We further
generalize the form of synaptic integration current to capture the
spatiotemporal interactions among multiple synaptic inputs and
show that a point neuron model with the synaptic integration cur-
rent incorporated possesses the computational ability of a spatial
neuron with dendrites, including direction selectivity, coincidence
detection, logical operation, and a bilinear dendritic integration
rule discovered in experiment. Our work amends the modeling
of synaptic inputs and improves the computational power of a
modeling neuron within the point neuron framework.

dendritic computation | synaptic current | synaptic integration |
single-neuron dynamics | point neuron model

A single neuron performs extensive computations through
active dendrites with rich biophysical properties and mor-

phological structures (1, 2). In general, it is difficult to under-
stand information processing in a neuron when receiving broadly
distributed synaptic activities on its dendrites. Despite the com-
plexity of dendrites, the information is presumably encoded via
action potentials generated at the soma of a neuron. Therefore,
for a large set of issues regarding neuronal information coding,
one usually simplifies a spatial neuron as a single point repre-
senting its soma with the membrane potential dynamics modeled
as a resistance–capacitance circuit (3, 4),

C
dV

dt
= Iion + Isyn, [1]

where C is the membrane capacitance and V is the membrane
potential at the soma. Here, Iion is the intrinsic ionic current, and
Isyn is the synaptic current. By modeling different Iion, one can
obtain a class of point neuron models, such as the leaky integrate-
and-fire neuron and the Hodgkin–Huxley neuron (5). For the

synaptic current Isyn, in general, the integration of all individual
synaptic inputs originated from dendrites is phenomenologically
incorporated into a linear summation of 2 effective excitatory (E)
and inhibitory (I) synaptic currents arriving at the soma, that is,

Isyn = gE (εE −V ) + gI (εI −V ), [2]

where gE and gI are the effective E and I synaptic conductances
at the soma, respectively; and εE and εI are the E and I reversal
potentials, respectively.

Point neuron models with synaptic current taking the form
of Eq. 2 have been extensively applied to both experimental
and theoretical studies, including synaptic current decomposition
(6, 7), synaptic conductance estimation (8–10), dynamic clamp
stimulation (11, 12), and neuronal network dynamics modeling
(13–20), etc. Despite the simplicity of the point neuron model
in analysis and simulation, various important questions remain
to be addressed. For instance, do the E and I synaptic currents
arriving at the soma of a spatial neuron with dendrites follow
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a linear summation as described in Eq. 2? Can the point neuron
model reflect dendritic integration effects and implement den-
dritic computations? If not, how do we establish a point neuron
model to capture the essence of dendritic functions?

Results
Integration of E and I Synaptic Currents Revealed in Electrophys-
iological Experiments. We first investigate these questions in a
CA1 pyramidal neuron of rat hippocampal slices. The whole-
cell recording is made from the soma of the pyramidal neuron
with sampling frequency 100 kHz, and fluorescent dye Alexa
Fluor 488 is loaded into the neuron via the recording pipette
to visualize the dendritic tree (Fig. 1A). Microiontophoretic
applications of E transmitter glutamate and I transmitter γ-
aminobutyric acid (GABA) at the apical dendrite induce rapid
membrane depolarizations and hyperpolarizations, respectively,
with kinetics similar to those of natural excitatory postsynap-
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Fig. 1. Experimental measurement of the bilinear conductance relation for
a pair of E and I inputs. (A) Image of a CA1 pyramidal neuron. Arrows indi-
cate pipettes for iontophoresis of glutamate and GABA at about 100 and
50 µm from soma, respectively. (Scale bar: 50 µm.) (B) A set of individual
EPSP, individual IPSP, and SSP induced by both E and I inputs recorded in the
experiment. A simple moving average with time window of 5 ms is applied
to smooth each trace. (C) Constructed EPSC and IPSC using the SSP and the
E and I conductances estimated from the EPSP and IPSP in B. (D) The SSC
estimated from the SSP in B, the linear sum of the constructed EPSC and
IPSC in C, and the difference between them denoted as ∆Isyn. (E) The bilin-
ear relation between ∆g and the multiplication of gE and gI at the time
when the EPSP reaches its peak value. The E and I inputs are given simul-
taneously. Line indicates linear fit (slope, −αEI = 7.86 kΩ · cm2, R2 = 0.87).
(F) The same as E except that the I input is given 20 ms preceded to the E
input. Line indicates linear fit (slope, −αEI = 14.35 kΩ · cm2, R2 = 0.76). In E
and F, by varying the E and I input strengths, the amplitude of EPSP ranges
from 1 to 8 mV, and the amplitude of IPSP ranges from −1 to −3 mV. For
the purpose of denoising, we first measure values of gE , gI, and ∆g for each
set of EPSP, IPSP, and SSP; then, we construct a scatterplot of gEgI vs. ∆g,
and finally, we divide the range of gEgI into 9 bins and average all of the
data points within each bin. In addition, similar results can be obtained by
replacing moving average with low-pass filtering, such as the elliptic filter.

tic potentials (EPSPs) and inhibitory postsynaptic potentials
(IPSPs) elicited by extracellular electrical stimulation in the CA1
region, respectively (Fig. 1B) (21). For convenience, these ion-
tophoretic responses are referred to hereafter as EPSPs and
IPSPs. To assess the validity of the synaptic current modeling
(Eq. 2), we first need to determine the intrinsic ionic current
and the passive parameters in the point neuron description
of this pyramidal neuron (Eq. 1). Early experiments demon-
strate that, within the subthreshold regime, the dynamics of
the somatic membrane potential of a pyramidal neuron can be
described as a leaky integrator (22, 23). Therefore, in the absence
of action potentials, the ionic current Iion can be well charac-
terized as Iion = gL(εL−V ), where εL is the resting potential
about −60 mV measured from the soma of the pyramidal neu-
ron. The passive parameters are determined as gL∼ 11.67 nS
and C ∼ 129.67 pF by giving a hyperpolarizing step current −50
pA at the soma of the pyramidal neuron. By convention, we
rescale the leak conductance and the capacitance by dividing the
estimated area of the neuron to obtain gL = 0.134 mS · cm−2 and
C = 1 µF · cm−2.

