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A hidden Markov model 
for lymphatic tumor progression 
in the head and neck
Roman Ludwig*, Bertrand Pouymayou, Panagiotis Balermpas & Jan Unkelbach

Currently, elective clinical target volume (CTV-N) definition for head and neck squamous cell 
carcinoma (HNSCC) is mostly based on the prevalence of nodal involvement for a given tumor 
location. In this work, we propose a probabilistic model for lymphatic metastatic spread that 
can quantify the risk of microscopic involvement in lymph node levels (LNL) given the location of 
macroscopic metastases and T-category. This may allow for further personalized CTV-N definition 
based on an individual patient’s state of disease. We model the patient’s state of metastatic lymphatic 
progression as a collection of hidden binary random variables that indicate the involvement of LNLs. 
In addition, each LNL is associated with observed binary random variables that indicate whether 
macroscopic metastases are detected. A hidden Markov model (HMM) is used to compute the 
probabilities of transitions between states over time. The underlying graph of the HMM represents 
the anatomy of the lymphatic drainage system. Learning of the transition probabilities is done 
via Markov chain Monte Carlo sampling and is based on a dataset of HNSCC patients in whom 
involvement of individual LNLs was reported. The model is demonstrated for ipsilateral metastatic 
spread in oropharyngeal HNSCC patients. We demonstrate the model’s capability to quantify the risk 
of microscopic involvement in levels III and IV, depending on whether macroscopic metastases are 
observed in the upstream levels II and III, and depending on T-category. In conclusion, the statistical 
model of lymphatic progression may inform future, more personalized, guidelines on which LNL to 
include in the elective CTV. However, larger multi-institutional datasets for model parameter learning 
are required for that.

In radiation therapy and surgical treatment of most cancer types it is the aim to irradiate or resect as much malign 
tissue as possible, including elective treatment of regions of possible microscopic spread, to increase the patient’s 
probability of  cure1,2. Many cancer types spread though the lymphatic system and metastasize in regional lymph 
 nodes3–8. Sufficiently large metastases can be identified using computed tomography (CT), magnetic resonance 
imaging (MRI), or positron emission tomography (PET)9–11. However, current in-vivo imaging techniques are 
not able to detect microscopic metastases, which would require pathological examination of the  tissue12,13. Clini-
cians are therefore regularly challenged with assessing the risk of microscopic involvement in regions that are not 
clearly cancerous. Deciding which part of the lymph drainage region to irradiate or resect is essential to balance 
the conflicting goals of maximizing the tumor control probability (TCP), while at the same time minimizing 
harmful side effects associated with unnecessary treatment of healthy  tissue14.

In this work, we consider head and neck squamous cell carcinomas (HNSCC), which frequently spread 
through the lymphatic system in the neck region. In case of pharyngeal tumors (hypo-, naso- and oropharynx), 
between 64 and 80% of patients present with clinical metastatic neck nodes at the time of  diagnoses3,15. To stand-
ardize the location of lymph node metastases, the neck is anatomically divided into lymph node levels (LNL)16,17. 
LNLs are then often prophylactically irradiated or resected based on the possibility of harboring occult metastases 
despite negative findings on imaging. In the case of radiotherapy, this concept is referred to as elective nodal 
irradiation. Defining the nodal clinical target volume (CTV-N) for radiotherapy planning amounts to deciding 
which LNLs to include in the CTV-N. Current  guidelines18–25 are mostly based on  reports6,7,23,26–30 regarding the 
prevalence of lymph node involvement in these levels for a given location of the primary tumor, and thus on the 
patterns of lymphatic progression that were previously observed.

However, current guidelines do not provide clinicians with personalized risk assessments on an individual 
patient basis. Prevalence of lymph node involvement in a population of patients does not quantify the risk of 
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microscopic involvement for any particular patient presenting with a specific state of tumor progression. For 
example, a patient presenting with macroscopic lymph node metastases visible in PET-CT in levels II and III 
may have a higher risk of harboring occult metastases in level IV compared to a patient without diagnosed 
metastases in level III. To address this aspect, a methodology for quantitative risk assessment has been proposed 
that uses Bayesian networks to model the joint probability distribution of LNL  involvement31 based on a dataset 
of lymphatic progression pattern in a cohort of HNSCC  patients8.

However, the mentioned work on a Bayesian network  model31 was not able to describe the evolution of a 
patient’s disease over time in a natural manner. Our work can be seen as an extension of this earlier  work31 in 
that respect and extends its capabilities regarding the incorporation of T-category into the risk estimation of 
microscopic involvement. Metastatic progression of tumors is a dynamic process in which the probability of 
LNL involvement increases over time. We introduce a probabilistic model of lymphatic metastatic spread over 
time using hidden Markov models (HMM). The T-category of a tumor can be seen as a surrogate for time. Early 
and late T-category tumors are the same type of tumors with the same patterns of lymphatic progression, with 
the main difference that tumors with advanced T-category are on average diagnosed at a later point in time. 
The model is trained with detailed involvement patterns from a cohort of HNSCC patients and can afterwards 
be used to predict the risk of nodal involvement for new patients, given their T-category and location of mac-
roscopic metastases.

In "Bayesian network of lymph node level involvement" section we introduce notation and briefly recap 
how Bayesian networks (BN) were used  previously31 to model lymphatic spread, which is the foundation for 
the further development presented in this paper. Afterwards in "Hidden Markov model of lymphatic tumor 
progression" section, we describe in detail the mathematics of how we applied hidden Markov models (HMM) 
to model tumor progression over time and incorporate T-category into microscopic involvement risk estima-
tion. How we tested our model’s predictive capabilities is described in "Application to oropharyngeal HNSCC" 
section along with the respective results. Finally—in "Discussion and Outlook" section—we will discuss future 
steps towards improving the methodology further. We also make the code base that was developed and used 
for this work publicly available along with the data the model was trained on for the results presented here (see 
supplementary information).

Bayesian network of lymph node level involvement
We model the state of each LNL as a hidden or unobserved binary random variable, which indicates via values 0 
or 1 if an LNL is healthy or involved, respectively. This state indicates if there is truly tumor present in an LNL, 
including the presence of occult metastases for the involved state—motivating the term hidden or unobserved 
state. Every LNL can be diagnosed using one or multiple modalities. Most used for diagnosis are imaging tech-
niques like PET, CT and MRI, but palpation or fine needle aspiration (FNA) are also used. The diagnosis too, 
is modelled as binary random variable—this time an observed one—taking on 0 for negative and 1 for positive.

