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Abstract: The prediction of protein–ligand binding sites is important in drug discovery and drug
design. Protein–ligand binding site prediction computational methods are inexpensive and fast
compared with experimental methods. This paper proposes a new computational method, SXGBsite,
which includes the synthetic minority over-sampling technique (SMOTE) and the Extreme Gradient
Boosting (XGBoost). SXGBsite uses the position-specific scoring matrix discrete cosine transform
(PSSM-DCT) and predicted solvent accessibility (PSA) to extract features containing sequence
information. A new balanced dataset was generated by SMOTE to improve classifier performance,
and a prediction model was constructed using XGBoost. The parallel computing and regularization
techniques enabled high-quality and fast predictions and mitigated overfitting caused by SMOTE.
An evaluation using 12 different types of ligand binding site independent test sets showed that
SXGBsite performs similarly to the existing methods on eight of the independent test sets with a
faster computation time. SXGBsite may be applied as a complement to biological experiments.

Keywords: protein–ligand binding site; SMOTE; Extreme Gradient Boosting; discrete cosine transform
(DCT); discrete wavelet transform (DWT)

1. Introduction

Accurate prediction of protein–ligand binding sites is important for understanding protein
function and drug design [1–4]. The experiment-based three-dimensional (3D) structure recognition
of protein–ligand complexes and binding sites is relatively expensive and time consuming [5,6].
Computational methods can predict binding sites rapidly and can be applied as a supplement to
experimental methods. Structure-based methods, sequence-based methods, and hybrid methods are
the commonly applied computation methods [7,8].

The structure-based methods are usually applied to predict ligand binding sites with known
3D protein structures [2,9–11]. We focused on the sequence-based method without 3D structure
information, and only a few structure-based methods are listed due to the rapid update of these
different methods. Pockets on the protein surface can be identified by computing geometric measures,
such as LIGSITECSC [2,12], CASTp [13–16], LigDig [17], and Fpocket [18,19]. LIGSITECSC [2,12] identifies
pockets through the number of surface–solvent–surface events and clusters. CASTp [13–16] locates and
measures pockets on 3D protein structures and annotates functional information for specific residues.
Unlike traditional protein-centric approaches, LigDig [17] is a ligand-centric approach that identifies
pockets using information from PDB [20], UniProt [21], PubChem [22], ChEBI [23], and KEGG [24].
Fpocket [18,19] identifies pockets using structure-based virtual screening (SBVS). RF-Score-VS [25]
improves the performance of SBVS and can be used in the open source ODDT [26,27]. FunFOLD [1]
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introduces cluster identification and residue selection to automatically predict ligand binding residues.
CHED [28] constructs a model to predict metal-binding sites using geometric information and machine
learning methods. The integration of sequence information in structure-based methods helps improve
prediction performance [29–31]. ConCavity [29] integrates sequence evolution information and
structure information to recognize pockets. COACH [30] and HemeBIND [31] construct prediction
models and identify ligand binding sites using sequence and structural information features based
on machine learning methods. In general, structure-based methods and hybrid methods enable
high-quality predictions when 3D structures of protein–ligand complexes are known [8].

Sequence-based methods can predict protein–ligand binding sites with unknown 3D
structures [5,32–34]. MetaDBSite [32] integrates six methods, including DISIS [35], DNABindR [36],
BindN [37], BindN-rf [38], DP-Bind [39], and DBS-PRED [40], and produces better results than each of the
methods alone. DNABR [5] introduces sequence characteristics based on the random forest method [41]
to study the sequence characteristics that delineate the physicochemical properties of amino acids. Both
SVMPred [33] and NsitePred [34] construct support vector machine (SVM) [42] prediction models using
multiple features including position-specific scoring matrix (PSSM), predicted solvent accessibility
(PSA), predicted secondary structure (PSS), and predicted dihedral angles. TargetS [7] considers
the ligand-specific binding propensity feature and builds models using a scheme of under-sampling
and ensemble SVMs. EC-RUS [8] selects position-specific scoring matrix discrete cosine transform
(PSSM-DCT) and PSA as features, constructs prediction models using under-sampling and ensemble
classifiers, and compares the prediction quality of weighted sparse representation based classifier
(WSRC) [43] and SVM.

One machine learning model in the ensemble classifiers is usually built with a dataset generated by
under-sampling, and a new model is built after the end of the building process of the previous model.
In this paper, this process is called the serial method, and performs well among the sequence-based
methods at present but requires more computation time [8,44]. Here, we propose a new parallel method
for predicting protein–ligand binding site residues using the evolutionary conservation information of
homologous proteins. The main information source used for predictions is the PSSM of sequences. The
prediction model of binding residues is constructed by XGBoost machine learning method [45] with the
synthetic minority over-sampling technique (SMOTE) [46], and this method reduces the computation
time while ensuring prediction quality. We compared the prediction qualities of different feature
combination schemes of PSSM-DCT [8,47–49], PSSM-discrete wavelet transform (DWT) [49–51] and
PSA [52], and PSSM-DCT + PSA scheme was selected. For the dataset imbalance problem, XGBoost
with SMOTE was applied to construct the protein–ligand binding site prediction models, and the
optimal parameters were determined by five-fold cross-validation and a grid search method. The
models were validated on 12 different types of protein–ligand binding site datasets. The SXGBsite
process is shown in Figure 1.



