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    Introduction 
 Although it is well established that IFN �  causes cell death in a 

variety of cell types ( Deiss et al., 1995 ;  Ossina et al., 1997 ;  Wen 

et al., 1997 ;  Ruiz-Ruiz et al., 2000 ;  Trautmann et al., 2000 ; 

 Horiuchi et al., 2006 ), the signal transduction downstream of 

STAT1 remains largely unknown ( Barber, 2000 ). Unraveling the 

role of IFN �  in apoptosis remains a challenge because IFN �  

may prime cells to apoptosis and through induction of many genes 

can concomitantly elicit an antiproliferative and a proliferative 

state ( Xiang et al., 2008 ). The decision between life and death 

may depend on possible costimuli or the cell type. Enhanced 

expression and translocation of Diablo into the cytosol play a 

critical role in the promotion of IFN � -induced apoptosis of IFN � -

sensitive B cells ( Yoshikawa et al., 2001 ). Th1 cells that secrete 

high levels of IFN �  are more susceptible to activation-induced 

cell death than Th2 cells because Th2 cells express Fas-associated 

phosphatase, FAP-1 ( Zhang et al., 1997 ). In keratinocytes, IFN �  

induces apoptosis via increasing expression of Fas receptor 

( Trautmann et al., 2000 ), whereas the Fas ligand – Fas receptor 

pathway is not involved in the IFN � -induced death of primary 

human airway epithelial cells (AECs [HAECs];  Shi et al., 2002 ; 

 Trautmann et al., 2002 ). IFN �  induces cell death in AECs 

( Tesfaigzi, 2006 ) to remove hyperplastic epithelial cells after 

infl ammation-induced epithelial cell hyperplasia by activating 

STAT1 ( Shi et al., 2002 ), translocating Bax to the ER, and re-

leasing ER calcium ( Tesfaigzi et al., 2002 ;  Stout et al., 2007 ). 

Disruption of the IFN � -induced elimination of hyperplastic epi-

thelial cells can be the source for chronic mucous secretions in 

asthma ( Shi et al., 2002 ;  Pierce et al., 2006 ) or for neoplastic 

growth over prolonged periods ( Youn et al., 2005 ). 

 The Bcl-2 family of proteins consists of members with 

three to four Bcl-2 homology (BH) regions such as the pro-

apoptotic proteins Bax and Bak ( Lindsten et al., 2000 ) and 

the antiapoptotic members such as Bcl-2, Bcl-x L , and MCL-1. 

The interactions of these proteins are an essential gateway re-

quired for cell death in response to diverse stimuli ( Wei et al., 

2001 ) and under a wide variety of circumstances, suggesting that 

they act at a central control (CT) point in the pathway to apop-

totic cell death ( Adams and Cory, 1998 ;  Cryns and Yuan, 1998 ; 

 I
FN �  induces cell death in epithelial cells, but the media-

tor for this death pathway has not been identifi ed. 

In this study, we fi nd that expression of Bik/Blk/Nbk is 

increased in human airway epithelial cells (AECs [HAECs]) 

in response to IFN � . Expression of Bik but not mutant 

BikL61G induces and loss of Bik suppresses IFN � -induced 

cell death in HAECs. IFN �  treatment and Bik expression 

increase cathepsin B and D messenger RNA levels and 

reduce levels of phospho – extracellular regulated kinase 

1/2 (ERK1/2) in the nuclei of  bik +/+   compared with  bik  � / �    

murine AECs. Bik but not BikL61G interacts with and sup-

presses nuclear translocation of phospho-ERK1/2, and 

suppression of ERK1/2 activation inhibits IFN � - and Bik-

induced cell death. Furthermore, after prolonged expo-

sure to allergen, hyperplastic epithelial cells persist longer, 

and nuclear phospho-ERK is more prevalent in airways of 

 IFN �   � / �    or  bik  � / �    compared with wild-type mice. These 

results demonstrate that IFN �  requires Bik to suppress 

nuclear localization of phospho-ERK1/2 to channel cell 

death in AECs.
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 Results 
 IFN �  induces Bik expression to elicit cell 
death in AECs 
 We have previously shown that proliferating but not resting 

HAECs undergo apoptosis in response to IFN �  ( Shi et al., 2002 ) 

and that Bax plays a role in this cell death pathway ( Tesfaigzi 

et al., 2002 ;  Stout et al., 2007 ). To identify which of the BH3-

only proteins initiate IFN � -induced cell death upstream of Bax, 

primary HAECs and AALEB cells, a cell line derived from HAECs, 

were treated with IFN �  for 12, 24, 48, 72, and 96 h, and the 

changed expression of all the BH3-only members of the Bcl-2 

family of proteins was screened using quantitative RT-PCR. 

Signifi cant induction was consistently observed for Bik, but 

Puma, Hrk, Bid, and Bad remained unchanged. Bik mRNA levels 

were induced at 24 – 96 h ( Fig. 1 A ), and Bik protein levels were 

increased at 24 h after IFN �  treatment ( Fig. 1 B ) and remained 

elevated over 96 h (not depicted). [ID]FIG1[/ID]  

 To determine whether Bik expression requires STAT1 ac-

tivation,  STAT1 +/+   and  STAT1  � / �    MAECs were treated with 

IFN �  for 24 h, and cell extracts were analyzed for Bik expres-

sion. Results showed that Bik expression was signifi cantly re-

duced in  STAT1  � / �    compared with  STAT1 +/+   MAECs ( Fig. 1 C ). 

Similarly, compared with Flag-expressing HBEC-2 cells, a sig-

nifi cant reduction in Bik expression was observed in cells ex-

pressing a Flag-tagged dominant-negative construct for STAT1 

that was previously shown to suppress IFN � -induced cell death 

(unpublished data). However, p53, which has been shown to be 

important for inducing Bik ( Han et al., 1996 ;  Mathai et al., 2002 ), 

was not perceptibly affected in these cells ( Fig. 1 C ). 