For notational convenience, we collect the hidden and observed random variables in a random vector each:

where V  is the number of LNLs v ∈ {1, 2, . . . ,V} in the graph, while we have called the set of diagnostic modali-
ties O =

{

CT,MRI, palpation, FNA, . . .
}

.
The conditional probabilities that link the hidden state to the observations can be written as follows:

with skN and skP being the sensitivity and specificity of the diagnostic method, respectively. For example, for the 
probability of a false negative observation, that is diagnostic modality k misses the presence of tumor, we get

Spread of the tumor through the lymphatic network is represented in this model by directed arcs to and 
between LNLs as illustrated in Fig. 1. We introduce an additional vertex to the graph representing the primary 
tumor, which we assume to be the only one. Directed arcs from the primary tumor to an LNL represent direct 
spread of tumor cells from the primary tumor to the LNL. These arcs are associated with parameters bv that we 
call base probabilities, and which indicate the probability that the tumor spreads directly to LNL v . When LNL s 
receives efferent lymphatics from LNL r , this too is represented by a directed arc from LNL r to s , and r = pa(s) 
which is called a parent node of s . These arcs are associated with a transition probability trs from r to s . The net-
work shown in Fig. 1, comprising ipsilateral levels I, II, II, and IV, will be used throughout this work. However, 
when more data of detailed LNL involvement including additional levels becomes available and/or contralateral 
involvement, the model can be extended.

The parameters bv and trs associated with the directed arcs represent conditional probabilities, i.e. bv answers 
the question given that all parent nodes are healthy, how likely is it that the primary tumor spreads to node v? trs 
on the other hand, can answer the question assuming no efferent spread from the primary tumor and given that 
all parent nodes except r are healthy, what is the likelihood of spread to node s? The conditional probability for 
involvement of LNL v given the state of its parent nodes is then given by

hidden X = (Xv) → {0, 1}V

observed Z = (Zk
v ) → {0, 1}V×|O|

(1)
PBN

(

Zk
v = zkv | Xv = xv

)

=
(

zkv + (−1)z
k
v · skP

)

(1− xv)

+
(

(1− zkv )+ (−1)1−zkv · skN

)

xv

(2)PBN

(

Zk
v = 0 | Xv = 1

)

= 1− skN
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We note here that this parametrization assumes the independence of causal influences (ICI), thereby allow-
ing us to describe the model using only a few interpretable parameters. Dropping this assumption, a BN can 
also be defined using conditional probability tables (CPT) that have columns for every possible combinations of 
parent  states32. However, with the increase of the number of parent nodes (causes) in the graph, the number of 
parameters in the respective CPT would grow exponentially.

For the graph in Fig. 1 we can write down the parametrized CPT in the following manner:

In case of a more general network, in which some LNLs receive efferent lymphatics from multiple other LNLs, 
Eq. (3) can be generalized and the conditional probability of the hidden state becomes

We can now connect the probability of observing certain Zk
v  given the hidden involvement with the condi-

tional probabilities above. Then the likelihood of observing a cohort of patients Z =
{

zknv|n ≤ N , v ≤ V , k ∈ O
}

 
given a set of parameters θ =

{

bv , tpa(v)v|v ≤ V
}

 is given by

(3)PBN
(

XV = xv | Xpa(v) = xpa(v), bv , tpa(v)v
)

= xv + (−1)xv (1− bv)(1− tpa(v)v)
xpa(v)

(4)

PBN
(

Xv = 0 | Xpa(v) = 0
)

= 1− bv

PBN
(

Xv = 1 | Xpa(v) = 0
)

= bv

PBN
(

Xv = 0 | Xpa(v) = 1
)

= (1− bv)(1− tpa(v)v)

PBN
(

Xv = 1 | Xpa(v) = 1
)

= 1− (1− bv)(1− tpa(v)v)

(5)PBN
(

Xv = xv |
{

Xpa(v) = xpa(v)
}

,
{

tpa(v)v
}

, bv
)

= xv + (−1)xv (1− bv)
∏

p∈pa(v)

(1− tpv)
xp

(6)PBN (Z | θ) =

N
∏

n=1

∑

x∈{0,1}V

V
∏

v=1

∏

k∈O

PBN

(

zknv | xv

)

PBN
(

xv |
{

xpa(v)
}

,
{

tpa(v)v
}

, bv
)

Figure 1.  Bayesian network for modelling lymphatic metastatic spread as described by (Pouymayou et al.)31. 
It consists of the primary tumor T , hidden binary variables Xv for the involvement of LNL v (white circles) and 
observed (or diagnostic) variables as dark circles ( ZO

v  , where O denotes the used diagnostic modality). There are 
potentially many observations per hidden variable. Annotated arcs depict the direction of lymphatic flow where 
the parameter next to it ( b and t  ) represents the probability of metastatic spread. Not annotated arrows connect 
the LNLs to their diagnoses via sensitivity and specificity.
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where we marginalized over all hidden variables X . Here we have assumed that each patient’s diagnosis 
z =

{

zkv | v ≤ V , k ∈ O
}

 is complete, meaning that for all possible observation/imaging modalities, we have a 
diagnosis for each LNL. The likelihood can then be used to infer the model parameters via maximum likelihood 
inference or sampling.

Hidden Markov model of lymphatic tumor progression
While Bayesian networks can model the probabilistic relationship between involvement in different levels, they 
lack an explicit way to describe the evolution of the tumor over time. The concept of dynamic Bayesian network 
(DBN) has been developed to introduce the notion of time into probabilistic models. DBNs are generalizations 
of hidden Markov  models33 and formally similar to what we will introduce now. The metastatic spread in the 
lymphatic system is a dynamic system and by modelling it with a formalism that can capture this, we obtain a 
more intuitive model of the problem and a framework that can incorporate T-category into estimating the risk of 
LNL involvement. We can do this because tumors go through the stages T1 to T4 sequentially, meaning that—for 
a given tumor—it is a surrogate of time.

Formulating lymphatic progression as HMM. We consider discrete time-steps t ∈ {0, 1, 2, . . . ,T} . We 
will start by defining the hidden random variable for the state of the HMM at time t  to be

which represents the patient’s state of LNL involvement as in the BN, but for each time-step we have an instance 
of it. For the diagnosis Z on the other hand, we do not need to differentiate between different times, since in 
practice we will only ever see one diagnosis. This is illustrated in Fig. 2. The reason for this is that, if we diagnose 
a patient with cancer, treatment starts timely and we no longer observe the natural progression of the disease. 
From a modelling standpoint however, this is a problem that we will address later.