Genes 2019, 10, 965 3 of 19
Genes 2019, 10, x FOR PEER REVIEW 3 of 21 

 

 

Figure 1. SXGBsite Flowchart. During the training process, the position-specific scoring matrix (PSSM) 
feature of residues was represented by the sparse evolution image, discrete cosine transform (DCT) 
compressed the PSSM feature to obtain the PSSM-DCT feature, and the predicted solvent accessibility 
(PSA) feature was used to improve the prediction quality. SMOTE generated a new balanced training 
set with the training set of PSSM-DCT + PSA features, and the prediction model of binding residues 
was constructed by the balanced training set and XGBoost. During the testing process, the unbalanced 
independent test set, which also extracted the PSSM-DCT + PSA features, was input into the 
prediction model to obtain the result. 

2. Materials and Methods  

2.1. Benchmark Datasets 

The benchmark datasets were constructed based on the BioLip database [53] developed by Yu 
et al. [7], including the training and independent test datasets of 12 different ligands. The 12 types of 
ligands used were five types of nucleotides, five types of metal ions, DNA and Heme (Table 1). The 
source code and datasets are available at https://github.com/Lightness7/SXGBsite. 

Table 1. Composition of datasets for the 12 different ligands [7]. 
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Ligand 
Type 

Training Dataset Independent Test Dataset 
Total No. 

Sequences No. 
Sequences 

(numP,numN) No. 
Sequences 

(numP,numN)

Nucleotide 

ATP 221 (3021,72334) 50 (647,16639) 271 

ADP 296 (3833,98740) 47 (686,20327) 343 

AMP 145 (1603,44401) 33 (392,10355) 178 

GDP 82 (1101,26244) 14 (194,4180) 96 

GTP 54 (745,21205) 7 (89,1868) 61 

Metal Ion 
  Ca   965 (4914,287801) 165 (785,53779) 1130   Zn   1168 (4705,315235) 176 (744,47851) 1344   Mg   1138 (3860,350716) 217 (852,72002) 1355 

Figure 1. SXGBsite Flowchart. During the training process, the position-specific scoring matrix (PSSM)
feature of residues was represented by the sparse evolution image, discrete cosine transform (DCT)
compressed the PSSM feature to obtain the PSSM-DCT feature, and the predicted solvent accessibility
(PSA) feature was used to improve the prediction quality. SMOTE generated a new balanced training
set with the training set of PSSM-DCT + PSA features, and the prediction model of binding residues
was constructed by the balanced training set and XGBoost. During the testing process, the unbalanced
independent test set, which also extracted the PSSM-DCT + PSA features, was input into the prediction
model to obtain the result.

2. Materials and Methods

2.1. Benchmark Datasets

The benchmark datasets were constructed based on the BioLip database [53] developed by
Yu et al. [7], including the training and independent test datasets of 12 different ligands. The 12 types
of ligands used were five types of nucleotides, five types of metal ions, DNA and Heme (Table 1). The
source code and datasets are available at https://github.com/Lightness7/SXGBsite.

Table 1. Composition of datasets for the 12 different ligands [7].

Ligand
Category

Ligand Type
Training Dataset Independent Test Dataset Total No.

SequencesNo. Sequences (numP,numN) No. Sequences (numP,numN)

Nucleotide

ATP 221 (3021,72334) 50 (647,16639) 271
ADP 296 (3833,98740) 47 (686,20327) 343
AMP 145 (1603,44401) 33 (392,10355) 178
GDP 82 (1101,26244) 14 (194,4180) 96
GTP 54 (745,21205) 7 (89,1868) 61

Metal Ion

Ca2+ 965 (4914,287801) 165 (785,53779) 1130
Zn2+ 1168 (4705,315235) 176 (744,47851) 1344
Mg2+ 1138 (3860,350716) 217 (852,72002) 1355
Mn2+ 335 (1496,112312) 58 (237,17484) 393
Fe3+ 173 (818,50453) 26 (120,9092) 199

DNA 335 (6461,71320) 52 (973,16225) 387

HEME 206 (4380,49768) 27 (580,8630) 233

Note: numP, positive (binding residues) sample numbers; numN, negative (non-binding residues) sample numbers;
ATP, adenosine triphosphate; ADP, adenosine diphosphate; AMP, adenosine monophosphate; GDP, guanosine
diphosphate; GTP, guanosine triphosphate.

https://github.com/Lightness7/SXGBsite
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2.2. Feature Extraction

2.2.1. Position-Specific Scoring Matrix

The position-specific scoring matrix (PSSM) encodes the evolution information of the protein
sequence. The PSSM of each sequence was obtained using PSI-BLAST [54] in the database of
non-redundant protein sequences (nr) with three iterations and the E-value of 0.001. The PSSM is a
matrix of L × 20, where L rows represent L amino acid residues in the protein sequence, 20 columns
represent the probability that each residue is mutated to 20 native residues, as follows:

PSSM =


P1,1 P1,2 · · · P1,20

P2,1 P2,2 · · · P2,20
...

...
...