 The BH3 domain of Bik is crucial 
for inducing death in proliferating 
epithelial cells 
 To investigate the role of Bik and the importance of the BH3 

domain in inducing cell death, we expressed Bik adenoviral 

 Thornberry and Lazebnik, 1998 ). Another group of Bcl-2 fam-

ily members contains only the BH3 motif and displays some 

selectivity for multiple domain Bcl-2 members ( Oda et al., 2000 ; 

 Letai et al., 2002 ) and provides a link between various cell 

death initiators and the execution machinery of apoptosis 

( Coultas et al., 2002 ;  Opferman and Korsmeyer, 2003 ). BH3-

only proteins inactivate the antiapoptotic proteins and allow 

activation of the multidomain proapoptotic members Bax and 

Bak ( Cheng et al., 2001 ;  Naik et al., 2007 ;  Shimazu et al., 2007 ; 

 Willis et al., 2007 ). The proapoptotic activity of BH3-only mol-

ecules is kept in check by either p53-dependent transcriptional 

CT ( Villunger et al., 2003 ), posttranslational modifi cation ( Verma 

et al., 2001 ;  Lei and Davis, 2003 ), or by binding to the dynein 

light chain in myosin V fi lamentous actin and thereby being 

sequestered from binding to Bcl-2 ( Puthalakath et al., 2001 ; 

 Day et al., 2004 ). 

 Our goal for this study was to further characterize the 

IFN � -induced cell death in AECs by identifying the BH3-only 

proteins involved in this pathway. Bik/Blk/Nbk was consistently 

induced by IFN � , and its expression induced cell death. Loss of 

Bik but not p53, Bim, or Bax conferred resistance to IFN �  but 

not to thapsigargin-induced cell death. Primary mouse AECs 

(MAECs) from  p53 - but not  bik -defi cient mice were protected 

from DNA damage – induced cell death. We demonstrate that the 

conserved Leu residue within the BH3 domain of Bik is crucial 

for its cell death – inducing activity by interacting with and sup-

pressing the nuclear localization of phospho – extracellular regu-

lated kinase 1/2 (ERK1/2) in MAECs and HAECs. Furthermore, 

loss of Bik was accompanied by increased nuclear phospho-

ERK1/2 and sustained epithelial cell hyperplasia in mouse air-

ways, and blocking activated ERK1/2 with U0126 suppressed 

cell death in response to IFN �  treatment and Bik expression. 

Therefore, these experiments show that Bik is central in mediat-

ing IFN � -induced cell death by retaining activated ERK1/2 in 

the cytosol in cultured AECs and during resolution of hyper-

plastic epithelial cells in mouse airways. 

 Figure 1.    IFN �  treatment induces Bik by activating 
STAT1 to cause cell death in AECs.  (A and B) HAECs 
were treated with IFN �  for the indicated times, and Bik 
expression was analyzed by quantitative RT-PCR (A) 
and Western blotting (B). The relative standard curve 
method was used for analysis of unknown samples, 
and data are presented as fold change after averaging 
the  Δ CT values for the untreated samples. (C)  STAT1 +/+   
and  STAT1  � / �    MAECs were treated with IFN �  for 
24 h on Transwell culture inserts. Protein from harvested 
cells was immunoblotted with the indicated antibodies. 
(D) Detection of Bik in HBEC-2 cells infected with noth-
ing (lane 1), Ad-Bik (lane 2), or Ad-Bik L61G  (lane 3) at 
100 MOI by Western analysis. (E) HBEC-2 cells were 
infected with nothing, Ad-Bik, Ad-Bik L61G , or Ad-GFP, 
and cells were counted 24 h after infection. (F) HBEC-2 
cells were infected with a retroviral expression vector 
for Bik shRNA or an empty vector and 24 h later were 
treated with 50 ng/ml IFN � . Cells were harvested 48 h 
later for Western blot analysis with anti-Bik and antiactin 
antibodies, and cell counts were determined for IFN � -
treated cells infected with a CT vector or Bik shRNA ex-
pression retroviruses. Data presented are means  ±  SEM 
for three independent experiments. *, P  <  0.05; statisti-
cally signifi cant difference from the untreated CT.   
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fers resistance to IFN � -induced AEC death, we isolated MAECs 

from  bik +/+   and  bik  � / �    mice and placed them in culture on Tran-

swell membranes. As expected, Bik expression was induced by 

recombinant murine IFN �  at 24 h in  bik +/+   but not in  bik  � / �    
MAECs ( Fig. 2 A ). [ID]FIG2[/ID]  Consistent with the idea that IFN �  requires 

Bik to induce cell death, IFN �  signifi cantly reduced the number 

of MAECs from wild-type but not from  bik  � / �    mice ( Fig. 2 B ). 

MAECs from  p53  � / �    mice died similarly to those from wild-type 

mice, whereas  bim  � / �    or  bax  � / �    MAECs appeared to be even 

more susceptible to IFN � -induced cell death. IFN �  induced Bik 

expression in  p53  � / �    MAECs ( Fig. 2 C ), suggesting that p53 is 

not a crucial player in the IFN � -induced cell death process. 

 We next determined whether Bik defi ciency affected the 

response of MAECs to proapoptotic stimuli other than IFN � . 