A hidden Markov model is fully described by the starting state X[0] := π and the two conditional probability 
functions that govern the progression from a state X[t] at time t  to a state X[t + 1] at the following time-step

and the probability of a diagnostic observation given the true state of the patient

Since both our state space and our observation space are discrete and finite, it is possible to enumerate all 
possible states and observations and collect them in a table or matrix. The transition matrix would then be

and the observation matrix

Here ξ i and ζ j are no new variables, just x and z renamed and reordered. The indices i and j are for one of the 
possible states or observations for the entire patient, not for an individual LNL. In total, there are S = |{0, 1}|V 
different states and S|O| = |{0, 1}|V ·|O| different possible observations. We order the hidden states from

to

in the case of V = 4 . The exact ordering does not matter, it is just a convenience for the notation. Our ordering 
of the states can be seen in the axes of Fig. 3. In analogy, we order the observations ζ j from 1 to V · |O|.

In our case, the starting state corresponds to a primary tumor being present but all LNLs are still in the healthy 
state. The observation matrix B is specified via sensitivity and specificity as described in Eq. (11). The main task 

(7)X[t] = (Xv[t])

(8)PHMM(X[t + 1] |X[t])

(9)PHMM(Z |X[t])

(10)A =
(

aij
)

=
(

PHMM

(

X[t + 1] = ξ i |X[t] = ξ j

))

(11)B =
(

bij
)

=
(

PHMM

(

Z = ζ j |X[t] = ξ i

))

(12)ξ 1 =
(

0 0 0 0
)

(13)ξ 16 =
(

1 1 1 1
)

Figure 2.  Hidden Markov model with only one observation. π denotes the healthy starting state. Horizontal 
arcs represent the transitions from a state. ( x[t − 1] ) to the state at the next time step ( x[t] ). The final state is 
then diagnosed (vertical arc, parametrized via sensitivity and specificity) and we observe z.
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is to infer the transition matrix A . Usually, it is inferred from a series of observations and there exist efficient 
algorithms for that, e.g. the sum-product algorithm, which is particularly efficient in chains. Unfortunately, these 
algorithms cannot be applied for our problem for two profound reasons:

(a) We only have a single observation instead of a consecutive series of observations.
(b) It is unclear how many time-steps it took from the starting state to the one observation we have at the time 

of diagnosis.

In the remainder of "Hidden Markov model of lymphatic tumor progression" section, we will detail the HMM 
step-by-step, starting with the parameterization of the transition matrix A in "Parametrization of the transition 
matrix" section. Afterwards, "Marginalization" section will tackle problems (a) and (b), followed up by explaining 
how we perform inference on this model ("Inference of model parameters" section), incorporate information 
about a patient’s T-category ("Incorporation of T-category" section) and assess the risk of LNL involvement in a 
new patient ("Risk assessment of microscopic involvement" section). Lastly, we will introduce a way to incorpo-
rate incomplete observations in "Learning and risk assessment for incomplete diagnoses" section.

Parametrization of the transition matrix. The transition matrix A has S = 22V entries and therefore 
S(S − 1) = 22V − 2V degrees of freedom. Although searching the full space of viable transition matrices is 
possible via unparametrized sampling techniques, it is computationally challenging and hard to interpret. To 
achieve this reduction in degrees of freedom, and also preserve the anatomically and medically motivated struc-
ture of the Bayesian network in "Bayesian network of lymph node level involvement" section, we can represent 
the transition probability from one state x[t] to another state x[t + 1] using the conditional probabilities defined 
for the BN. The difference is that the probability of observing a certain state of LNL v now depends on the state 
of the patient one time-step before. Note that from here on, we will mostly drop the probabilistically correct 
notation P(X = x) and just write P(x) for brevity.

Here we have reused the conditional probability from the Bayesian network for each LNL, but we take it to the 
power of one minus that node’s previous value. This ensures that an involved node stays involved with probability 
1. The parameters t̃pa(v)v and b̃v take the same role as in the BN, but they are now probability rates, since they 
act per time-step. Lastly, the first term Q in the product formalizes the fact that a metastatic lymph node level 
cannot become healthy again once it was involved. This also means that several entries in the transition matrix 
A must be zero. In a table the values of Q(xv[t + 1]; xv[t]) can be written like this:

(14)

PHMM(x[t + 1] | x[t]) =
∏

v∈V

Q(xv[t + 1]; xv[t])
(

PBN

(

xv[t + 1] |
{

xpa(v)[t]
}

,
{

t̃pa(v)v
}

, b̃v

))1−xv[t]

Figure 3.  Transition matrix. All gray pixels in this image correspond to entries in the matrix being zero. The 
colored pixels take on values ∈ [0, 1] which are here overlayed in %. The exact values stem from the mean of 
the learned parameters in "Application to oropharyngeal HNSCC" section. The exact shape of the grey “mask” 
depends on how one orders the states.
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which gives effectively rise to a “mask” for A which can be seen in Fig. 3.
To illustrate Eq. (14), it helps to look at a specific example. E.g., the transition probability from state 

ξ 5 =
(

0 1 0 0
)

 to state ξ 7 =
(

0 1 1 0
)

 , which represents starting with involvement only in LNL II and ask-
ing for the probability that LNL III becomes involved as well over the next time-step:

The interpretation of the last line is that this is the probability that LNL I and IV do not become involved, 
while LNL III gets infected through lymphatic drainage from either the main tumor or LNL II. The probability 
of LNL II remaining involved is 1, of course, which is why we take the respective term to the power of 0.

Marginalization. To calculate the likelihood function, we have to calculate the probability of a given diag-
nostic observation. To that end, we first calculate the probability of observing a given diagnosis z = ζ j at a fixed 
time-step t  . As depicted in Fig. 4, we must consider every possible evolution of a patient’s disease that leads to 
the observed diagnosis. Mathematically, this means that we need to marginalize over all such paths. And here is 
where the HMM-formalism comes in very useful, because this marginalization happens automatically when we 
multiply the transition matrix with itself:

where the π is the column vector for the healthy starting state. A is multiplied with itself t  times and thereby 
produces a matrix that describes the transition probability from the healthy state to all possible states x[t] in 
exactly t  time-steps marginalized over the actual pathway of the patient’s disease. The index [· · · ]j here means that 
from the resulting (row-)vector of probabilities we take the component that corresponds to the diagnose z = ζ j.