...
PL,1 PL,2 · · · PL,20

 (1)

The PSSM feature of contiguous residues was extracted with a sliding window with size w. The
window was centered on the target residue and contained (w − 1)/2 adjacent residues on both sides.
The size of the PSSM feature matrix was w × 20, and the residue sparse evolution image [8,48] is shown
in Figure 2. The window size w = 17 was selected after testing different values of w, and the dimensions
of the PSSM feature were 17 × 20 = 340.
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2.2.2. Discrete Cosine Transform

Discrete Cosine Transform (DCT) [47] is widely applied for lossy data compression of signals and
images. In this study, we used DCT to concentrate the information of PSSM into a few coefficients. For
a given input matrix Mat ∈ <m×n, DCT is defined as:

DCT(i, j) = aia j
M−1∑
m=0

N−1∑
n=0

Mat(m, n) cos π(2m+1)i
2M × cos π(2n+1) j

2N ,

0 ≤ i ≤M, 0 ≤ j ≤ N,
(2)
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where

ai =


1
√

M
, i = 0√

2
M , 1 ≤ i ≤M− 1

a j =


1
√

N
, j = 0√

2
N , 1 ≤ j ≤ N − 1

(3)

The compressed PSSM feature of the residue was obtained by using DCT on the PSSM feature
matrix. Most of the information after PSSM-DCT was concentrated in the low-frequency part of the
compressed PSSM. The first r rows of the compressed PSSM were reserved as the PSSM-DCT feature,
and the dimensions of the PSSM-DCT feature were r × 20.

2.2.3. Discrete Wavelet Transform

Discrete Wavelet Transform (DWT) [49] can decompose discrete sequences into high- and
low-frequency coefficients. Four-level DWT [50] was applied to acquire the first five discrete cosine
coefficients, the standard deviation, mean, and maximum and minimum values of different scales, as
shown in Figure 3. The PSSM-DWT feature of the residue was obtained from the PSSM feature via
four-level DWT, and the PSSM-DWT feature had 1040 dimensions.
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2.2.4. Predicting Solvent Accessibility

Solvent accessibility [52] is related to the spatial arrangement and packing of residues during the
protein folding process, which is an effective feature for protein–ligand binding site prediction [8,33,34].
We used the solvent accessibility prediction of proteins by nearest neighbor method (Sann) to obtain
the PSA feature of residues [55], and the PSA feature had three dimensions.

2.3. SMOTE Over-Sampling

As a common method for tackling unbalanced data, SMOTE over-samples the minority class by
synthesizing new samples, under-samples the majority class, and provides better classifier performance
within the receiver operating characteristic (ROC) space [45,56]. A balanced sample set is generated
from the unbalanced sample set through feature extraction by SMOTE. After a series of tests, a
new sample set with better results was constructed with the same positive and negative sample
number: 19,000.

2.4. Extreme Gradient Boosting Algorithm

Extreme Gradient Boosting (XGBoost) algorithm [46] is an improvement on the Gradient Boosting
algorithm [57] by Chen et al. and is characterized by fast calculation and high prediction accuracy.
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XGBoost is widely used by data scientists in multiple applications and has provided advanced
results [58,59]. The training set after feature extraction and SMOTE xi (xi = {x1, x2, . . . , xm}, i =

1, 2, . . . , n ) was input into the K additive functions of XGBoost to build the model. The prediction
result of the independent test set yi (yi = {0, 1}, i = 1, 2, . . . , s, where 0 represents non-binding residues
and 1 represents binding residues) was output as follows:

ŷi =
K∑

k=1

fk(xi), fk ∈ F (4)

where fk is each independent tree function with leaf weights and F is the tree ensemble containing each
function of the tree. XGBoost avoids large models with the following regularized objective formula:

L(φ) =
∑

i

l(ŷi, yi) +
∑

k

Ω( fk) (5)

where l is a differentiable convex loss function that measures the closeness of the prediction ŷi and the
target yi, and Ω is a regular term that penalizes model complexity by greedily adding ft to improve
the tree ensemble model. The regular term avoids overfitting by penalizing leaf weights, and the Ω
penalty function is as follows:

Ω( f ) = γT +
1
2
λ‖ω‖2 (6)

where T is the number of leaves, ω is the leaf weights, and the regularization coefficients γ and λ are
constants. The traditional GBDT only uses the first-order information of the loss function, whereas
the second-order Taylor expansion was introduced into the loss function of XGBoost to optimize the
function rapidly [60]. The simplified objective function of step t is:

L̃
(t) =

n∑
i=1

[gi ft(xi) +
1
2

hi f 2
t (xi)] + Ω( ft) (7)

where gi = ∂ŷ(t−1) l(yi, ŷ(t−1)) and hi = ∂2
ŷ(t−1) l(yi, ŷ(t−1)) represent the first- and second-order gradient

statistics of the loss function, respectively. I j =
{
i
∣∣∣q(xi = j)

}
is defined as a sample set of leaf j, simplified

Equation (7) is:

L̃
(t) =

n∑
i=1

[gi ft(xi) +
1
2 hi f 2

t (xi)] + γT + 1
2λ

T∑
j=1

ω2
j

=
T∑

j=1
[(

∑
i∈I j

gi)ω j +
1
2 (

∑
i∈I j

hi + λ)ω2
j ] + γT

(8)

The optimal weight ω∗j of leaf j and the corresponding objective function value are calculated by:

ω∗j = −

∑
i∈I j

gi∑
i∈I j

hi + λ
(9)

L̃
(t)(q) = −

1
2

T∑
j=1

(
∑

i∈I j
gi)

2∑
i∈I j

hi + λ
+ γT (10)

The above equation provides the best split of the node. Supposing IL and IR are the left and right
split nodes of the sample set I of the leaf, I = IL ∪ IR, respectively, the loss reduction after splitting is
expressed as:

Lsplit =
1
2

 (
∑

i∈IL
gi)

2∑
i∈IL

hi + λ
+

(
∑

i∈IR
gi)

2∑
i∈IR

hi + λ
−

(
∑

i∈I gi)
2∑

i∈I hi + λ

− γ (11)
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To prevent overfitting, XGBoost uses shrinkage and column (feature) subsampling techniques, as
well as the regularized objective [57].