Loss of Bik did not confer any protection on MAECs under-

going apoptosis after exposure to the DNA-intercalating agent 

adriamycin, whereas  p53  � / �    MAECs were completely protected 

( Fig. 2 D ).  Bik +/+   and  bik  � / �    MAECs were also equally suscep-

tible to thapsigargin ( Fig. 2 E ). As was previously reported that 

HAECs are resistant to FasL ( Hamann et al., 1998 ;  Shi et al., 

2002 ), treatment with FasL did not affect both  bik  � / �    and  bik +/+   
MAECs (unpublished data). Therefore, loss of Bik did not sensitize 

expression vector for Bik (Ad-Bik), mutant Bik (Ad-Bik L61G ), 

or adenoviral expression vector for GFP (Ad-GFP) in the im-

mortalized AEC line, HBEC-2, and HAECs using an adenoviral 

expression system at an MOI of 100 ( Fig. 1 D ). Ad-Bik expres-

sion reduced the number of HBEC-2 cells signifi cantly ( Fig. 1 E ) 

compared with Ad-Bik L61G  –  or Ad-GFP – infected cells with an 

equal amount of MOI. As was previously observed for IFN �  ( Shi 

et al., 2002 ), the ability of Bik to induce cell death was sensitive 

to cell growth conditions because confl uent cultures of HBEC-2 

cells or HAECs were unaffected by Ad-Bik infection, even 

though Bik expression was evident by Western blot analysis (un-

published data). To further investigate the role of Bik in IFN � -

induced cell death, IFN � -induced Bik expression was suppressed 

in HAECs by infecting with a retroviral expression vector for 

Bik short hairpin RNA (shRNA), whereas CTs were infected 

with empty vector ( Fig. 1 F ). Suppression of IFN � -induced Bik 

expression resulted in a signifi cantly increased number of cells 

compared with cells infected with CT retrovirus ( Fig. 1 F ). 

 Overall, these studies showed that IFN �  induces cell death 

in AECs through Bik, although a previous study using  bik  � / �    
mice had shown that Bik has no role in hematopoietic cell death 

( Coultas et al., 2004 ). To determine whether Bik defi ciency con-

 Figure 2.     Bik  � / �    MAECs are resistant to IFN � -induced cell death.  (A) Western blot analysis shows that MAECs from  bik +/+   mice express Bik 24 h after IFN �  
treatment, whereas  bik  � / �    MAECs did not. (B) Primary MAECs isolated from  bik  � / �   ,  p53  � / �   ,  bax  � / �   ,  bim  � / �   , and wild-type mice were placed in culture on 
Transwell membranes treated with 50 ng/ml recombinant murine IFN �  or were left untreated and counted 4 d later. MAECs from  p53  � / �   ,  bax  � / �   ,  bim  � / �   , 
and wild-type mice showed signifi cant reduction, whereas  bik  � / �    AECs were unaffected. Data presented are means  ±  SEM for three independent experi-
ments. (C) MAECs from  p53  � / �    mice were either left untreated or were treated with IFN �  for 24 h, and protein extracts were analyzed for Bik expression 
by Western blotting. (D)  p53  � / �   ,  bik  � / �   , and wild-type MAECs were treated with 0.5  μ M adriamycin and counted at 0, 1, and 2 d. (E)  Bik +/+   and  bik  � / �    
MAECs were treated with 1  μ M thapsigargin, and cell viability was determined at 0, 1, and 2 d. (F)  bik +/+   and  bik  � / �    MAECs were treated with 50 ng/ml 
IFN � , and cell viability was determined at 0, 1, and 2 d. (G and H)  Bik  � / �    MAECs were either infected with Ad-GFP, Ad-Bik, or Ad-Bik L61G , and 24 h later 
protein extracts were analyzed for Bik expression by Western blotting (G) and cells were counted (H). Error bars indicate  ±  SEM. *, P  <  0.05; statistically 
signifi cant difference from the untreated CT.   
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death ( Deiss et al., 1996 ;  Wang et al., 2000 ). Therefore, HBEC-2 

cells were treated with IFN �  or nothing as a CT or were infected 

with Ad-Bik, Ad-Bik L61G , or GFP (Ad-GFP), and expression of 

cathepsins B and D was analyzed by RT-PCR. Both cathepsins 

B and D were reproducibly induced by both IFN �  and Ad-Bik but 

not by Ad-GFP or Ad-Bik L61G  or in untreated CTs ( Fig. 3 B ). In ad-

dition, treatment with IFN �  increased expression of cathepsins 

B and D ( Fig. 3 C ) and annexin V positivity ( Fig. 3 D ) signifi cantly 

more in  bik +/+   compared with  bik  � / �    MAECs, further confi rming 

that Bik is a central mediator for this cell death pathway. 

 Bik blocks nuclear translocation of 
activated ERK1/2 to cause cell death 
 A previous study showed that IFN � -induced cell death of oligo-

dendroglial cells requires ERK1/2 activation ( Horiuchi et al., 

2006 ). To determine the mechanisms of how Bik mediates IFN � -

induced cell death, extracts from HBEC-2 cells treated with 

IFN �  for 0, 1, 4, 8, 24, and 48 h were subjected to Western blot 

analysis. ERK1/2 was signifi cantly activated 24 h after IFN �  treat-

ment ( Fig. 4 A ), but the extent of ERK1/2 activation was similar 

in  bik +/+   and  bik  � / �    MAECs when treated with IFN �  for 24 h 

and Bik expression was evident ( Fig. 4 B ), suggesting that Bik 

was not mediating ERK1/2 activation. [ID]FIG4 [/ID]  Previous studies had 

demonstrated that nuclear ERK activation causes cells to prolif-

erate, although cytosolic ERK is associated with cell death ( Lai 

et al., 2002 ;  Chen et al., 2005 ). Therefore, we examined the dis-

tribution of phospho-ERK1/2 in IFN � -treated  bik +/+   and  bik  � / �    
MAECs and found that activated ERK1/2 was reduced in the 

MAECs to FasL-induced cell death. However, consistent with 

the described experiments, Bik defi ciency completely protected 

MAECs from IFN �  observed over a period of 48 h, whereas 

 � 50% of  bik +/+   MAECs died over this time period ( Fig. 2 F ). 