(15)

Q(Xv[t + 1] = 0;Xv[t] = 0) = 1

Q(Xv[t + 1] = 0;Xv[t] = 1) = 0

Q(Xv[t + 1] = 1;Xv[t] = 0) = 1

Q(Xv[t + 1] = 1;Xv[t] = 1) = 1

(16)

PHMM

(

X[t + 1] = ξ 7 | X[t] = ξ5
)

=Q(X1[t + 1] = 0;X1[t] = 0)PBN

(

X1[t + 1] = 0 | b̃1

)1

·Q(X2[t + 1] = 1;X2[t] = 1)PBN

(

X2[t + 1] = 1 | X1[t] = 0, b̃1

)0

·Q(X3[t + 1] = 1;X3[t] = 0)PBN

(

X3[t + 1] = 1 | X2[t] = 1, b̃1

)1

·Q(X4[t + 1] = 0;X4[t] = 0)PBN

(

X4[t + 1] = 0 | X3[t] = 0, b̃1

)1

= (1− b̃1) · 1 · (b̃3 + t̃23 − b̃3 t̃23) · (1− b̃4)

(17)P
(

z = ζ j , t
)

=
[

π⊤ · (A)t · B
]

j

Figure 4.  Illustration of possible paths from the starting state ( π ) to a diagnosis ( z ) at time T on a discrete 
grid of time vs state. Only 4 states (corresponding to 2 LNLs) are shown, where green indicates healthy and 
purple involved. Following the arrows from π to z yields a possible path. Some connections between states are 
forbidden due to Q (no self-healing). To calculate the probability of a diagnosis ( z ), we must marginalize over all 
paths.
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The problem that the number of time-steps until diagnosis is unknown cannot be solved in such an elegant 
fashion. Therefore, we must resort to brute force marginalization and introduce a prior p(t) , which is a discrete 
distribution over a finite number of time-steps. It describes the prior probability that a patient’s cancer is diag-
nosed at a particular time-step t  . To get the probability of a diagnosis z we must compute

While the choice of the time-prior may seem unclear at this point, its role for including T-category into this 
model will be discussed in "Incorporation of T-categoryIncorporation of T-category" section and its choice is 
discussed in detail in the results section below.

Inference of model parameters. In the formalism of the last sections, the PHMM depends implicitly 
through PBN on parameters θ =

{

t̃pv , b̃vv ∈ V , p ∈ pa(v)
}

 , which—as mentioned—are now probability rates 
and have therefore a slightly different interpretation. Due to the marginalization over time-steps in Eq. (18) the 
likelihood function additionally depends on the choice and parametrization of the prior p(t) . The parameters are 
to be inferred from a dataset of lymphatic progression patterns in a cohort of patients. We assume that for each 
patient we record for every LNL v whether it is involved according to diagnostic modality k . In other words, for 
each patient we observe one of the V · |O| possible diagnoses. Formally, we can then express the dataset Z as 
vector f  of the number of patients fi for which the diagnosis corresponds to the observational state ζ i . The like-
lihood P(Z|θ) of observing this dataset, given a particular choice of parameters is then given by

with the probability P
(

ζ i|θ
)

 specified by Eq. (18). The product runs formally over all possible observational states. 
In reality, fi will be zero for very unlikely configurations of lymph node involvement that are never observed.

By Bayes’ rule, the posterior distribution of those parameters is

where P(θ) is the prior over these parameters. Since they are exclusively probability rates, they must all come 
from the simplex S = [0, 1] . In this work we will choose the most uninformative prior

While it is easy to compute the likelihood, it is not feasible to efficiently calculate the normalization constant 
in the denominator of Eq. (20). Hence, we will use Markov-chain Monte Carlo sampling methods to estimate 
the parameters θ and their uncertainty.

Incorporation of T-category. We have introduced the hidden Markov model with the promise that it 
could handle the concept of T-categories through its explicit modelling of dynamic processes. To keep up with 
that, we will now explain how this is achieved using the time-prior p(t).

The core idea is to assume that early T-category and late T-category tumors share the same patterns of 
metastatic progression, except that late T-category tumors are on average diagnosed at a later point in time, and 
thereby also show, on average, higher LNL involvement. Formally, this can be described by assuming a different 
time-prior pT (t) for every T-category. On the other hand, the transition matrix A is assumed to be the same for 
all T-categories.

For the inference of model parameters, the training data is split into subgroups according to T-category. We 
now define a column-vector f T separately for each T-category, which counts the number of patients in the data-
set that were diagnosed with one of the possible observational states and a given T-category. The log-likelihood 
from which we want to sample is then simply a sum of the likelihoods as above, where the essential difference 
is that we equip each marginalization over time with a different time-prior pT (t) , according to its T-category:

The logarithm must be taken elementwise for the resulting row-vector inside the square brackets. The only 
data-dependent term here is the vector f T counting the occurrences of all possible observations. It is again 
important to note that the only difference between the part of the log-likelihood for the different T-categories is 
the exact shape or parametrization of the time-prior. The transition probabilities, and hence also the transition 
matrix A , are the same for all T-categories. For this to work, we rely on the assumption that different typical pat-
terns of nodal involvement for the same primary tumor location are caused mainly by different progression times.

(18)P
(

z = ζ j

)

=
∑

t∈T

p(t) · P
(

z = ζ j , t
)

=

[

∑

t∈T

p(t) · π⊤ · (A)t · B

]

j

(19)P(Z | θ) =

V ·|O|
∏

i=1

P
(

ζ i | θ
)fi

(20)P(θ | Z) =
P(Z | θ)P(θ)

∫

P(Z | θ ′)P(θ ′)dθ ′

(21)P(θ) =

{

1 if θ ∈ S
V(V−1)

0 otherwise

(22)log P(Z | θ) =

4
∑

T=1

log

[

∑

t∈T

pT (t) · π
⊤ · (A)t · B

]

· f T



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:12261  | https://doi.org/10.1038/s41598-021-91544-1

www.nature.com/scientificreports/

Sampling. For learning we employed the python implementation of an advanced ensemble sampler called 
 emcee34 based on an affine invariant ensemble  sampler36 to draw parameter samples from the likelihood in 
Eq. (22). Although sampling is the slowest and least preferable option of inference it is also without doubt in a 
large number of cases the only available option and in our case even feasible; we get relatively short autocorrela-
tion times (around a couple of hundred steps) and an average modern multicore CPU can easily draw hundreds 
of thousands of samples within minutes.