3. Results

The performance of classification was evaluated on the specificity (SP), sensitivity (SN), accuracy
(ACC), and Matthews correlation coefficient (MCC). The overall prediction quality of a binary model
was evaluated using the area under the receiver operating characteristic curve (AUC). The formulas
used to determine SN, SP, ACC, and MCC are, respectively, as follows:

SP =
TN

TN + FP
(12)

SN =
TP

TP + FN
(13)

ACC =
TP + TN

TP + FP + TN + FN
(14)

MCC =
TP× TN − FP× FN√

(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)
(15)

where TP, FP, TN, and FN represent true positive, false positive, true negative, and false
negative, respectively.

3.1. Parameter Selection

ACC is insufficient for performance evaluation in unbalanced learning [7,8], MCC is suitable for
quality assessment in sequence-based predictions [3], and AUC is usually used to assess the overall
prediction quality of models. The value of MCC changes with the threshold, whereas the AUC value
is not affected by the threshold value. We evaluated the prediction performance using MCC and
AUC, and the threshold of the probability value was selected by maximizing the value of MCC. The
value of MCC was used to select the first r rows of the PSSM-DCT matrix as feature on the guanosine
triphosphate (GTP) training and independent test sets. PSSM-DCT obtained the optimal value of MCC
when r was 9, as shown in Figure 4, and the dimensions of the PSSM-DCT feature were 9 × 20 = 180.
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The size of the positive and negative sample sets after SMOTE is usually an integer multiple
of the positive sample size in the original dataset, and the prediction quality may be affected by the
amplification ratio of the positive sample sets. In this study, a fixed-size positive and negative sample
set was generated by SMOTE to improve the prediction quality, and the optimal sample number was
selected according to the value of MCC on the GTP training and independent test sets. The best value
of MCC was obtained when the number of positive and negative samples was 19,000, as shown in
Figure 5.
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The parameters of XGBoost were adjusted with five-fold cross-validation and a grid search method
on the GTP training set.

3.2. Method Selection

Different feature combinations of PSSM, PSSM-DCT, PSSM-DWT, and PSA were used to evaluate
the prediction performance using the GTP training and independent test sets, PSSM-DCT + PSA
produced the optimal MCC and AUC values (Table 2), and receiver operating characteristic curve (ROC)
of different feature combinations is shown in Figure 6. As shown in Table 2, PSSM performed better in
terms of AUC than PSSM-DCT and PSSM-DWT, and PSA (3-D) improved PSSM (340-D), PSSM-DCT
(180-D), and PSSM-DWT (1040-D) by 0.14, 0.22 and 0.09, respectively. The relationship between the
increase in AUC and the feature dimensions indicated that the prediction quality using PSA improved
more for features with fewer dimensions (PSSM and PSSM-DCT). PSSM + PSA and PSSM-DCT +

PSA performed almost the same in terms of AUC, and we tended to improve prediction quality by
over-sampling in the comparison of feature combinations. The prediction qualities of PSSM and PSSM
+ PSA were more dependent on threshold moving, and the difference in MCC between the default
threshold (0.500) and the maximum MCC threshold demonstrated the effect of threshold moving.
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Table 2. Comparison of different feature combinations on the GTP independent test set (average of
10 replicate experiments in SXGBsite with adjusted parameters).

Feature Threshold SN (%) SP (%) ACC (%) MCC AUC

PSSM
0.500 34.8 99.7 96.8 0.536 0.855
0.139 46.1 99.5 97.0 0.596 0.855

PSSM-DCT
0.500 43.8 99.7 97.1 0.605 0.848
0.612 42.7 99.8 97.2 0.611 0.848

PSSM-DWT
0.500 41.6 99.7 97.0 0.586 0.830
0.458 43.8 99.7 97.1 0.605 0.830

PSSM + PSA
0.500 37.1 99.9 97.0 0.581 0.869
0.109 52.8 99.4 97.2 0.636 0.869

PSSM-DCT + PSA
0.500 49.4 99.6 97.3 0.642 0.870
0.421 50.6 99.6 97.4 0.650 0.870

PSSM-DWT + PSA
0.500 46.1 99.7 97.3 0.630 0.839
0.370 49.4 99.6 97.3 0.642 0.839

PSSM-DCT + PSSM-DWT + PSA
0.500 44.9 99.6 97.1 0.607 0.850
0.545 44.9 99.8 97.3 0.629 0.850

Note: ACC, accuracy; MCC, Matthews correlation coefficient; AUC, the area under the receiver operating
characteristic curve.Genes 2019, 10, x FOR PEER REVIEW 10 of 21 
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Three sampling schemes were used on the GTP training set to obtain three different training sets,
including the entire GTP training set, the training set after random under-sampling (RUS), and the
training set after SMOTE over-sampling. On the GTP independent test set, the prediction qualities
of the models constructed by the three training sets are shown in Table 3, and receiver operating
characteristic curve (ROC) of different sampling and classification algorithms is shown in Figure 7.
SMOTE + XGBoost achieved the best prediction quality, performing better than SMOTE + SVM.
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Table 3. Comparison of different sampling and classification algorithms on the GTP independent test
set (average of 10 replicate experiments in XGBoost with adjusted parameters).