To further confi rm that Bik is crucial for IFN � -induced cell death, 

we reintroduced either wild-type Bik or mutant Bik into  bik  � / �    
MAECs using adenoviral infection and found signifi cant cell 

death in  bik  � / �    MAECs by expressing wild-type but not mutant 

Bik ( Fig. 2, G and H ). 

 Translocation of phosphatidylserine from the inner leafl et 

of the cell ’ s membrane to the outer leafl et is an early event in 

apoptotic cells that allows binding to annexin V ( Vermes et al., 

1995 ). Treating HBEC-2 cells with IFN �  for 48 h consistently 

showed a signifi cant increase of cells that are positive for pro-

pidium iodide and annexin V FITC compared with nontreated CTs 

( Fig. 3 A ). [ID]FIG3[/ID]  Similarly, the percentages of early and late apoptotic 

cells as determined by annexin V and propidium iodide staining 

were signifi cantly increased from 5.5  ±  0.8% to 23.6  ±  2%, and 

the percentage of viable cells was reduced from 91.8  ±  0.8% to 

67.9  ±  3.4% at 24 h of infection with Ad-Bik L61G  and Ad-Bik, 

respectively ( Fig. 3 A ). To ensure that cells were infected with 

equal titers of the adenoviral vectors, Bik expression was ana-

lyzed by Western blotting, and infection with Ad-GFP showed 

minimal cell death (unpublished data). 

 If Bik is crucial for IFN � -induced cell death, we reasoned 

that the known downstream effectors for IFN � -induced cell death 

would be identically induced by Bik. Cathepsins B and D are 

increased in expression by IFN �  and mediate the resulting cell 

 Figure 3.    INF �  and Bik induce annexin V positivity and expression of cathepsins B and D.  (A) HBEC-2 cells were either left untreated, were treated with 
IFN �  for 48 h, or were infected with Ad-Bik or Ad-Bik L61G  and stained for annexin V positivity. Representative fi gures of six independent experiments are 
shown. (B) HBEC-2 cells were treated with nothing or IFN �  or were infected with Ad-GFP, Ad-Bik L61G , or Ad-Bik, and mRNA levels for cathepsins B and D 
were assessed by RT-PCR.  � -Actin mRNA expression was used as a loading CT, and expression levels were compared with CTs. A representative fi gure 
and the quantifi cation of data expressed as mean  ±  SEM representing  n  = 3 for each group are shown. *, P  <  0.05 compared with the respective CTs. 
(C)  bik +/+   and  bik  � / �    MAECs were treated with 50 ng/ml IFN � , and mRNA levels for cathepsins B and D were assessed by RT-PCR.  � -Actin mRNA expression 
was used as a loading CT. (D) Annexin V positivity of  bik  � / �    and  bik +/+   MAECs treated with 50 ng/ml IFN � . NT, not treated.   
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in the cytosolic extracts from CT and Ad-Bik – infected cells, 

phospho-ERK1/2 was absent in the nuclear fraction of Ad-Bik –

 infected HAECs but present in CT cells transfected with Ad-GFP –  

and Ad-Bik L61G  – infected cells ( Fig. 4 D ). To investigate whether 

Bik binds to activated ERK1/2 to inhibit its nuclear trans-

location, we performed immunoprecipitation assays with pro-

teins extracted from HBEC-2 that were infected with Ad-GFP, 

Ad-Bik, or Ad-Bik L61G . Results showed that phospho-ERK1/2 

nuclear extract of  bik +/+   compared with  bik  � / �    MAECs ( Fig. 4 C ). 

To further confi rm that Bik overexpression inhibits nuclear trans-

location of ERK1/2, primary HAECs were infected with noth-

ing as a CT, Ad-Bik, Ad-Bik L61G , or Ad-GFP, and the cytosolic 

and nuclear extracts were analyzed by Western blotting 48 h 

later. We had previously observed that leaving the medium un-

changed for 48 h caused sustained activation of ERK1/2 in HAECs 

(unpublished data). Although phospho-ERK1/2 was detected 

 Figure 4.    Bik binds to activated ERK1/2 and inhibits its nuclear translocation.  (A) HBEC-2 cells were treated with 50 ng/ml human recombinant IFN � , and 
ERK1/2 activation was assessed at 1, 4, 8, 24, and 48 h of IFN �  treatment. The ratio of phospho-ERK1/2 to total ERK1/2 at different time points after IFN �  
treatment was quantifi ed. (B) ERK1/2 activation in MAECs from  bik +/+   mice compared with those from  bik  � / �    mice after IFN �  treatment. MAECs were treated with 
50 ng/ml murine recombinant IFN �  for 24 h, and protein extracts were analyzed for Bik expression and phospho-ERK1/2. (C) Nuclear extract from IFN � -treated 
 bik +/+   and  bik  � / �    MAECs was analyzed for activated ERK1/2. (D) Translocation of phospho-ERK1/2 is inhibited by Bik expression in primary HAECs. HAECs 
were either left untreated or were infected with Ad-Bik, Ad-Bik L61G , or Ad-GFP at an MOI of 100, and ERK1/2 was activated by maintaining cells in unchanged 
media for 48 h. Nuclear and cytosolic extracts were analyzed for phospho-ERK1/2, total ERK1/2, Bik, lamin, and actin. The fi gure is representative of three 
independent experiments. (E) Bik interacts with phospho-ERK1/2. Cell lysates prepared from HBEC-2 cells infected with either Ad-GFP, Ad-Bik, or Ad-Bik L61G  were 
immunoprecipitated with anti-Bik antibody. The cell lysates (input) and immunoprecipitates were resolved by SDS-PAGE and analyzed by Western blotting using 
antibodies to Bik, phospho-ERK1/2, and total ERK1/2. (F) Representative photomicrographs and quantifi cation showing that a higher percentage of MAECs from 
 bik  � / �    compared with  bik +/+   mice displays nuclear localization of activated ERK1/2. MAECs were treated with 50 ng/ml IFN �  for 24 h, fi xed in paraformalde-
hyde, and immunostained for phospho-ERK1/2. The percentage of nuclei with phospho-ERK was quantifi ed from three independent experiments. Bar, 10  μ m. 
(G) HBEC-2 cells were infected with 100 MOI Ad-Bik and were cotreated with 1  μ M U0126, the ERK-specifi c inhibitor. Cells infected with Ad-Bik showed a 60% 
decline in total cell number, and this decline was diminished when the HBEC-2 cells were cotreated with 0.1 or 1  μ M U0126. The corresponding Western blot 
of proteins extracted from cells infected with Ad-Bik and treated with U0126 to suppress ERK1/2 activation. (H) Cell counts and Western blot analysis of protein 
extracted from HBEC-2 cells that were left untreated or treated with IFN �  either alone or with U0126. Treatment with 1  μ M U0126 did not affect cell growth. NT, 
not treated. Error bars indicate group means  ±  SEM ( n  = 4 different treatments per group). *, P  <  0.05; signifi cantly different from Ad-Bik – infected cells.   
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U0126 ( Fig. 4 G ). Western blot analysis showed that in the pres-