We next examine whether the E and I synaptic currents fol-
low a linear summation as described in Eq. 2 when the pyramidal
neuron receives synaptic inputs from its dendrites. In the exper-
iment, when an E input is elicited by an iontophoretic pipette
placed at the dendritic trunk ∼ 100 µm away from the soma,
an EPSP denoted as VE is recorded at the soma. To eliminate
the numerical error when taking the temporal derivative of the
EPSP, we smooth the EPSP trace by performing simple mov-
ing average with time window 5 ms. Using the smoothed EPSP
(Fig. 1B), the corresponding effective excitatory postsynaptic
current (EPSC) denoted as IE is derived based on the form of the
point neuron model (Eq. 1), that is, IE =C dVE

dt
− gL(εL−VE ).

Similarly, when an I input is elicited by an iontophoretic pipette
placed at the dendritic trunk ∼ 50 µm away from the soma,
an IPSP denoted as VI is recorded at the soma and smoothed
by simple moving average (Fig. 1B), and the corresponding
effective inhibitory postsynaptic current (IPSC) denoted as II is
derived, that is, II =C dVI

dt
− gL(εL−VI ). Using the information

of the EPSC and the IPSC, we further determine the effec-
tive E and I conductances at the soma as gE = IE/(εE −VE )
and gI = II /(εI −VI ), respectively, with the E reversal potential
εE = 0 mV and the I reversal potential εI =−66 mV measured
from the experiment.

When both the E and I inputs are elicited simultaneously with
the input strengths and locations the same as given individually,
a summed somatic potential (SSP) denoted as VS is recorded at
the soma and smoothed by simple moving average (Fig. 1B), and
the corresponding summed somatic current (SSC) denoted as IS
is derived as IS =C dVS

dt
− gL(εL−VS ). Based on the synaptic

current description (Eq. 2) in the point neuron model, the SSC is
presumably made of the linear summation of the E and I synaptic
currents, that is, IS ≡ gE (εE −VS ) + gI (εI −VS ). However, by
constructing the E and I synaptic currents, i.e., gE (εE −VS ) and
gI (εI −VS ), using the resolved conductances gE and gI and the
postsynaptic potential VS (Fig. 1C), the SSC is found to be sig-
nificantly different from instead of equal to the linear summation
of the E and I synaptic currents (Fig. 1D). This fact demonstrates
that the synaptic current description (Eq. 2) is insufficient to
characterize the synaptic current arriving at the soma as a result
of dendritic integration.

To analyze the integration of synaptic currents quantitatively,
we denote the difference between the SSC and the linear sum of
the EPSC and the IPSC as the synaptic integration current ∆Isyn,
that is, ∆Isyn = IS − gE (εE −VS )− gI (εI −VS ). If we cast this
integration current in the form of Ohm’s law as ∆Isyn = ∆g(εE −
V ) with ∆g defined as the integration conductance, by randomly
varying the strengths of the E and I synaptic inputs with their
input locations fixed, the integration conductance is found to
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obey a bilinear rule throughout the response period until gE or
gI vanishes (i.e., ∆g =αEI gEgI , where αEI is the proportional
coefficient independent of the input strengths but dependent of
time). Note that, when the synaptic integration current is cast in
the form of Ohm’s law, the reversal potential here is set to be the
E reversal potential εE . We point out that the bilinear relation of
the conductances remains valid when a different value of reversal
potential is chosen (SI Appendix, Fig. S1), which will be further
discussed in Discussion. The bilinear relation at a particular time
point around the peak of the EPSP is illustrated in Fig. 1E (with
coefficient of determination R2 = 0.87). In addition, the bilinear
relation remains valid even when there is a time delay between
the E and I input arrival times. A particular case of the bilinear
relation is shown in Fig. 1F (R2 = 0.76) in which the I input is
elicited 20 ms earlier than the E input. The proportional coeffi-
cientsαEI in both the concurrent and nonconcurrent inputs cases
are not identical, indicating that αEI is sensitive to input arrival
time difference. Therefore, from our experiment, the synap-
tic current description (Eq. 2) in the point neuron framework
should be modified to incorporate the synaptic integration cur-
rent ∆Isyn, and the corresponding integration conductance ∆g
follows a bilinear rule with the proportional coefficient αEI inde-
pendent of input strengths but dependent of time. For the ease
of discussion, we refer to αEI as the integration coefficient.