Scheme Threshold SN (%) SP (%) ACC (%) MCC AUC

XGBoost
0.500 30.3 99.8 96.7 0.512 0.842
0.153 37.1 99.7 96.9 0.556 0.842

RUS + XGBoost
0.500 68.5 84.5 83.8 0.288 0.827
0.914 51.7 97.9 95.8 0.504 0.827

SMOTE + XGBoost
0.500 49.4 99.6 97.3 0.642 0.870
0.421 50.6 99.6 97.4 0.650 0.870

SMOTE + SVM
0.500 51.7 99.3 97.1 0.616 0.838
0.714 49.4 99.5 97.2 0.628 0.838Genes 2019, 10, x FOR PEER REVIEW 11 of 21 
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Figure 7. ROC of Different Sampling and Classification Algorithms.

3.3. Results of Training Sets

The performance of SXGBsite was evaluated using five-fold cross-validation on the training sets.
The results with the threshold of 0.5 and the maximized the MCC value are listed in Table 4. The
five-fold cross-validation results are basically consistent with the maximized MCC threshold results of
TargetS and EC-RUS. Regardless of the impact of the threshold, the results in Table 4 show the different
characteristics of the two schemes for the class imbalance problem by comparing the default threshold
(0.500) results of SXGBsite and EC-RUS, which use the same features. The RUS + ensemble classifiers
scheme was more sensitive to positive samples and had information loss for negative samples. The
SMOTE + XGBoost scheme reduced the information loss, the positive samples in the training set were
mostly synthesized, and the sensitivity to positive samples was lower.
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Table 4. Performance of SXGBsite (average of 10 replicate experiments) on the training sets after
five-fold cross-validation.

Ligand Predictor Threshold SN (%) SP (%) ACC (%) MCC AUC

ATP

TargetS 1 0.500 48.4 98.2 96.2 0.492 0.887

EC-RUS 2 0.500 84.1 84.9 84.9 0.347 0.912
0.814 58.6 97.9 96.4 0.537 0.912

SXGBsite
0.500 53.4 96.3 94.6 0.413 0.886
0.775 40.3 98.6 96.4 0.448 0.886

ADP

TargetS 1 0.500 56.1 98.8 97.2 0.591 0.907

EC-RUS 2 0.500 87.8 87.7 87.7 0.395 0.939
0.852 62.2 98.6 97.3 0.610 0.939

SXGBsite
0.500 61.6 96.2 94.9 0.459 0.907
0.832 46.4 98.9 97.0 0.521 0.907

AMP

TargetS 1 0.500 38.0 98.2 96.0 0.386 0.856

EC-RUS 2 0.500 81.5 79.7 79.8 0.263 0.888
0.835 46.7 98.3 96.6 0.460 0.888

SXGBsite
0.500 37.0 97.8 95.8 0.347 0.851
0.636 32.3 98.6 96.4 0.366 0.851

GDP

TargetS 1 0.430 63.9 98.7 97.2 0.644 0.908

EC-RUS 2 0.500 86.1 89.8 89.7 0.435 0.937
0.816 67.2 98.9 97.6 0.676 0.937

SXGBsite
0.500 59.4 99.3 97.7 0.664 0.930
0.653 57.0 99.5 97.9 0.678 0.930

GTP

TargetS 1 0.500 48.0 98.7 96.9 0.506 0.858

EC-RUS 2 0.500 79.5 85.7 85.5 0.309 0.896
0.842 49.5 99.2 97.6 0.562 0.896

SXGBsite
0.500 42.4 99.4 97.6 0.540 0.883
0.685 40.7 99.7 97.8 0.572 0.883

Ca2+

TargetS 1 0.690 19.2 99.7 98.4 0.320 0.784

EC-RUS 2 0.500 73.9 73.8 73.8 0.118 0.812
0.861 14.7 99.7 98.6 0.220 0.812

SXGBsite
0.500 32.8 95.0 94.2 0.135 0.757
0.818 16.3 99.1 98.1 0.167 0.757

Mg2+

TargetS 1 0.810 26.4 99.8 99.0 0.383 0.798

EC-RUS 2 0.500 73.8 79.4 79.3 0.125 0.839
0.864 25.8 99.8 99.1 0.354 0.839

SXGBsite
0.500 46.1 95.9 95.5 0.196 0.819
0.926 26.3 99.7 99.0 0.326 0.819

Mn2+

TargetS 1 0.740 40.8 99.5 98.7 0.445 0.901

EC-RUS 2 0.500 83.4 86.6 86.6 0.201 0.921
0.841 31.0 99.6 98.9 0.358 0.921

SXGBsite
0.500 45.0 98.3 97.7 0.297 0.888
0.759 36.1 99.1 98.5 0.329 0.888

Fe3+

TargetS 1 0.810 51.8 99.6 98.8 0.592 0.922

EC-RUS 2 0.500 87.1 90.1 90.0 0.278 0.940
0.809 53.1 99.2 98.6 0.489 0.940

SXGBsite
0.500 48.2 99.1 98.5 0.440 0.913
0.496 50.1 99.1 98.5 0.454 0.913

Zn2+

TargetS 1 0.830 50.0 99.6 98.9 0.557 0.938

EC-RUS 2 0.500 88.7 90.8 90.8 0.279 0.958
0.860 45.6 99.3 98.7 0.440 0.958

SXGBsite
0.500 59.7 96.5 96.1 0.299 0.892
0.894 38.5 99.2 98.5 0.363 0.892

DNA

TargetS 1 0.490 41.7 94.5 89.9 0.362 0.824

EC-RUS 2 0.500 81.9 71.8 72.3 0.259 0.852
0.763 48.7 95.1 92.6 0.378 0.852

SXGBsite
0.500 41.0 92.3 89.6 0.255 0.827
0.420 49.8 89.2 87.2 0.270 0.827

HEME

TargetS 1 0.650 50.5 98.3 94.4 0.579 0.887

EC-RUS 2 0.500 85.0 83.6 83.7 0.416 0.922
0.846 60.3 97.5 95.1 0.591 0.922

SXGBsite
0.500 59.3 96.2 93.8 0.520 0.900
0.805 45.3 98.9 95.4 0.555 0.900

1 Results excerpted from Yu et al. [7]. 2 Results excerpted from Ding et al. [8].
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3.4. Comparison with Existing Methods