ence of U0126, the levels of activation of cytosolic ERK1/2 were 

dramatically reduced in AECs infected with Ad-Bik ( Fig. 4 G ). 

Similarly, U0126 signifi cantly attenuated IFN � -induced reduc-

tion of cell numbers and suppressed IFN � -induced cytosolic 

ERK1/2 activation ( Fig. 4 H ). Together, these experiments demon-

strate that IFN �  through Bik inhibits nuclear translocation of 

activated ERK1/2 and that cytosolic ERK1/2 is proapoptotic. 

 Bik mediates removal of hyperplastic 
epithelial cells in mouse airways 
 Repeated exposure to allergen results in proliferation and epi-

thelial cell hyperplasia associated with the mucous phenotype; 

is detected in pull-down products from Ad-Bik –  but not from 

Ad-Bik L61G  –  or Ad-GFP – infected HBEC-2 cells ( Fig. 4 E ), sug-

gesting that Bik directly interacts with phospho-ERK1/2 to 

sequester ERK1/2 in the cytoplasm. 

 Immunofl uorescence staining showed that the percentage 

of cells with nuclear phospho-ERK1/2 was signifi cantly higher in 

 bik  � / �    MAECs compared with that observed in  bik +/+   MAECs 

after 24 h of IFN �  treatment ( Fig. 4 F ). These results demonstrate 

that expression of Bik suppresses nuclear translocation of acti-

vated ERK1/2 and that the conserved Leu residue in the BH3 do-

main of Bik is crucial for the inhibition of translocation. Activated 

ERK1/2 in the presence of Bik was proapoptotic because Ad-Bik –

 induced cell death was suppressed by the ERK1/2 inhibitor 

 Figure 5.    IFN �  and Bik are crucial for the resolution of epithelial cell hyperplasia and mucous cell metaplasia during prolonged exposure to allergen.  Mice 
were immunized with ovalbumin/alum on days 1 and 7 and were exposed to ovalbumin aerosols for 5, 12, or 15 d. After sacrifi ce, the lungs of each 
mouse were fi xed under constant pressure perfusion and cut in 4-mm slices from distal to caudal. Slices were embedded in paraffi n, and tissue sections were 
stained with hematoxylin and eosin or AB/periodic acid Schiff to count the total cell number or mucous cell per millimeter of basal lamina, respectively. 
(A and B) The number of epithelial cells per millimeter of basal lamina was signifi cantly reduced in wild-type mice but not in IFN �   � / �   (A) or  bik  � / �    (B) mice 
at 15 d of exposure. Error bars indicate  ±  SEM. (C) Representative micrographs from  bik +/+  - and  bik  � / �   -sensitized mice exposed to allergen for 5, 12, and 
15 d display that the density of epithelial cell nuclei is reduced in  bik +/+   but not in  bik  � / �    airways. (D) The number of mucous cells per millimeter of basal 
lamina was signifi cantly reduced in  bik +/+   but not in  bik  � / �    mice. (E) Representative micrographs from  bik +/+   and  bik  � / �    mice. Error bars indicate group 
means  ±  SEM ( n  = 5 mice per group). (F) Representative photomicrographs and quantifi cation showing that activated ERK1/2 is found in the nuclei in  bik +/+   
and  bik  � / �    mice exposed to allergen for 5 d, but nuclear phospho-ERK is only observed in airways of  bik  � / �    mice at 12 and 15 d. Arrows denote nuclear 
phospho-ERK1/2. Error bars indicate group means  ±  SEM ( n  = 3 mice/group). Representative photomicrographs showing that total ERK1/2 is uniformly 
distributed in airways from  bik +/+   and  bik  � / �    mice exposed to allergen for 5, 12, and 15 d. *, P  <  0.05; signifi cantly different from wild-type CTs.   
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Overall, the fi ndings suggest that although STAT1 may affect many 

signaling pathways in vivo, its activation requires Bik expres-

sion to channel the apoptotic effect. 

 Several observations show that the pathway by which IFN �  

induces cell death does not involve the p53 pathway. (1) Resis-

tance of  bik  � / �    MAECs to IFN �  did not include the resistance 

to adriamycin that is mediated by DNA damage and p53 activa-

tion. (2) During IFN � -induced cell death, p53 levels were not 

affected in AECs. (3) IFN �  induced Bik expression in  p53  � / �    
MAECs, suggesting that IFN �  does not require p53 to induce 

Bik expression and cell death. Similarly, others have reported 

that Bik mediates cell death in the p53-defi cient H1299 cells 

and does not require p53 ( Mathai et al., 2002 ). 