Integration of E and I Synaptic Currents Revealed in Realistic Neuron
Simulations. To further confirm the existence and the structure
of the synaptic integration current, we perform realistic neu-
ron simulations in which the time derivatives of voltage can
be precisely obtained to estimate the conductance values accu-
rately. Here, a hippocampal CA1 pyramidal neuron model is
built with a complex dendritic morphology (Fig. 2A) and active
ionic channels (details of the model are in Materials and Meth-
ods). The E α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor and I GABAA receptor are implemented
on the dendrites of the neuron with kinetics consistent with
experimental recordings (21). The resting and reversal potentials
are set as εL =−70, εE = 0, and εI =−80 mV. Similar to the
experimental procedure, we first determine the passive param-
eters in the point neuron description of the pyramidal neuron
model by injecting a step current at the soma of the neuron:
gL = 0.11 mS · cm−2 and C = 1 µF · cm−2. Then, in the simu-
lation of the neuron model, an EPSP or an IPSP is measured
at the soma (Fig. 2B) after eliciting an individual E synaptic
input on the dendrite about 350 µm away from the soma or an
individual I synaptic input about 280 µm away from the soma,
respectively. The effective E and I conductances at the soma
gE and gI are determined from the measured EPSP and IPSP,
respectively. The neuron is then stimulated given both the E
and I synaptic inputs simultaneously with the input strengths and
input locations the same as given individually; an SSP is mea-
sured at the soma of the neuron, and the corresponding SSC is
calculated. Consistent with our experimental observations, after
constructing the EPSC and IPSC (Fig. 2C) using the E and I
conductances and the SSP, the SSC is found to be significantly
different from the linear summation of the constructed EPSC
and IPSC (Fig. 2D). This indicates the existence of the synap-
tic integration current and challenges again the validity of the
synaptic current form (Eq. 2) in the point neuron framework.

Following the notation of the synaptic integration current
∆Isyn to denote the difference between the SSC and the linear
summation of the constructed EPSC and IPSC, we next verify
whether the integration conductance ∆g obtained from ∆Isyn

still follows a bilinear relation with the E and I conductances as
observed in experiment. Assuming that ∆Isyn takes the form of
Ohm’s law [i.e., ∆Isyn = ∆g(εE −V )], by randomly varying the
strengths of the E and I inputs with their input locations fixed, the
integration conductance ∆g is indeed shown to be proportional
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Fig. 2. Realistic neuron simulation result of the bilinear conductance rela-
tion for a pair of E and I inputs. (A) The reconstructed hippocampal CA1
pyramidal neuron. Arrows indicate that the I and E inputs are given on
the dendritic truck about 280 and 350 µm away from the soma. (Scale bar:
100 µm.) Model details can be found in refs. 21, 24, and 25. (B) A set of simu-
lated individual EPSP, individual IPSP, and SSP induced by both E and I inputs.
(C) Constructed EPSC and IPSC using the SSP and the E and I conductances
estimated from the EPSP and IPSP in B. (D) The SSC estimated from the SSP in
B, the linear sum of the constructed EPSC and IPSC in C, and the difference
between them denoted as ∆Isyn. (E) The bilinear relation between ∆g and
the multiplication of gE and gI at the time when the E conductance reaches
its peak value. The E and I inputs are given simultaneously. Line indicates
linear fit (slope, −αEI = 8.12 kΩ · cm2, R2 = 0.998). (F) The same as E except
that the I input is given 20 ms preceded to the E input. Line indicates linear
fit (slope, −αEI = 5.39 kΩ · cm2, R2 = 0.979). In E and F, by varying the E
and I input strengths, the amplitude of EPSP ranges from 0 to 6 mV, and the
amplitude of IPSP ranges from 0 to −3 mV. Each circle corresponds to a set
of EPSP, IPSP, and SSP.

to both gE and gI at each time point, confirming the bilinear
relation ∆g =αEI gEgI . The bilinear relation at the peak time of
the E conductance is illustrated in Fig. 2E (R2 = 0.998). Further-
more, the bilinear relation remains valid when the E and I inputs
arrive nonconcurrently. As an illustration, a particular case of
the bilinear relation is shown in Fig. 2F (R2 = 0.979) when the I
input is elicited 20 ms earlier than the E input. Consistent with
our experimental observations, the integration coefficient αEI in
the bilinear relation is found to be independent of input strengths
but is dependent of input arrival times (SI Appendix, Fig. S2).

Mechanism Underlying the Synaptic Current Integration. To inves-
tigate the origin of the synaptic integration current ∆Isyn, we
perform the static 2-port analysis and show that it emerges from
the interaction of synaptic inputs across the spatial dendrites (SI
Appendix has details). In particular, from our analysis, the inte-
gration coefficient αEI in the bilinear conductance relation can
be expressed as

αEI ≈KSS

(
1− KEI

KES

)
+KSS

εI
εE

(
1− KEI

KIS

)
, [3]

where KEI , KES , and KSS are the transfer resistances between
the locations of the E and I inputs, between the locations
of the E input and the soma, and at the soma, respectively.
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Fig. 3. Realistic neuron simulation result of the bilinear conductance rela-
tion for a pair of synaptic inputs of the identical type. (A) The bilinear
relation between ∆gE and the multiplication of gE1 and gE2. Data are col-
lected by randomly changing the amplitude of EPSP from 0 to 4 mV. Line
indicates linear fit (slope, −αEE = 13.85 kΩ · cm2, R2 = 0.994). (B) The bilin-
ear relation between ∆gI and the multiplication of gI1 and gI2. Data are
collected by randomly changing the amplitude of IPSP from 0 to −3 mV.
Line indicates linear fit (slope,−αII = 8.06 kΩ · cm2, R2 = 0.999). In A and B,
the 2 E (I) inputs are given simultaneously on the dendritic trunk about 280
and 350 µm away from the soma, and the data are measured at the time
when one of the E (I) conductances reaches its peak value.