In terms of the independent test sets of the five nucleotides, SXGBsite is compared with TargetS,
SVMPred, NsitePred, EC-RUS, and the alignment-based baseline predictor in Table 5. The results of
TargetS, SVMPred, NsitePred, and EC-RUS are the threshold of maximizing the MCC value. In terms
of the ATP, ADP, AMP, GDP, and GTP independent test sets, the metrics of the best prediction quality
refer to the AUC of TargetS and the MCC of EC-RUS. The differences between SXGBsite and TargetS
for the AUC are 0.018 (0.880 to 0.898), 0.011 (0.885 to 0.896), 0.007 (0.823 to 0.830), 0.002 (0.894 to 0.896),
and 0.015 (0.870 over 0.855), respectively, and the differences between SXGBsite and EC-RUS for the
MCC are 0.043 (0.463 to 0.506), 0.023 (0.488 to 0.511), 0.065 (0.328 to 0.393), 0.003 (0.576 to 0.579), and
0.009 (0.650 over 0.641), respectively. The difference between SXGBsite and the best prediction quality
is small for the AUC and relatively large for the MCC.

Table 5. SXGBsite (average of 10 replicate experiments) compared with the existing methods on five
nucleotide independent test sets.

Ligand Predictor SN (%) SP (%) ACC (%) MCC AUC

ATP

TargetS 1 50.1 98.3 96.5 0.502 0.898
NsitePred 1 50.8 97.3 95.5 0.439 -
SVMPred 1 47.3 96.7 94.9 0.387 0.877
alignment-based 1 30.6 97.0 94.5 0.265 -
EC-RUS 2 45.4 98.8 96.8 0.506 0.871
SXGBsite (T = 0.500) 54.6 95.7 94.2 0.397 0.880
SXGBsite (T = 0.718) 43.7 98.5 96.5 0.463 0.880

ADP

TargetS 1 46.9 98.9 97.2 0.507 0.896
NsitePred 1 46.2 97.6 96.0 0.419 -
SVMPred 1 46.1 97.2 95.5 0.382 0.875
alignment-based 1 31.8 97.4 95.1 0.284 -
EC-RUS 2 44.4 99.2 97.6 0.511 0.872
SXGBsite (T = 0.500) 53.1 96.9 95.6 0.399 0.885
SXGBsite (T = 0.844) 37.3 99.5 97.7 0.488 0.885

AMP

TargetS 1 34.2 98.2 95.9 0.359 0.830
NsitePred 1 33.9 97.6 95.3 0.321 -
SVMPred 1 32.1 96.4 94.1 0.255 0.798
alignment-based 1 19.6 97.3 94.5 0.178 -
EC-RUS 2 24.9 99.5 97.0 0.393 0.815
SXGBsite (T = 0.500) 36.0 97.5 95.4 0.325 0.823
SXGBsite (T = 0.486) 37.1 97.4 95.3 0.328 0.823

GDP

TargetS 1 56.2 98.1 96.2 0.550 0.896
NsitePred 1 55.7 97.9 96.1 0.536 -
SVMPred 1 49.5 97.6 95.4 0.466 0.870
alignment-based 1 41.2 97.8 95.3 0.415 -
EC-RUS 2 36.6 99.9 97.1 0.579 0.872
SXGBsite (T = 0.500) 46.4 99.0 96.7 0.551 0.894
SXGBsite (T = 0.687) 40.2 99.7 97.1 0.576 0.894

GTP

TargetS 1 57.3 98.8 96.9 0.617 0.855
NsitePred 1 58.4 95.7 94.0 0.448 -
SVMPred 1 48.3 91.7 89.7 0.276 0.821
alignment-based 1 52.8 97.9 95.9 0.516 -
EC-RUS 2 61.8 98.7 97.0 0.641 0.861
SXGBsite (T = 0.500) 49.4 99.6 97.3 0.642 0.870
SXGBsite (T = 0.421) 50.6 99.6 97.4 0.650 0.870

1 Results excerpted from Yu et al. [7]. 2 Results excerpted from Ding et al. [8]. - denotes unavailable.
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On the independent test sets of the five metal ions, SXGBsite is compared with TargetS, FunFOLD,
CHED, EC-RUS, and the alignment-based baseline predictor in Table 6. The results of TargetS,
FunFOLD, CHED, and EC-RUS are the threshold of maximizing the MCC value. In terms of the
independent test sets of Ca2+, Mg2+, Mn2+, Fe3+, and Zn2+, the differences between SXGBsite and the
best prediction quality for the AUC are 0.021 (0.758 to 0.779), 0.001 (0.779 to 0.780), 0.032 (0.856 to 0.888),
0.054 (0.891 to 0.945), and 0.052 (0.906 to 0.958), respectively, and the differences between SXGBsite and
the best prediction quality for the MCC are 0.046 (0.197 to 0.243), 0.026 (0.291 to 0.317), 0.067 (0.382 to
0.449), 0.094 (0.396 to 0.490), and 0.137 (0.390 to 0.527), respectively. SXGBsite showed good prediction
performance on the Mg2+ independent test set, and the reasons for the unsatisfactory performance on
the metal ion independent test sets may be as follows: (1) TargetS uses the ligand-specific binding
propensity feature to improve the prediction quality, and the features used in this study did not perform
well for predicting metal ion binding residues; and (2) the volume of metal ions is smaller than that of
nucleotides, which means that there are fewer binding residues (positive samples), and the lack of
positive samples affected the prediction quality of the model.