Many distributions in the form of histograms we show in this work are made by computing the respec-
tive quantity—e.g., the risk (see below)—for a subset of the sampled parameters. We typically randomly select 
between 1 and 2% of the 200,000 samples drawn after the so-called burn-in phase, when the sampling has already 
converged to the target distribution, as a subset. The learned parameter densities are depicted as a  corner37 plot 
(e.g. in Fig. 5), which is further discussed in "Application to oropharyngeal HNSCC" section.

Figure 5.  Corner plot of the sampled parameters for the HMM model parameters. The histograms on the 
diagonal show the 1D marginals, while the lower triangle shows all possible combinations of 2D marginals. The 
black lines are the isolines enclosing 20%, 50% and 80% of the sampled points respectively. Correlations between 
the parameters can at most be seen between t̃23 and b̃3.
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Risk assessment of microscopic involvement. With the a parameter set θ =
({

b̃v

}

,
{

t̃pa(v)v
}

)

 , we 
can assess the risk of nodal involvement, given a diagnosis z , of a new patient. Using Bayes’ law, the risk for a 
certain LNL v being involved is given by the conditional probability

Note that on the right, we have explicitly written out the marginalization over all hidden states ξ i that have 
LNL v involved. We have written the state of LNL v in the state ξ i as ξiv . The denominator can be computed using 
Eq. (18), which already includes the marginalization over all hidden states ξ i .

The process of sampling randomly generates L sets of parameters θ =
(

θ1 θ2 . . . θL
)

 . They are therefore 
random variables and so is the risk R(Xv|z , θ) since it is a function of θ . Using the Monte Carlo estimator, we can 
therefore compute the moments of the distribution over the risk, including e.g. the expectation value

In the result sections below, we compute the individual risks for a large enough number L of sampled param-
eters. Thereby, we can compute histograms for the risk that will approach the real probability density of the 
respective risk for L → ∞ . This provides additional information on the uncertainty in the predicted risk resulting 
from uncertainty in the model parameters.

Learning and risk assessment for incomplete diagnoses. A diagnosis is often not complete, mean-
ing that not all LNLs might have been observed with all available diagnostic modalities. E.g., while a patient may 
have undergone a PET-CT scan to identify suspicious lymph nodes in the whole neck, FNA is only performed 
in a subset of LNLs. Hence, we must be able to deal with “incomplete” observations for some LNLs. To do so, we 
first introduce a new observation variable

where ∅ indicates unobserved. One way to do this is to introduce a match function

which returns true if a—potentially incomplete—diagnosis d is consistent with a complete observation z . We 
will use this function for conveniently marginalizing over the missing observations. In analogy to Eq. (23), we 
can compute the risk for an incomplete observation as

The terms in the enumerator on the right-hand side are given by:

In this case, bij denotes the element of the observation matrix that corresponds to state ξ i and observation ζ j . 
Again, the indices {i | ξiv = 1} correspond to all possible states with a positive involvement in lymph node level 
Xv . Essentially, the whole term is the likelihood of an observation d where we have just removed all entries that 
correspond to states with Xv  = 1 both from the observation matrix and the resulting probability vector of the 
evolution. It can therefore be easily computed algebraically again.

The evidence in the denominator becomes essentially a marginalization over all possible diagnoses that are 
not available to us or that we deem unimportant

We can make this summation a bit more elegant using a column-vector cd that has entries corresponding to 
the match-function

where every true corresponds to a 1 and every false to a 0. This way we can rewrite Eq. (29) in the following way:

(23)R(Xv = 1 | z , θ) =
P(Z = z | Xv = 1, θ)P(Xv = 1 | θ)

P(Z = z | θ)
=

∑

{i : ξiv=1} P
(

Z = z | ξ i , θ
)

P
(

ξ i | θ
)

P(Z = z | θ)

(24)Eθ [R(Xv = 1 | z)] =
1

L

L
∑

k=1

R(Xv = 1 | z , θk)

(25)dOv ∈ {0, 1,∅}

(26)match(d, z) :=

{

true if dOv = zOv ∨ dOv = ∅; ∀v,O

false otherwise

(27)R(Xv = 1 | z , θ) =
P(d | Xv = 1, θ)P(Xv = 1 | θ)

P(d | θ)
=

∑

{i : ξiv=1} P
(

d | ξ i , θ
)

P
(

ξ i | θ
)

P(d | θ)

(28)

P
(

d | ξ i , θ
)

P
(

ξ i | θ
)

=
∑

{

ζ j :match
(

d,ζ j

)}

P
(

ζ j | ξ i , θ
)

P
(

ξ i | θ
)

=
∑

{

j:match
(

d,ζ j

)}

bij

[

∑

t∈T

pT (t) · π
⊤ · (A)t

]

i

(29)P(d | θ) =
∑

{

j : match(d,ζ j)
}

[

∑

t∈T

pT (t) · π · (A)t · B

]

j

(30)cdi = match
(

d, ζ i
)
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Using this algebraic notation for marginalizing over unknown or incomplete observations also allows us to 
encode whole datasets D =

(

d1 d2 · · · dN
)

 of (potentially incomplete) observations in the form of matrices

Application to oropharyngeal HNSCC
We considered the graph in Fig. 1 as the underlying abstract representation of the lymphatic flow with only one 
diagnostic modality per LNL. Just as (Pouymayou et al.)31, we used the reconstructed dataset of early T-category 
patients with oropharyngeal carcinomas detailing ipsilateral nodal involvement of the LNLs I to IV from (San-
guineti et al.)8 for inference. Because this publication only reported on 103 N+ patients, we added 44 N0 entries to 
reflect that around 30% of early T-category patients with pharyngeal HNSCC are observed to be node  negative15. 
To make this paper self-contained, the dataset is provided in the supplementary information. During training of 
the HMM we fixed both sensitivity and specificity to 1, since we assumed the pathological report to be the ground 
truth. For the subsequent risk assessment, we set the sensitivity to sN = 81% and the specificity to sP = 76% , 
which represent values for CT  imaging35 analogous to the work on  BN31.

For the time-prior p(t) we chose a Binomial distribution illustrated in Fig. 6 (right) because it has finite 
support, its mean can be controlled by one parameter p , and its shape reflects the intuitive assumption that 
the probability of diagnosing a patient with cancer is small for very early time-steps (when the tumor is small) 
and very late time-steps (when a patient’s symptoms are so severe that it is unlikely that they did not notice 
their disease earlier). The number of time-steps was fixed to 10 and the parameter p was set to p = 0.4 for early 
T-category patients, meaning that the probability of diagnosis peaks around t = 4 , but is non-zero for earlier or 
later times. While it is important to have enough time-steps so the system can evolve, it can be shown that the 
results presented below are mostly independent of the exact choice of the time-prior shape and the number of 
time-steps. This is further detailed in Appendix A.2.