Therefore, only in the limiting case when the E and I inputs
are given at the soma, we have KEI =KES =KIS . In this case,
according to Eq. 3, the integration coefficient αEI vanishes as
does the synaptic integration current ∆Isyn, hence the validity
of the synaptic current description (Eq. 2). However, a neu-
ron in general receives E and I inputs on the dendrites where
KEI 6=KES and KEI 6=KIS . In such a case, according to Eq. 3,
αEI deviates from zero; thus, the synaptic current description
(Eq. 2) fails to characterize the synaptic current arriving at the
soma of a spatial neuron with dendrites. Note that our 2-port
analysis shows that the synaptic integration current is mostly neg-
ative (SI Appendix has details), indicating an additional I effect
at the soma coming from the synaptic integration in addition to
hyperpolarizing and shunting effects of I inputs. Consequently,
the form of the synaptic current (Eq. 2) in the traditional point
neuron framework underestimates the inhibition effect.

Integration of Identical-Type Synaptic Currents Revealed in Realistic
Neuron Simulations. Via realistic neuron simulations, we further
discover that the synaptic integration current and the bilinear
conductance relation exist for cases of both a pair of E inputs
and a pair of I inputs. When 2 inputs of the same type are
elicited simultaneously on the dendrites of the realistic neuron
about 350 and 280 µm away from the soma, the SSC derived
from the point neuron model is found to deviate from the linear
sum of 2 individual synaptic currents when elicited individu-
ally. The difference between them is also denoted as ∆Isyn and
casted by the form of Ohm’s law: that is, ∆Isyn = ∆gk (εk −V ),
where εk (k =E , I ) is the E or I reversal potential depending
on the input type. By randomly varying the strengths of the 2
inputs without changing the input locations, the bilinear con-
ductance relation can be observed as ∆gE =αEEgE1gE2 and
∆gI =αII gI1gI2, where αEE and αII are the integration coeffi-
cients independent of input strengths and gk1 and gk2 (k =E , I )
are the conductances measured when the 2 inputs are given
separately. The bilinear relation at the time when one of the
conductances reaches its peak value is illustrated in Fig. 3A
for the case of 2 E inputs (R2 = 0.994) and in Fig. 3B for the
case of 2 I inputs (R2 = 0.999). Additional simulation results
demonstrate that the integration coefficients vary at different
time points (Fig. 4A) and are dependent of input arrival times.
Note that, for the cases of both a pair of E inputs and a pair of
I inputs, the expressions of the integration coefficients αEE and
αII in the bilinear conductance relation can be similarly obtained
as in Eq. 3 using our 2-port analysis (SI Appendix has details),

indicating the existence of the synaptic integration current in
these cases.

Spatiotemporal Dependence of the Integration Coefficients. We
next investigate the spatial dependence of the integration coef-
ficients αEI , αEE , and αII in realistic neuron simulations. For
a pair of E and I inputs, when the I input location is fixed, the
dependence of the integration coefficient αEI on the E input
location shows a clear asymmetry for proximal vs. distal E input
locations. To be specific, given an I input on the dendritic trunk,
−αEI decreases rapidly as the distance between the E and I sites
increases when the E input site is located between the soma and
the I input site but remains constant when the E input site is
located farther away from the soma than the I input site (Fig. 4B).
In contrast, for a pair of E inputs, when 1 E input location is fixed,
the dependence of the integration coefficient αEE on the other
E input location shows a clear symmetry for proximal vs. distal
E input locations. Also, −αEE is largest when the 2 E input sites
overlap with each other and decays when the distance between
the 2 E inputs increases (Fig. 4C). The spatial dependence of
αII is similar to that of αEE (Fig. 4D). Accounting for the fact
that a neuron receives the majority of synaptic inputs from its
dendritic branches, we also investigate the spatial dependence of
the integration coefficients on the whole dendrites. We find that
the above spatial dependence of the integration coefficient still
holds when 1 input site is fixed on the dendritic trunk and the
other input site is scattered on the dendritic arbor (SI Appendix,
Fig. S3). In addition, when 1 input site is fixed on a dendritic
branch, the integration coefficient is significantly non-zero only
when the other input site is within the same branch (SI Appendix,
Fig. S3), consistent with the theory that each dendritic branch
is an independent functional computational unit (26, 27). It has
been further noticed that the integration coefficient for a pair of
inputs within a branch is in general larger than that for 2 inputs
at the dendritic trunk (SI Appendix, Fig. S3). All of these spatial
properties of the integration coefficients observed in the simula-
tions can be successfully explained from our 2-port analysis (SI
Appendix has details).
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For the temporal dependence, although the integration coef-
ficients are time dependent (Fig. 4A), the point neuron model
can predict the SSP accurately by incorporating the synaptic inte-
gration currents with their coefficients approximated by time-
independent constants as will be demonstrated in the simulation
below. For a pair of E and I synaptic inputs, we first approxi-
mate the integration coefficient as a function of time by its value
measured at the time when the E conductance reaches its peak
value. The approximation can be justified by the fact that the
integration conductance ∆g =αEI gEgI contributes dominantly
to the synaptic integration current when gEgI is around its peak,
and ∆g is insensitive to the value of αEI when gEgI approaches
zero away from its peak. We then build the point neuron model
by including the synaptic integration current with the approxi-
mated constant integration coefficient. Given a pair of E and I
inputs separately, we can measure the E and I conductance tran-
sients and use them in the point neuron model with the synaptic
integration current incorporated to predict the SSP when the pair
of E and I inputs is given simultaneously. We then compare the
predicted SSP with the simulated SSP obtained from the real-
istic neuron when it receives the 2 inputs simultaneously. The
simulation result shows that, given a pair of E and I inputs at
a dendritic branch about 230 and 200 µm away from the soma
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Fig. 5. Synaptic integration current captures the somatic voltage dynamics
shaped by spatiotemporal dendritic integration. (A–C) The SSP produced by
the realistic neuron model (green) given a pair of (A) E–I, (B) E–E, and (C) I–I
inputs (cyan), the SSP predicted by the point neuron model with the synaptic
integration current using a constant integration coefficient (dashed blue),
and the SSP predicted by the point neuron model without the synaptic inte-
gration current (red). The 2 inputs are given at dendritic branches about
230 and 200 µm away from the soma. The integration coefficients in the
3 cases are αEI =−18.05, αEE =−40.16, and αII =−27.21 kΩ · cm2, respec-
tively. (D) Distribution of 15 E inputs (red dots) and 15 I inputs (blue dots)
at the dendritic arbor in stratum radiatum of the realistic neuron model.
(E) The SSPs predicted by the point neuron model with (blue) and without
(red) the synaptic integration current are plotted against the measured SSP
from the simulation of the realistic neuron model. The membrane potential
from the realistic neuron model is obtained by setting the E and I inputs
at locations shown in D, with the input arrival time at each location uni-
formly randomly distributed from 0 to 200 ms. For the ease of comparison,
the slope of the black line is unity.