Table 6. SXGBsite (average of 10 replicate experiments) compared with the existing methods on the
five metal ion independent test sets.

Ligand Predictor SN (%) SP (%) ACC (%) MCC AUC

Ca2+

TargetS 1 13.8 99.8 98.8 0.243 0.767
FunFOLD 1 12.2 99.6 98.1 0.196 -
CHED 1 18.7 98.2 97.1 0.142 -
alignment-based 1 20.3 98.6 97.5 0.175 -
EC-RUS 2 17.3 99.6 98.7 0.225 0.779
SXGBsite (T = 0.500) 32.6 95.6 94.9 0.139 0.758
SXGBsite (T = 0.832) 13.3 99.7 98.7 0.197 0.758

Mg2+

TargetS 1 18.3 99.8 98.8 0.294 0.706
FunFOLD 1 22.0 99.1 98.3 0.215 -
CHED 1 14.6 98.3 97.3 0.103 -
alignment-based 1 14.1 99.2 98.2 0.147 -
EC-RUS 2 20.1 99.8 99.1 0.317 0.780
SXGBsite (T = 0.500) 41.0 96.3 95.8 0.177 0.779
SXGBsite (T = 0.917) 19.8 99.8 99.1 0.291 0.779

Mn2+

TargetS 1 40.1 99.5 98.7 0.449 0.888
FunFOLD 1 23.3 99.8 98.7 0.376 -
CHED 1 35.0 98.1 97.3 0.253 -
alignment-based 1 26.6 99.0 98.0 0.257 -
EC-RUS 2 35.8 99.6 98.9 0.403 0.888
SXGBsite (T = 0.500) 44.3 98.3 97.7 0.299 0.856
SXGBsite (T = 0.797) 34.2 99.5 98.8 0.382 0.856

Fe3+

TargetS 1 48.3 99.3 98.7 0.479 0.945
FunFOLD 1 47.2 99.1 98.4 0.432 -
CHED 1 49.2 97.0 96.3 0.279 -
alignment-based 1 30.0 99.2 98.3 0.300 -
EC-RUS 2 44.3 99.6 99.0 0.490 0.936
SXGBsite (T = 0.500) 42.5 99.0 98.3 0.361 0.891
SXGBsite (T = 0.670) 38.7 99.4 98.7 0.396 0.891

Zn2+

TargetS 1 46.4 99.5 98.7 0.527 0.936
FunFOLD 1 36.5 99.5 98.6 0.436 -
CHED 1 37.9 98.0 97.1 0.280 -
alignment-based 1 29.7 99.0 98.0 0.297 -
EC-RUS 2 48.9 99.2 98.6 0.437 0.958
SXGBsite (T = 0.500) 62.4 96.7 96.3 0.323 0.906
SXGBsite (T = 0.833) 41.0 99.2 98.6 0.390 0.906

1 Results excerpted from Yu et al. [7]. 2 Results excerpted from Ding et al. [8]. - denotes unavailable.
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Compared with TargetS, MetaDBSite, DNABR, EC-RUS, and the alignment-based baseline
predictor on the DNA independent test set (Table 7), SXGBsite achieved an MCC value lower than
those of TargetS and EC-RUS, and an inferior AUC value to TargetS.

Table 7. SXGBsite (average of 10 replicate experiments) compared with the existing methods on the
DNA independent test set.

Ligand Predictor SN (%) SP (%) ACC (%) MCC AUC

DNA

TargetS 1 41.3 96.5 93.3 0.377 0.836
MetaDBSite 1 58.0 76.4 75.2 0.192 -
DNABR 1 40.7 87.3 84.6 0.185 -
alignment-based 1 26.6 94.3 90.5 0.190 -
EC-RUS 2 31.5 97.8 95.2 0.319 0.814
SXGBsite (T = 0.500) 36.5 95.1 92.8 0.256 0.826
SXGBsite (T = 0.408) 46.2 92.8 91.0 0.269 0.826

1 Results excerpted from Yu et al. [7]. 2 Results excerpted from Ding et al. [8]. - denotes unavailable.

Compared with TargetS, HemeBind, EC-RUS, and the alignment-based baseline predictor on the
Heme independent test set (Table 8), SXGBsite achieved inferior MCC and AUC values to EC-RUS.

Table 8. SXGBsite (average of 10 replicate experiments) compared with the existing methods on the
HEME independent test set.

Ligand Predictor SN (%) SP (%) ACC (%) MCC AUC

HEME

TargetS (T = 0.650) 1 49.8 99.0 95.9 0.598 0.907
TargetS(T = 0.180) 1 69.3 90.4 89.1 0.426 0.907
HemeBind 1 86.2 90.7 90.6 0.537 -
alignment-based 1 51.4 97.3 94.4 0.507 -
EC-RUS (T = 0.500) 2 83.5 87.5 87.3 0.453 0.935
EC-RUS (T = 0.859) 2 55.8 99.0 96.4 0.640 0.935
SXGBsite (T = 0.500) 61.6 97.7 95.5 0.600 0.933
SXGBsite (T = 0.700) 52.1 99.0 96.2 0.618 0.933

1 Results excerpted from Yu et al. [7]. 2 Results excerpted from Ding et al. [8]. - denotes unavailable.

The prediction performance of SXGBsite was similar to those of the best two methods, TargetS and
EC-RUS, on the independent test sets of the five nucleotides, Mg2+, DNA, and Heme. Both TargetS
and EC-RUS are serial combinations of under-sampling and ensemble classifiers, which requires long
calculation times. SXGBsite is a method of over-sampling and a single XGBoost classifier to quickly
build high quality prediction models.