A patient’s evolution. Having inferred the parameters t̃pa(v)v and b̃v , we can model how the state of LNL 
involvement evolves over the time-steps that support the chosen prior. In Figs. 6 and 7 (left), we have plotted the 
probability of each hidden state ξ i for each time-step (calculated for the mean over all parameter samples). At 
time-step zero the patient is healthy, and the system is by definition in the initial state with probability 1. One 
time-step later the individual lymph nodes are involved with the base probability rates b̃v (Fig. 5).

For example, after one time-step the state ξ 5 =
[

0 1 0 0
]

 has a probability of involvement of 
P
(

X[1] = ξ5 |X[0] = π
)

≈ 22.7% while the respective base probability rate is b̃2 ≈ 24% . They are not quite 
the same, since state ξ 5 is only one of the eight states that include involvement of LNL II. After the first time-
step, the transmission between the LNLs starts to play a role. From t = 2 onwards, we can e.g. see an increase 
in the joint involvement of LNL II and III ξ 7 =

[

0 1 1 0
]

 whereas the probability of involvement in LNL III 
only ( ξ 3 =

[

0 0 1 0
]

 ) is low. In Fig. 5, this corresponds to a high rate of spread from level II to III ( ̃t23 ≈ 18% ), 

(31)P(d | θ) =
∑

t∈T

pT (t) · π · (A)t · B · cd

(32)C =
(

cd1 cd2 · · · cdN
)

Figure 6.  Probability of being in each hidden state as a function of time (left). The color indicates low (green) 
and high (red) probabilities, which are also written on the respective pixel in percent if larger than 1%. We used 
the mean of the inferred parameter samples to compute the probabilities. On the right, the used time-prior is 
plotted with which each column on the left will be weighted.
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since the base probability rate for level III is rather low ( ̃b3 ≈ 3% ). After the tenth time-step, we find state 
ξ 8 =

[

0 1 1 1
]

 , representing the involvement of the whole lymphatic chain from LNL II down to LNL IV, to 
be the most likely state. If we would continue to evolve the system beyond this time-step, we would find that the 
probability of the final and worst state ξ 16 =

[

1 1 1 1
]

 grows to 1 for t → ∞ . However, this occurs at a time 
much later than the typical time of diagnosis.

In contrast to the probability of hidden states, the probability of a single LNL’s involvement can only increase 
over time, as depicted in Fig. 7 (middle), since it is a marginalization of all the eight states that contain the 
respective LNL’s involvement. One of these eight states is always the final state ξ 16 and hence the probability for 
involvement in any LNL must approach 1 for increasing t  . Intuitively, this naturally arises as every time-step 
harbors the risk of a level becoming involved, while self-healing is forbidden.

Finally, in the right panel of Fig. 7 shows the probability of a LNL’s involvement marginalized over all time-
steps using the time-prior. The probabilities plotted in this window are the result of marginalizations of the 
matrix plotted in Fig. 6: first, selectively along the x-axis; and secondly, weighted along the y-axis. These mar-
ginalized probabilities are compared to the prevalence of LNL involvement in the dataset used during learning. 
The agreement between our model and the data observed in Fig. 7 (right) verifies that the model can accurately 
describe the data.

Risk prediction and comparison to BN model. In Figs. 6 and 7, we have considered the intrinsic time 
evolution of the hidden state describing lymphatic progression in the patient population. Now, we calculate 
the risk of LNL involvement conditioned on a given diagnostic observation as described in "Risk assessment of 
microscopic involvement" section. Figure 8 shows the estimated risk of involvement for four possible observa-
tional states. The risk is shown in the form of a histogram, which is obtained by taking a random subset of the 
sampled parameters (we took 2% of 200,000 samples) and computing the risk for each sample as explained in 
"Risk assessment of microscopic involvement" section.

As LNL II is involved in the majority of patients, the probability of involvement is high even for negative imag-
ing findings ( ≈ 25% for N0 patients). Positive imaging findings of involvement in level III further increases the 
risk for metastases in level II to almost 40% since the main cause of LNL III’s involvement is the spread from an 
already involved level II. Vice versa, the risk in level III doubles from around 5% for N0 patients to approximately 
10% when II is diagnosed with metastases. But we can also observe this correlation the other way around: If the 
CT image indicates involvement in LNL III, but not in II, then there is actually a 60% chance that this has been 
a false positive finding, considering how rarely level III alone is involved. Finally, also the risk of involvement 
in level IV is increased from 2 to 4% and 6% when observing metastases in level III or in both level II and III, 
respectively. It is important to note that these predictions do not only depend on the dataset that was used to 
train the model, but also on the sensitivity and specificity used to produce a new patient’s diagnosis.

It can be seen that the risk for involvement in level I is low, regardless of diagnostic findings in the levels II 
and/or III. This is because the base probability rate b̃1 ≈ 2% is very small and there is no other LNL that drains 
into this one. Because level I is metastatic so rarely, involvement of level II is dominated by the base probability 
rate b̃2 while the probability of spread from level I to II is almost inconsequential. This leads to the very broad dis-
tribution over the transmission probability t̃12 seen in Fig. 5 as almost any value of t̃12 is consistent with the data.

Figure 8 also compares risk estimation for HMM-based model to the previously published BN  model31 
described in "Bayesian network of lymph node level involvement" section. To that end, parameters of the BN 
model have been sampled from the likelihood function (6). The histograms of estimated risk are nearly identical, 
which verifies that the HMM-based model and the BN-based model yield the same risk predictions—a feature 
which is expected from the HMM when only considering a single T-category and thus no time information is 
present. Figure 8 further shows that risk predictions of the BN model using the maximum likelihood estimators 
of its  parameters31, agree with the mean of the histogram. However, the sampling method presented here has the 
additional advantage over previously published model that if provides confidence intervals for the predicted risk.

Figure 7.  (left) Probability of certain hidden state vs time; (middle) Probability of LNL’s involvement 
marginalized over the other LNL’s involvement vs time; (right) The same probabilities as in the middle, but also 
marginalized over the time-prior and depicted as violin plots. The dashed lines represent the prevalence in the 
 dataset8 that was used for training.
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Risk prediction for later T-category. To illustrate the capability of the model to incorporate T-category 
into the risk prediction via the time-prior, we increased the parameter p in the Binomial distribution while keep-
ing the learned parameters b̃, t̃ from the previous section, which were inferred from a dataset of early T-category 
patients.