simultaneously, the predicted SSP from the point neuron model
with the synaptic integration current incorporated almost over-
laps with that recorded from the soma of the realistic neuron. In
contrast, the SSP predicted by the point neuron model without
the synaptic integration current deviates from the simulated SSP
(Fig. 5A). Similar results are observed in the cases of a pair of E
inputs and a pair of I inputs (Fig. 5 B and C). We note that the
prediction error for the point neuron model without the synaptic
integration current is significant (i.e., the relative error measured
at the peak amplitude of the voltage trace is 248.9% for the E–I
case, 20.8% for the E–E case, and 33.3% for the I–I case).

Generalization of Synaptic Integration Current for Multiple Synap-
tic Inputs. When a neuron receives multiple E and I inputs, the
synaptic current can be naturally generalized as

Isyn =
∑
i

g i
E (εE −V ) +

∑
j

g j
I (εI −V ) + ∆Isyn, [4]

where the synaptic integration current ∆Isyn is described as

∆Isyn =
∑
m

∑
n

αmn
EI g

m
E gn

I (εE −V ) +
∑
p

∑
q

αpq
EEg

p
Eg

q
E (εE −V )

+
∑
s

∑
t

αst
II g

s
I g

t
I (εI −V ). [5]

The synaptic integration current describes the interaction of each
paired input, and the sets of integration coefficients {αmn

EI },
{αpq

EE}, and {αst
II } encode the spatiotemporal information of

synaptic inputs on the dendrites. In addition to the synaptic cur-
rent description (Eq. 4), by incorporating the synaptic integration
current (Eq. 5), the model accurately characterizes the synaptic
currents arriving at the soma. As demonstrated from our numer-
ical simulations, when the realistic neuron model receives 15
E synaptic inputs and 15 I synaptic inputs from its dendrites
with uniformly distributed arrival times (Fig. 5D), its somatic
voltage nearly overlaps with the SSP predicted by the point neu-
ron model with the synaptic integration current while deviating
from the SSP predicted by the point neuron model without the
synaptic integration current (Fig. 5E).

Through electrophysiological experiments, realistic neuron
simulations, and theoretical analyses, we demonstrate the exis-
tence of the synaptic integration current and the bilinear con-
ductance relation with the integration coefficient encoding the
spatiotemporal information of synaptic inputs on the dendrites
of a spatial neuron. Under the point neuron framework, we
show that the point neuron model by incorporating the synaptic
integration current can accurately predict the somatic mem-
brane potential of a spatial neuron with dendrites in response
to synaptic inputs. Our results demonstrate that the spatiotem-
poral interaction among multiple synaptic inputs on the high-
dimensional, nonlinear, active dendrites of a neuron can be
decomposed into pairwise interactions for all pairs of synaptic
inputs. In addition, the interaction between each pair of synaptic
inputs can be reliably parameterized by a single integration coef-
ficient, suggesting the inherent low-dimensional structure of the
dendritic integration process.