 Loss of Bik mediates resistance to IFN �  
but not to other cell death inducers 
 IFN �  induces Bik expression that is localized to the ER ( Mathai 

et al., 2005 ), translocates Bax to the ER, and elicits ER stress as 

shown by release of ER calcium stores ( Stout et al., 2007 ) by 

JNK activation and induction of CHOP levels (unpublished data). 

Bax plays a role in IFN � -induced cell death ( Tesfaigzi et al., 

2002 ), but  bax  � / �    MAECs succumb to IFN �  treatment, suggest-

ing that Bak can substitute for the loss of Bax as was reported 

previously ( Lindsten et al., 2000 ;  Wei et al., 2001 ). In fact, data 

from the present studies suggest that loss of Bim or Bax may 

sensitize MAECs more to IFN � -induced cell death. Future stud-

ies need to investigate the role of Bim and Bax in the IFN � -

induced expression of Bik and/or the ER-stress pathway. 

  Bik  � / �    MAECs are resistant to IFN � -induced ER stress, al-

though they are sensitive to thapsigargin, a selective inhibitor of 

the ER-associated Ca 2+ -ATPase that allows Ca 2+  to fl ow from the 

ER lumen into the cytoplasm. This sensitivity may be the result of 

IFN �  causing activation of ER stress and calcium release by 

mechanisms different from those induced by thapsigargin or be-

cause the ER-associated Ca 2+ -ATPase may be downstream of Bik. 

IFN �  and Bik-induced ER stress may be caused by the inactiva-

tion of GRP78 (BiP), an ER-associated protein that has antiapop-

totic properties ( Fu et al., 2007 ). Bik binds to GRP78 and allows 

the release of the critical transmembrane ER signaling proteins 

PERK, Ire1, and ATF6 ( Xu et al., 2005 ). Protein shutdown caused 

by the bacterial toxin MazF or cycloheximide was also shown to 

require Bik to mediate cell death in TRex-293 cells ( Shimazu 

et al., 2007 ). It is possible that inhibition of protein synthesis causes 

Bik expression by blocking the proteasome degradation system 

and results in massive ER stress through the GRP78 system. 

 Bik blocks nuclear translocation of 
activated ERK1/2 to cause cell death 
 In HAECs, IFN �  activated ERK1/2 24 h after treatment, which 

coincides with the time of Bik expression. ERK1/2 activation 

was also associated with IFN � -induced death in oligodendro-

glial cells ( Horiuchi et al., 2006 ). Because ERK1/2 activation 

was similar in cytosolic extracts from  bik +/+   and  bik  � / �    MAECs, 

we started to analyze whether Bik may affect the localization of 

phospho-ERK1/2. Both Western blot and immunofl uorescence 

analyses confi rmed that the presence of nuclear ERK1/2 was 

suppressed when Bik was expressed. Not only IFN � - but also 

however, when mice are continuously exposed for periods be-

yond 10 d, epithelial cell hyperplasia decreases ( Tesfaigzi et al., 

2002 ). Our previous experiments showed that IFN �  and STAT1 

signaling are central for the resolution of allergen-induced 

epithelia cell hyperplasia ( Stout et al., 2007 ). Because Bik was 

central for IFN � -induced AEC death, we investigated whether 

this resolution process would be abrogated in  IFN �   � / �    and 

 bik  � / �    mice. Interestingly, epithelial cell hyperplasia in  IFN �   � / �    
airways after 5 d of allergen exposure was reduced compared 

with wild-type and  bik  � / �    mice, suggesting that IFN �  plays a 

role in the allergen-induced proliferation of airway cells ( Fig. 5, 

A and B ). [ID]FIG5[/ID]  However, as expected, resolution of epithelial cell 

hyperplasia was abrogated in both  IFN �   � / �    ( Fig. 5 A ) and  bik  � / �    
( Fig. 5, B and C ) mice during 15 d of allergen exposure, al-

though it was signifi cantly reduced in wild-type mice. Further-

more, the number of mucous cells per millimeter of basal lamina 

was signifi cantly reduced in  bik +/+   mice compared with  bik  � / �    
mice during 12 and 15 d of allergen exposure ( Fig. 5, D and E ), 

confi rming that Bik is central for IFN � -induced killing in mouse 

airways as was observed in cultured MAECs. The role of Bik in 

inhibiting nuclear translocation of ERK1/2 was investigated by 

assessing the distribution of phospho-ERK1/2 in lung tissues of 

 bik +/+   and  bik  � / �    mice at 5, 12, and 15 d of allergen exposure. 

Nuclear phospho-ERK1/2 was detected in airway cells of both 

 bik +/+   and  bik  � / �    mice exposed to allergen for 5 d but in signifi -

cantly higher percentages in  bik  � / �    airways at 12 and 15 d of 

exposure ( Fig. 5 F ). Interestingly, primarily the mucus-containing 

cells showed immunostaining for nuclear phospho-ERK1/2. 

Total ERK1/2 was found to be distributed similarly in both 

 bik +/+   and  bik  � / �    mouse lungs after exposure to allergen for 5, 12, 

or 15 d. These fi ndings show that Bik expression suppresses 

nuclear translocation of phospho-ERK1/2 in airways when 

resolution of hyperplastic epithelial cells occurs. 