In Fig. 9 we consider the risk of microscopic involvement in LNL III, given observed positive involvement only 
in LNL II and negative observations in all other LNLs. Increasing the mean of the time-prior yields higher risk of 

Figure 8.  Risk assessment for the involvement of different LNLs (rows), given positive observational findings 
in specified LNLs (columns or labels next to histograms). E.g. row 3 depicts the risk of involvement in LNL III, 
given different observed involvements (from left to right: no involvement, LNL II only, LNL III only, and LNL 
II and III but no others). The orange line depicts the maximum likelihood result from (Pouymayou et al.)31, the 
blue outline histogram represents the BN sampling solutions and the solid coloured histograms are the results 
from the HMM. The colour goes from green (low risk) to red (high risk). Of 200,000 parameter samples, 2% 
were used to create this plot.

Figure 9.  Risk prediction for LNL III, given observed positive involvement in LNL II and negative observations 
in all other LNLs (assuming sN = 81% and sP = 76%)35. The Binomial parameter p was fixed to 0.4 for 
parameter learning (green), representing early T-category patients. Increasing this parameter results in higher 
risk. The blue outline shows the risk in level III obtained for the Bayesian network model. The histograms 
correspond to 1% of the 200,000 samples.
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microscopic involvement. This makes intuitive sense since the expected number of time-steps between healthy 
state and diagnose increases, and therefore the probability of being in a more involved hidden state. Consequently, 
also the predicted risk of microscopic involvement despite negative diagnostic observation increases (orange 
and red histograms in Fig. 9). The variance of that risk increases as well, since predictions typically become more 
and more uncertain the further one extrapolates into the future. This shows that the principal idea behind the 
choice of an HMM works as intended.

Time-prior learning. Although we have now shown how shifting the mass of the time prior towards later 
time steps generally increases the risk of involvement, we are not yet able to identify the different T-categories 
with certain time prior distributions. Throughout this work we will continue to use the Binomial distribution as 
time prior. But even with this simplifying choice, the question remains: Which Binomial parameter should one 
choose for the different T-categories? Our approach to this issue is to fix the Binomial time prior’s p parameter 
for one T-category and simultaneously learn the transition matrix parameters b̃v and t̃pa(v)v together with the 
Binomial time prior’s p parameters for all other T-categories based on the likelihood function (22) described 
in "Incorporation of T-category" section. If we do not fix the time prior parameter for any T-category, the sys-
tem becomes overdetermined and very strong correlations between the spread parameters and the Binomial 
parameter appear (see also Appendix A.2). Then, if the model is presented with different degrees of involvement 
at different T-categories it can separate them by shifting the mass of the respective time priors apart, but it will 
learn the common spread parameters. This approach requires a dataset containing nodal involvement reports 
for patients with different T-categories.

To the best of our knowledge, the dataset of surgically treated early T-category (T1 and T2) patients  in8 is 
the only dataset containing detailed information on LNL involvement, and no corresponding dataset exists for 
late T-category patients (T3 and T4). However, the literature provides estimates on the ratio of N0 (no nodal 
involvement) and N+ (at least one involved LNL) patients for advanced T-categories. Here, we show that this 
information is sufficient to estimate the Binomial time prior’s p for late T-category patients. This situation can 
be considered as a special case of learning from incomplete observations as described in "Learning and risk 
assessment for incomplete diagnoses" section.

As an example for the simultaneous learning, let us consider a patient database Zearly for early T-category 
patterns of involvement and one for late T-category Zlate together with the respective frequency vectors f early 
and f late . Then the log-likelihood for combined learning is given by

where B
(

p, n
)

 is the Binomial distribution with parameters p ∈ [0, 1] and n ∈ N , where the early T-category 
parameter pearly (along with the number of time steps n ) must be fixed beforehand. C is a matrix for handling 
incomplete observations as introduced in "Learning and risk assessment for incomplete diagnoses" section, 
which in this case is a {0, 1}2×N matrix

that marginalizes over all diagnoses that indicate some nodal involvement ( N+ ). The resulting vector after the 
matrix multiplication with C has only two components which correspond to the probability of observing the N0 
diagnosis and any other diagnosis ( N+ ) respectively.

This approach allows us to infer the spread parameters and the late T-category’s Binomial parameter plate if we 
do not have a database of late T-category patients. Simply the percentage of patients without nodal involvement 
in addition to an early T-category cohort is enough. We show this in Fig. 10, where we used the same dataset of 
early T-category patients as in the sections before, but we added the information that for late T-category the N0 
portion would reduce from 30 to 20%. More specifically, this amounts to creating a second “database” of another 
147 patients, but instead of detailed patterns of involvement, each patient has either no nodal involvement 
(healthy state w.r.t. LNLs) or have some ( f late =

(

29 118
)

 ). In the latter case, the system marginalizes over all 
possible observations except the healthy diagnosis. Sensitivity and specificity were kept the same as before. The 
learned spread parameters b̃v and t̃pa(v)v are the same as before, since the sampler is not presented with different 
patterns of progression, but we additionally infer the parameter plate of a Binomial distribution representing the 
late T-category’s time-prior just based on a reduction of the N0 portion.

A comparison of the involvement risk for LNLs III and IV for different combinations of early and late 
T-category given different observed diagnoses is shown in Fig. 11. The risk of microscopic involvement in level 
III is around 5% for early T-category patients which are observed N0 . When only level II is observed to harbor 
metastases, the risk increases to approximately 10%. If, in addition, the patient has late T-category tumor, the 
risk increases further to 15%. Similarly, the risk of microscopic involvement in level IV is low (~ 2%) for early 

(33)

log P
(

Zearly,Zlate | θ , plate
)

= log

[

n
∑

t∈0

B
(

pearly, n
)

· π⊤ · (A)t · B

]

· f early

+ log

[

n
∑

t∈0

B
(

plate, n
)

· π⊤ · (A)t · B · C

]

· f late

(34)C =
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T-category patients without diagnosed metastases but increases to substantially higher values (~ 10%) for late 
T-category patients with observed metastases in LNL II and III.

The absolute numbers for risk of involvement depend on the dataset of progression patterns, the fraction of N0 
patients, and the assumed values for sensitivity and specificity of imaging. Larger datasets are warranted before 
clinical decisions can be based on the model. Nevertheless, Fig. 11 illustrates the potential of the HMM-based 
model to personalize microscopic involvement risk based on the individual patient’s state of disease progression. 
For example, one could consider excluding level IV from the elective CTV for early T-category patients without 
visible metastatic disease in level III.