Dendritic Phenomena Captured by the Synaptic Integration Current.
We next give 2 examples to illustrate that the derived point neu-
ron model with the synaptic integration current incorporated is
capable of capturing dendritic effects.
Countering dendritic filtering effect. Our derived point neuron
model predicts a phenomenon of dendritic filtering effect. Early
experiments have shown that a local E synaptic input on the den-
drite will be filtered by the dendritic cable property, resulting in
a broader EPSP at the soma than that measured on the dendrite.
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This is known as the dendritic filtering effect. Because of this
effect, the rising time of the somatic EPSP becomes slower as the
distance between the E input location and the soma increases,
indicating that the neuron may respond slower to inputs received
at distal dendrites than at proximal dendrites (28). However, the
existence for the synaptic integration current predicts that the
dendritic filtering effect can be alleviated or even reversed in
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Fig. 6. Dendritic computations in a point neuron model with the synaptic
integration current. (A) The countering dendritic filtering effect. In the pres-
ence of an I input, (A, Upper Left) the E conductance gE(1 +αEIgI) exhibits
a faster rising time for a distal E input (red) than a proximal E input (blue).
(A, Lower Left) The SSPs induced by both E and I inputs from the point
neuron model with the synaptic integration current, which also exhibits a
faster rising time for a distal E input (red) than a proximal E input (blue).
(A, Right) The location dependence of the rising time of the individual EPSP
and the SSP obtained in realistic neuron simulations. If an I input is elicited,
its location is on the trunk about 250 µm away from the soma. All volt-
ages are normalized to have an identical amplitude. (B, Left) Schematic plot
of the dendritic mechanism for direction selectivity. The red arrow indicates
the preferred direction along which the activation of synapses will promote
the activity of the neuron, while the blue arrow indicates the nonpreferred
direction that has the opposite effect. (B, Right) The realization of direction
selectivity in a point neuron model with the synaptic integration current
for the preferred direction (red) and the nonpreferred direction (blue). (C,
Left) Schematic plot of the dendritic mechanism for coincidence detection.
Detection of coincident inputs is facilitated when the inputs are received on
2 separate branches. (C, Right) The realization of coincidence detection in a
point neuron model with the synaptic integration current for the 2 inputs
received on different branches (red) and on the same branch (blue). In B and
C, the dashed lines indicate the firing threshold.

the presence of an I input. Given both E and I inputs, the effec-
tive E conductance becomes gE (1 +αEI gI ). Despite the fact that
the E conductance gE (derived from the EPSC at the soma when
the E input is given alone) rises slower for the input received
at the distal dendrites than at the proximal dendrites, the effec-
tive E conductance gE (1 +αEI gI ) can be shown to rise even
faster for the distal E input with a large negative αEI (Fig. 6 A,
Left). Therefore, the SSP induced by the distal E input could rise
faster than that induced by the proximal E input, countering the
dendritic filtering effect (Fig. 6 A, Left).

The predicted effect of countering dendritic filtering has been
verified in realistic neuron simulations in which an I input is fixed
in the middle of the dendritic trunk and an E input moves from
the soma toward the distal dendrites. Simulation results demon-
strate that, when only an E input is given on the dendrites, the
time when the somatic EPSP reaches its peak value increases
as the distance between the E input and the soma increases;
however, when both E and I inputs are given on the dendrites,
the time when the SSP reaches its peak value decreases as the
distance between the E input and the soma increases (Fig. 6
A, Right). In addition to the phenomenon of countering den-
dritic filtering per se, the successful prediction made from the
synaptic integration current suggests that one can investigate
complex dendritic computations through the analysis of the sim-
ple form of the derived synaptic integration current as discussed
above.
Bilinear dendritic integration rule. Our point neuron model with
the synaptic integration current incorporated is capable of cap-
turing a bilinear rule of dendritic integration discovered in recent
experiments (21, 24). In the experiments (21, 24), given a pair
of glutamatergic E input and GABAergic I input simultaneously
to a hippocampal CA1 pyramidal neuron, the SSP measured at
the soma denoted by VS can be well characterized by a bilinear
rule as VS =VE +VI + kEI ·VEVI , where VE and VI are the
EPSP and IPSP measured at the soma when the E or I input
is given alone, respectively, and kEI is the shunting coefficient,
which depends on the dendritic locations and arrival times of the
E and I inputs but not the strengths of the inputs. In particular,
the spatial dependence of kEI measured at the time when the
EPSP reaches its peak value exhibits the feature of spatial asym-
metry: when the location of the I input is fixed on the dendritic
trunk and the E input is located between the soma and the I input
site, kEI increases as the distance between the E input and the
soma increases; when the E input is located farther away from
the soma than the I input site, kEI remains constant with further
increase in the distance between the E input site and the soma.
The bilinear rule of dendritic integration has also been observed
for the integration of a pair of E inputs, a pair of I inputs, and
a mixture of multiple E and I inputs in both experiments and
realistic neuron simulations (24).

We point out that the point neuron model including the synap-
tic integration current can reliably capture the bilinear dendritic
integration rule and its generalizations, and the shunting coef-
ficient kuv can be determined by the integration coefficient αuv

(u, v =EorI ) (23). Furthermore, by using the 2-port analysis, we
show that there is a linear mapping between the shunting coef-
ficient kuv and the integration coefficient αuv (SI Appendix has
details). From this mapping, one can elucidate the underlying
mechanism of the bilinear dendritic integration rule and the spa-
tially asymmetric feature of the shunting coefficient observed in
the above experiment.