 Discussion 
 IFN � -induced Bik expression and cell death 
requires STAT1 but is independent of p53 
 Our studies suggest that IFN � -induced activation of STAT1 

causes Bik expression because IFN �  failed to induce Bik ex-

pression in  STAT1  � / �    MAECs, and the same truncation mutant 

of STAT1 that reduced IFN � -induced Bik expression also sig-

nifi cantly reduced IFN � -induced cell death of AECs ( Stout 

et al., 2007 ). The fi ndings from the present study in  bik  � / �    mice 

together with our previous fi ndings that allergen-induced air-

way epithelial hyperplasia is sustained in  STAT1  � / �    mice ( Stout 

et al., 2007 ) places STAT1 activation upstream of Bik. Whether 

STAT1 activation leads to increased Bik promoter activity or causes 

stabilization of Bik mRNA is currently unclear. Support for 

direct interaction and activation of the Bik promoter by STAT1 

could be based on the presence of seven STAT-binding consen-

sus sequences, TTNCNNNAA ( Bromberg and Chen, 2001 ), in-

cluding two tandem sites within the core Bik promoter ( Verma 

et al., 2000 ). However, our attempts to stimulate a Bik promoter 

luciferase construct with IFN �  were not successful, suggest-

ing that other transcription factors or mRNA stability may play 

a critical role in the induction of Bik expression by IFN � . 
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well as mature T and B lymphocytes ( Coultas et al., 2004 ), the 

 bik  � / �    mice develop and age normally, suggesting that IFN � -

induced cell killing is not required during normal development 

under injury- and pathogen-free conditions. Loss of Bik con-

ferred no protection to mature T and B cells from spontaneous 

death in culture, from treatment with dexamethasone or etopo-

side, or from cytokine starvation of mitogen-activated B cells 

( Coultas et al., 2004 ). Bik inducing death in AECs rather than 

hematopoietic cells may result from airway cells expressing other 

genes such as DAP-kinase to facilitate Bik-mediated suppres-

sion of nuclear translocation of phospho-ERK1/2. The cell type –

 specifi c effect of BH3-only domain proteins is further supported 

by our previous studies showing that Bim, an essential initiator 

of apoptosis in negative selection of autoreactive thymocytes 

( Bouillet et al., 2002 ), and B cells ( Enders et al., 2003 ), are 

not involved in the resolution of airway epithelial hyperplasia 

( Pierce et al., 2006 ). 

 The present studies show that loss of Bik or IFN �  leads to 

sustained epithelial cell hyperplasia after allergen-induced in-

fl ammation in mouse airways. In addition, proliferating rather 

than nonproliferating, resting AECs are prone to undergo cell 

death in response to IFN �  treatment or Bik overexpression. 

Therefore, Bik is ineffective in inducing cell death in confl u-

ent airway epithelial cultures (unpublished data). Primarily the 

mucus-containing cells showed nuclear phospho-ERK1/2 in lung 

tissues of mice exposed to allergen. Several studies have shown 

that after injury to the airway epithelium, a large proportion of 

the hyperplastic and cycling cells are secretory cells ( Keenan 

et al., 1982a , b , c ). Because mucous cells are the hyperplastic cells 

( Tesfaigzi et al., 2004 ), they may be by default susceptible to 

cell death and elimination in vivo during resolution. Susceptibil-

ity of proliferating cells to IFN �  or Bik-induced cell death may 

be a mechanism to selectively target hyperplastic epithelial cells 

that in airways usually represent mucus-producing cells ( Lai 

et al., 2002 ). This selective elimination of only hyperplastic cells 

may ensure that resting AECs maintain the barrier function of 

the airway epithelium, may allow the CT of mucus production, 

and may prevent the development of cancerous lesions. There-

fore, restoring Bik expression may be useful for eliminating 

hyperplastic airway cells. Bik was fi rst identifi ed as a protein that 

interacts with the adenoviral protein E1B 19K ( Han et al., 1996 ; 

 Mathai et al., 2002 ). The reason for E1B 19K or the viral homo-

logue encoded by Epstein-Barr virus, BHRF1, singling out Bik 

for inhibition may be to sustain the viability of the host cells and 

promote replication and release of virus particles. 

 In summary, our analyses of HAECs and MAECs in culture 

and in airways of intact mice identify Bik as the central mediator 

of IFN � -induced apoptosis. Furthermore, we provide evidence 

that Bik induces cell death by inhibiting nuclear translocation of 

activated ERK1/2 in a pathway that is independent of p53. 

 Materials and methods 
 Animals 
 Male-specifi c pathogen-free wild-type C57BL/6J and  p53 +/ �    mice were 
purchased from The Jackson Laboratory. Mice were housed in isolated 
cages under specifi c pathogen-free conditions. After a 14-d quarantine 
period, mice were acclimatized for 8 d and entered into the experimental 

starvation-induced phospho-ERK1/2 was inhibited from trans-

locating to the nucleus when Bik was present. The conserved Leu 

residue in the BH3 domain that was crucial for Bik-induced cell 

death was also crucial for interacting and inhibiting phospho-

ERK1/2 translocation. Furthermore, inhibition of ERK1/2 using 

U0126 suppressed IFN � - and Bik-induced cell death, suggesting 

that cytosolic ERK1/2 is proapoptotic, whereas nuclear ERK1/2 

promotes growth in AECs. The biological consequence of ERK 

activation in a given cell may be determined by the cell-specifi c 

cytosolic or nuclear substrates. ERK is generally considered to be 

antiapoptotic ( Kolch, 2005 ) but can function as a stimulator of 

apoptosis in cells expressing death-associated protein (DAP) 

kinase ( Chen et al., 2005 ), a kinase that promotes the cytoplasmic 

retention of ERK1/2. DAP-kinase was isolated from HeLa cells 

as a mediator of IFN � -induced cell death ( Deiss et al., 1995 ; 

 Levy-Strumpf et al., 1997 ), but its role in affecting the BH3-only 

proteins is not known. DAP-kinase is constitutively expressed in 

human HAECs and MAECs (unpublished data). Therefore, IFN � -

induced ERK1/2 activation and Bik expression may initiate a 

feedback loop that initiates DAP-kinase – mediated cytoplasmic 

retention of ERK1/2 to promote the amplifi cation of proapoptotic 

signals. Bik was shown to interact with Bcl-2 ( Boyd et al., 1995 ), 

but this interaction is not suffi cient for its apoptotic function 

( Elangovan and Chinnadurai, 1997 ). The present studies show 

that the proapoptotic function of Bik stems from its ability to in-

hibit nuclear translocation of phospho-ERK1/2. 