Discussion and outlook
In this work, we presented a probabilistic model based on HMM for predicting the lymphatic progression of 
HNSCC through a patient’s LNLs. The model allows for estimating risk of microscopic LNL involvement, given 
two patient-specific diagnostic observations: (1) imaging information on the location of macroscopic metasta-
ses, and (2) T-category. The first aspect has been addressed in a previous publication, and we showed that the 
predictions of the new HMM-based model agree with the previously published BN-based model when given 
the same training data. The HMM-based model adds the capability to include T-category into the assessment 
of LNL involvement risk by modeling the transitions between different states of nodal progression over dis-
crete time-steps. This assumes that for a given tumor T-category is a surrogate of time and that primary tumor 
growth and metastatic spread occur alongside and are hence correlated. Late T-category tumors are on average 
diagnosed in a later phase of their disease than early T-category tumors, patients are consequently more likely to 
be in a more advanced state of nodal progression, which in turn increases the risk of microscopic involvement 
of LNL—an intuition that can be quantified by the presented model. Also, the model assumes the pathways of 
lymphatic spread to stay the same throughout the evolution of the disease, which is probably not true for all 
patients, especially when presenting with very advanced tumor stages.

To the best of our knowledge, it has not been investigated how much time passes between tumor forma-
tion and diagnosis and how this varies with T-category. Although, this may initially appear as a problem, it is 

Figure 10.  Sampled late T-category p parameter given an early T-category cohort and a fixed fraction of N0 
patients (20%) for late T-category (left). Plots of the PMFs of the fixed early T-category Binomial distribution 
and the distribution for the expected value of the late T-category parameter (right).

Figure 11.  Distributions over risk of involvement for LNL III (left) and LNL IV (right), each for early and late 
T-category as well as depending on the given observed involvement. The sampled parameters displayed here 
are a randomly selected subset (1% of 200,000) from simultaneous learning. Comparison with Fig. 8 shows that 
these predictions still agree with the results from the early stage only learning.
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surprisingly not relevant—although interesting—how much time passes in the real world between two time-
steps in the model. The model does not even assume that this time per time-step remains constant. It could, for 
example, become progressively shorter for later time-steps, accounting for the fact that a more advanced tumor 
also spreads faster. The time-prior’s exact shape however is harder to determine. This distribution gives, by defi-
nition, the probability to diagnose a patient after t  time-steps, given their T-category. However, it can be shown 
empirically, that support and exact shape of the time-prior have no or limited impact on the model predictions.

There have been two other  studies38,39 from the same group that looked into modelling lymphatic metastatic 
progression in head and neck cancer using Markov models. The authors in those works, too, express that the 
length of a time-step is abstract and not necessary for modelling. The first  study38 differs from the work presented 
here in that it models a LNLs state not as binary, but as a categorical variable taking on values between 0 and 4, 
indicating different states of involvement. With the increase of an LNL’s state, the probability of spread to the 
next LNL increases too. This is an interesting idea that could potentially be incorporated into our methodology 
as well. A shortcoming of their approach is that they assume all LNLs to have the same probabilities of evolving 
and metastasizing and they are not learned, but arbitrarily fixed. Also, T-category enters the model only via the 
number of time-steps the model is run for and the state a patient is ultimately in is modelled as observable, not 
hidden. The second  work39 models T-category explicitly as a random variable and the involvement of all LNLs 
along a chain up to a certain LNL as binary. It is not modelled as hidden and the probabilities for progressing to 
the next T-category are constant, as well as the probabilities for the involvement to spread further down the chain.

The methodology presented here may be used to inform future guidelines on elective nodal CTV definition 
or the extent of surgical resection. However, to do so, learning of the model parameters must be based on larger 
training datasets of lymphatic progression patterns than the one we reconstructed  from8. Currently, there is a lack 
of available training data in the form necessary for the model, which requires a table with rows of patients and 
columns of patient information containing T-category, whether or not each individual LNL was involved, and 
possibly additional risk factors that potentially have impact on nodal progression. Such data is routinely acquired 
in clinical practice and could be anonymized for sharing without substantial hurdles regarding patient data con-
fidentiality. However, it is not published. Many studies only report prevalence of LNL  involvement3,6,7,26–30,40 but 
omit detailed individual reports on the patterns of involvement, i.e. which LNLs were simultaneously involved. 
Although prevalence data can be incorporated into our model as a special case of incomplete observations 
("Learning and risk assessment for incomplete diagnoses" section), it is not helpful for addressing the question 
how the location of macroscopic metastases impacts the risk of microscopic disease in other LNL. At the uni-
versity hospital Zurich, we are currently in the process of collecting and curating such a dataset to consolidate 
risk predictions for ipsilateral levels I-IV and to further extend the model.

Larger data sets will allow us in the future to extend the model to include: (1) additional LNLs such as levels V 
and VII. This corresponds to extending the graph and thereby the set of parameters. Since these levels are more 
rarely involved, larger datasets for training are required. (2) other tumor locations in the head and neck region 
such as hypopharynx, larynx, and oral cavity. Intuitively one may expect that different primary tumor locations 
mainly mean different base probability rates b̃ while the transition probability rates t̃ remain similar, since they 
depend on lymphatic drainage between levels rather than the primary tumor location. However, only larger 
datasets will answer this question. Multiple tumor sites can also be incorporated into our graph-based approach 
with relative ease. (3) contralateral spread accounting for patient-specific observations such as midline extension 
of the primary tumor. Here too, one may expect the transition probability rates to remain similar between ipsi-
lateral and contralateral side while the contralateral base probabilities are lower depending on the lateralization 
of the primary tumor. (4) Beyond changing the graph structure and its parameters, we would also like to include 
other risk factors such as HPV status, age, alcohol and nicotine abuse etc. into the model at some point in the 
future. (5) Apart from HNSCC, the methodology presented here may also be applied to calculate probabilities 
of lymphatic spread in other cancer sites such as breast or advanced stage prostate cancer.

In conclusion, we presented an interpretable probabilistic model to describe lymphatic tumor progression 
over time, which incorporates both the anatomy of the lymphatic drainage system as well as clinical data on 
lymph node involvement. It extends previous work on estimating the risk of microscopic involvement in lymph 
node levels by incorporating T-category as an additional risk factor. When provided with larger and more diverse 
datasets, the model may support clinicians in making CTV-N definition more objective and personalized.
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