Dendritic Computations Performed by the Synaptic Integration
Current. Here, we show that the point neuron model with
the synaptic integration current incorporated possesses the
computational power of a spatial neuron with dendrites.
Direction selectivity. A point neuron with the synaptic inte-
gration current is capable of performing the computation of
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direction selectivity. As predicted by Rall’s cable theory (29),
the activation of a train of E inputs can promote the firing of a
neuron when the inputs are received sequentially from the dis-
tal dendrite toward the soma but demote the firing when the
E inputs are received in the reverse direction (Fig. 6B). In this
way, the neuron has a preferred direction of input sequence.
The sensitivity to spatiotemporal sequences of synaptic activa-
tion in cortical pyramidal neuron dendrites was observed in
later experiments (2). In our derived synaptic integration cur-
rent, the information of the input direction can be encoded
in an ordered sequence of integration coefficients. In particu-
lar, the early activation of a pair of distal E inputs corresponds
to the synaptic integration current with a large negative αEE , and
the late activation of a pair of proximal E inputs corresponds to
the synaptic integration current with a small negative αEE (SI
Appendix has details). Therefore, given a temporal sequence of
identical E inputs to the point neuron, its firing will be promoted
by sequentially activating the set of αEE with values that are in
an increasing order but demoted by activating the set of αEE in
the reversed order (Fig. 6B).
Coincidence detection. Similarly, a point neuron with the synap-
tic integration current can play the role of coincidence detector.
In the early auditory pathway, neurons that receive bilateral
inputs have bipolar dendrites, with each dendritic tree receiv-
ing input from only 1 ear (30). These neurons can detect input
coincidence with submillisecond temporal resolution in their role
of computing interaural arrival time difference, which is a cue
for sound localization (Fig. 6C). In the point neuron model
with the synaptic integration current, the detection of coinci-
dent inputs can be facilitated by a small negative αEE in the
synaptic integration current for a pair of E inputs represent-
ing the case of the inputs received on separate dendrites and
will be depressed by a large negative αEE in the corresponding
synaptic integration current representing the case of the inputs
received on the same dendrite (Fig. 6C and SI Appendix have
details).
Logical operation. The synaptic integration current enables a
point neuron to perform logical operation. Previous studies have
shown that one of the important functions of dendrites is to per-
form logical computation (3, 26). For instance, given a pair of
E and I inputs, the I input is found to be maximally effective
to silence the E input when the I input is received between the
soma and the location of the E input, known as the “on-the-
path effect” (3, 26). Therefore, given a pair of distal E synapse
and proximal I synapse, to observe an output at the soma, it
is required that the E synapse is activated, while the I synapse
remains inactivated. Therefore, this pair of E and I inputs per-
forms the logical operation of “E AND (NOT I).” In contrast,
for an I input located farther away from the soma than the
location of the E input—the out-of-the-path configuration—
studies have shown that the I input exerts a weak influence on
the E input. Therefore, this pair of E and I inputs no longer
performs the logical operation of E AND (NOT I) but sim-
ply the gate of E. In addition, a pair of E inputs received at
2 separated branches in general will produce larger response
at the soma of a neuron than a pair of E inputs received at
the same branch. If the neuron requires at least 2 inputs to
generate an output, the inputs are preferred to be at different
branches. Therefore, 2 separate E inputs can play the role of
an AND gate, while 2 nearby E inputs cannot. When a neuron
receives multiple inputs distributed on the dendrites, the com-
bination of the above-mentioned simple logical gates can give
rise to complex logical operations. All of these logical opera-
tions can be easily achieved in the point neuron framework by
measuring values of the integration coefficients in the synaptic
integration current (Eq. 5), because the integration coefficients
encode the locations of inputs that determine the type of logical
computations.

Discussion
In this work, by using electrophysiological experiments, real-
istic neuronal simulations, and theoretical analyses, we have
derived a form of synaptic current in the point neuron frame-
work as a result of dendritic integration. In addition to the
traditional form of the synaptic current (Eq. 4), our derived
synaptic integration current described by Eq. 5 indicates that
the interaction between each pair of synaptic inputs on the
complex nonlinear active dendrites can be reliably captured by
the bilinear interaction between their corresponding synaptic
conductances. In addition, we have shown that the point neu-
ron model with the synaptic integration current incorporated is
able to capture many dendritic phenomena, including counter-
ing dendritic filtering, and a bilinear rule of dendritic integration
discovered in a recent experiment, and the model possesses
the computational ability of a spatial neuron with dendrites,
including direction selectivity, coincidence detection, and logical
operation.

When describing the synaptic integration current measured in
our experiments and the simulations, we have chosen the reversal
potential to be the E reversal potential. In fact, there is a degree
of freedom for choosing the value of the reversal potential within
the regime in which the ratio of the postsynaptic potential to
the reversal potential is small, and the value of the integration
coefficient αEI depends on the choice of the reversal potential
(SI Appendix has details). However, we stress that the bilin-
ear interaction between the conductances remains valid when
choosing a different reversal potential value (e.g., the I rever-
sal potential), which has been justified in both our theoretical
analysis (SI Appendix) and numerical simulations (SI Appendix,
Fig. S1).

To reveal the mechanism underlying the existence of the
synaptic integration current, for the simplicity of illustration, we
have performed the steady-state analysis. By noticing that the
static analysis fails to describe the temporal integration of synap-
tic inputs, we have also developed a strict analysis based on the
dynamical cable equation when the model neuron receives time-
dependent synaptic inputs. The dynamical analysis also gives rise
to the identical form of synaptic integration current with time-
dependent integration coefficients as a result of spatiotemporal
dendritic integration.

According to the nonlinear integration between E and I con-
ductances in the synaptic integration current, it behooves one
to reexamine the ramifications of previous works involving the
decomposition of E and I synaptic inputs. In many previous
works, based on the form of the traditional synaptic current (Eq.
2), by holding the somatic membrane potential at various lev-
els using the voltage clamp, the E and I synaptic conductances
(9) and currents (10) are estimated from the linear I–V rela-
tion where the slope is the total conductance gE + gI and the
intercept is the reversal current gEεE + gI εI . The measured con-
ductances are often used to evaluate the state of a network
(31). However, our work shows that the E and I conductances
are not linearly separable but interact with each other non-
linearly. Therefore, the interpretation of the measured E and
I components based on the traditional point neuron model is
questionable.