 The mechanisms of how Bik expression may induce ex-

pression of cathepsins B and D are unclear. Cathepsin B contains 

a TATA-less promoter but an E box that allows the formation of 

a transcription initiation complex involving the upstream stimu-

latory factors USF1 and ISF2 ( Yan et al., 2003 ). Other transcrip-

tion factors, including Ets1, Sp1, and EBS, regulate expression 

at two alternative promoters ( Yan et al., 2000 ;  Yan and Sloane, 

2003 ). The TATA-containing promoter of cathepsin D is regu-

lated by the hormone estrogen ( Cavailles et al., 1993 ). Future 

studies will investigate whether Bik regulates expression of these 

mRNAs by reducing nuclear translocation of phospho-ERK1/2 

that may have an inhibitory effect on these promoters or by increas-

ing cytosolic phospho-ERK1/2 and prolonging mRNA half-life. 

 IFN �  can be proliferative but requires Bik 
to channel death 
 Exposure to allergen caused more AEC hyperplasia in  bik  � / �    
and wild-type mice compared with  IFN �   � / �    mice, suggesting 

that IFN �  plays a role in the proliferation of epithelial cells. 

However, once the hyperplastic stage was established, the 

resolution was abrogated in both  IFN �   � / �    and  bik  � / �    mice. Such a 

double-sided effect for IFN �  has been previously reported 

( Hansen et al., 1999 ;  Randolph et al., 1999 ;  Xiang et al., 2008 ); 

however, this study demonstrates that IFN �  requires Bik to 

channel its cell death – inducing activity. So far, the murine Bik 

has only been suggested to represent a homologous equivalent 

of human Bik. The present studies show a role of human and 

murine Bik as the main mediator for IFN � -induced cell death 

and, therefore, suggest that they are functionally homologous. 

 Although Bik is expressed in the liver, lung, heart, and 

kidneys and in granulocytes, macrophages, and developing as 
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antibodies as described previously ( Harris et al., 2005 ). Procedures for de-
tection of ERK1/2 by immunofl uorescence using rabbit antiphospho-ERK1/2 
antibody and rabbit anti-ERK1/2 antibody (Cell Signaling Technology) at 
a 1:100 dilution and with a secondary goat anti – rabbit conjugated to 
Alexa Fluor 647 and the counterstain with Hoechst were described previ-
ously ( Stout et al., 2007 ). Immunofl uorescence was imaged using Axioplan 
2 (Carl Zeiss, Inc.) with a Plan-Aprochromal 63 × /1.4 oil objective and a 
charge-coupled device camera (SensiCAm; PCO), and the acquisition soft-
ware used was digital microscopy software (Slidebook 4.2; Intelligent 
Imaging Innovation). Immunohistochemical stains were imaged using a 
microscope (Eclipse E600W; Nikon) with a Plan Fluor 60 ×  NA 0.85 ob-
jective and a digital camera (DXM1200F; Nikon) with ACT-1 acquisition 
software (version 2.62; Nikon). 

 Western blot analysis 
 Protein lysates were prepared and analyzed by Western blotting as described 
previously ( Tesfaigzi et al., 2002 ). Cytosolic and nuclear fractions were pre-
pared by lysing cells in NP-40 to obtain the cytosolic fraction and extracting 
the nuclear proteins with a hypertonic extraction buffer (50 mM Hepes, pH 
7.8, 50 mM KCl, and 300 mM NaCl) in the presence of protease and phos-
phatase inhibitors as described previously ( Stout et al., 2007 ). The following 
antibodies were used: goat anti-Bik polyclonal antibody (Santa Cruz Biotech-
nology, Inc.), rabbit antiphospho-ERK1/2 antibody, and rabbit anti-ERK1/2 
antibody (Cell Signaling Technology). Total ERK1/2 was detected with anti-
ERK1/2 antibodies (1:1,000) in the same membrane used for antiphospho-
ERK1/2 and total ERK1/2 antibodies, respectively, after deprobing. Equal 
protein loading was confi rmed by subsequent probing with the mouse mono-
clonal antibody against actin (Santa Cruz Biotechnology, Inc.). 

 Pull-down assay 
 A size X protein A immunoprecipitation kit (Thermo Fisher Scientifi c) was 
used to cross-link 50  μ g of purifi ed anti-Bik antibody to protein A beads 
using disuccinmidyl suberate as described by the manufacturer. Bik-associ-
ated proteins were immunoprecipitated by incubating protein lysates 
prepared from Ad-GFP – , Ad-Bik – , or Ad-Bik L61G  – infected HBEC-2 cells with 
gentle mixing at 4 ° C overnight. After repeated washes, proteins bound to 
the Bik antibody on beads were eluted with 0.2 ml of ImmunoPure Elution 
buffer (Thermo Fisher Scientifi c) and analyzed by Western blotting and 
antiphospho-ERK1/2 and anti-Bik antibodies. 

 Statistical analysis 
 Grouped results from at least four different mice were expressed as means  ±  
SEM. Data were analyzed using statistical analysis software (Statistical 
Analysis Software Institute). Results grouped by time point and genotype 
were analyzed using two-way analysis of variance. When signifi cant main 
effects were detected (P  <  0.05), Fisher ’ s least signifi cant difference test 
was used to determine the differences between groups. A p-value of 0.05 
was considered to indicate statistical signifi cance. 
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