We illustrate the issue of conductance measurement using
realistic neuron simulations as shown in SI Appendix, Fig. S4.
When a pair of E and I inputs is given at the dendritic trunk 350
and 280 µm away from the soma of the realistic neuron model
separately, we calculate the E and I conductances in the cor-
responding point neuron model as the reference conductances.
Note that the reference conductance is different from the local
conductance at the dendrite; instead, it reflects directly the func-
tional impact of local synaptic inputs on the somatic membrane
potential change and thereby, neuronal information processing
at the soma. When the same pair of E and I inputs is given at
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the dendritic trunk simultaneously, by using the voltage clamp,
the measured E and I conductances based on Eq. 2 significantly
deviate from the reference conductances. In addition, in the case
shown in SI Appendix, Fig. S4, the fact that inhibition is dominant
to excitation can be misinterpreted as that E and I are approx-
imately balanced. Through our analysis, the error is induced
by neglecting the nonlinear integration between currents across
the spatial dendrites when using the traditional point neuron
framework.

It has been broadly believed that many dendritic phenomena,
such as the integration of spatially distributed synaptic inputs,
are beyond the scope of the existing point neuron models (32,
33). However, the dendritic integration process is known to
have a strong impact on the action potential generation and
thereby, neuronal information coding. Here, we have developed
an effective point neuron model (i.e., a point neuron model with
the synaptic integration current incorporated) that can capture
many dendritic effects, and it has succinct structure for analysis
and simulation. We have shown that the effective point neuron
model can achieve the same order of accuracy for the somatic
voltage dynamics as a detailed multicompartment model with
substantially low computational costs (Fig. 5D).

Therefore, it is promising to develop fast algorithms for neu-
ronal simulations to capture the dynamics of a neuron with
realistic dendritic morphology. To be specific, the spatiotemporal
profile of the integration coefficients encoding the information
of synaptic inputs can be measured in advance and recorded
in a library for future simulations. When simulating the point
neuron model, the dendritic integration effect can be accu-
rately captured by simulating the synaptic integration current
with the integration coefficient read out from the library. It has
been found in our simulation that the library of the integra-
tion coefficients is very sparse (SI Appendix, Fig. S5) (i.e., the
majority of the coefficients are not large enough to induce a 5%
change of SSP). This is consistent with previous works show-
ing that the nonlinear interaction between a pair of inputs is
mainly localized within a branch (26, 27). The sparsity of bilin-
ear synaptic interactions benefits the simulation efficiency of
our point neuron model. Consequently, the simulation speed
is expected to be improved tremendously in comparison with
simulating the realistic neuron model with full dendrites. The
developed point neuron model in this work only describes the
subthreshold regime without accounting for active channels asso-
ciated with spike generation. However, this limitation could be
potentially overcome by modeling the spike time as when the
voltage reaches a firing threshold (i.e., the integrate-and-fire–
type neuron). Another limitation of the developed point neuron
model is that the integration current derived in our model so far

only takes into account the second-order interaction of synaptic
inputs; therefore, it may not be capable of capturing highly non-
linear dendritic phenomena, such as dendritic spikes and plateau
potentials. Capturing these phenomena may involve the volt-
age dependence of the integration coefficients and higher-order
interactions of synaptic inputs.

Furthermore, the form of the synaptic integration current
reshapes the synaptic input modeling in both experiments and
simulations. For instance, dynamic clamp has been extensively
used in electrophysiological experiments, in which realistic E and
I synaptic currents are generated at the soma of a neuron (34, 35)
to mimic synaptic current dynamics. Based on our results, these
synaptic currents are far from reality because of the neglect of
the synaptic integration current. An appropriate way suggested
by our results is to generate synaptic currents by incorporating
the synaptic integration current (Eq. 5) in future studies.

Materials and Methods
Slice Electrophysiology. The experimental procedure of whole-cell record-
ing and microiontophresis on hippocampal CA1 pyramidal neurons in
acute brain slices (350-µm thick) of juvenile Sprague–Dawley rats (postna-
tal days 15 to 20) followed the methods described in our previous study
(21). The animal experimental protocols were approved by the Animal
Use and Care Committee of the State Key Laboratory of Cognitive Neu-
roscience & Learning at Beijing Normal University (IACUC-BNU-NKLCNL-
2016-02).

Realistic Neuron Simulation. We adapted the multicompartment neuron
model used in our previous studies (21, 24, 25) for our realistic pyrami-
dal neuron simulation. The morphology of the reconstructed pyramidal
neuron, which includes 200 compartments, was obtained from the Duke–
Southampton Archive of Neuronal Morphology (36). The passive cable
properties and the densities of active conductances in the neuron model
were based on published experimental data obtained from the hippocampal
and cortical pyramidal neurons (27, 37–48). In particular, the multicom-
partment neuron model included the voltage-gated sodium channel, the
delayed rectifier potassium channel, 2 variants of the A-type potassium
channel, and the hyperpolarization activated channel. The E and I synap-
tic inputs were given through AMPA and GABAA receptors, respectively.
The resting potential was set to Vr =−70 mV, and the E and I rever-
sal potentials were set to EAMPA = 0 and EGABAA =−80 mV. We used the
NEURON software Version 7.4 (49) to simulate the model with a time step
of 0.1 ms.
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