3.5. Running Time Comparison

The running time comparison of SXGBsite, EC-RUS (SVM), and EC-RUS (WSRC) on the
independent test sets is provided in Table 9, and the benchmark in this study is the EC-RUC
(SVM) running time. EC-RUS is a sequence-based method that was proposed by Ding et al., and
its prediction quality was excellent. Ding et al. selected 19 sub-classifiers in the ensemble classifier,
compared the results of ensemble SVMs and ensemble WSRCs, and concluded that ensemble WSRCs
are more time-consuming than ensemble SVMs. Both SXGBsite and EC-RUS used the feature of
PSSM-DCT + PSA, and the prediction model was built by SMOTE + XGBoost and RUS + ensemble
classifiers, respectively. Due to having the same features, the results in Table 9 also show the running
time comparison of SMOTE + XGBoost and RUS + ensemble classifiers, which means that two schemes
for the class imbalance problem.
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Table 9. Comparison of running time between SXGBsite and EC-RUS (SVM and WSRC) (seconds).

Dataset SXGBsite 1 EC-RUS
(SVM) 2

EC-RUS
(WSRC) 2 Dataset SXGBsite 1 EC-RUS

(SVM) 2
EC-RUS

(WSRC) 2

ATP 134.5 1746.3 7018.4 Ca2+ 273.6 6366.5 25627.2
ADP 146.2 4602.8 10940.5 Mg2+ 290.9 6558.6 31094.1
AMP 118.5 647.5 2298.1 Mn2+ 124.9 439.5 2806.8
GDP 90.4 284.6 685.8 Fe3+ 110.6 173.3 1065.9
GTP 92.6 115.8 334.6 Zn2+ 215.9 4284.6 20220.6
DNA 131.4 4508.5 9083.6 HEME 104.6 3459.9 2940.5

1 The PSSM-DCT + PSA feature of SXGBsite is 183-D. 2 The PSSM-DCT + PSA feature of EC-RUS (SVM) is 143-D.
SVM, support vector machine; WSRC, weighted sparse representation based classifier.

3.6. Comparison with Existing Methods on the PDNA-41 Independent Test Set

Different from the previous protein–DNA binding site dataset, PDNA-543 (9549 binding residues
and 134,995 non-binding residues) and PDNA-41 (734 binding residues and 14,021 non-binding
residues) are datasets constructed by Hu et al. [61]. SXGBsite constructed the prediction model by
the PDNA-543 training set, obtained prediction results on the PDNA-41 independent test set, and the
comparison of SXGBsite with BindN [37], ProteDNA [62], BindN+ [63], MetaDBSite [32], DP-Bind [39],
DNABind [64], TargetDNA [61], and EC-RUS(DNA) [44] is provided in Table 10. SXGBsite achieved
the best MCC (0.272) under Sen ≈ Spec, and achieved MCC after EC-RUS(DNA) and TargetDNA under
FPR ≈ 5% (FPR = 1 - SP). The best MCC (0.279) of SXGBsite is achieved under FPR ≈ 10%.

Table 10. SXGBsite (average of 10 replicate experiments) compared with the existing methods on the
PDNA-41 independent test set.

Predictor SN (%) SP (%) ACC (%) MCC AUC

BindN 1 45.64 80.90 79.15 0.143 -
ProteDNA 1 4.77 99.84 95.11 0.160 -
BindN + (FPR ≈ 5%) 1 24.11 95.11 91.58 0.178 -
BindN + (Spec ≈ 85%) 1 50.81 85.41 83.69 0.213 -
MetaDBSite 1 34.20 93.35 90.41 0.221 -
DP-Bind 1 61.72 82.43 81.40 0.241 -
DNABind 1 70.16 80.28 79.78 0.264 -
TargetDNA (Sen ≈ Spec) 1 60.22 85.79 84.52 0.269 -
TargetDNA (FPR ≈ 5%) 1 45.50 93.27 90.89 0.300 -
EC-RUS (DNA) (Sen ≈ Spec) 2 61.04 77.25 76.44 0.193 -
EC-RUS (DNA) (FPR ≈ 5%) 2 27.25 97.31 94.58 0.315 -
SXGBsite (Sen ≈ Spec) 60.35 85.94 84.67 0.272 0.825
SXGBsite (FPR ≈ 5%) 35.01 95.01 92.03 0.265 0.825

1 Results excerpted from Hu et al. [61]. 2 Results excerpted from Shen et al. [44]. - denotes unavailable.

3.7. Case Study

The prediction results of SXGBsite are shown in the 3D models in Figure 8, and the protein–ligand
complexes of 2Y4K-A and 2Y6P-A belong to the independent test sets of GDP and Mg2+, respectively.
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4. Discussion

Many excellent computational methods are available in the field of protein–ligand binding
site prediction; however, prediction efficiency can still be improved [8]. As the actual acquired
protein–ligand binding site data show many fewer binding sites than non-binding sites, we selected
unbalanced datasets of 12 different ligand types constructed by Yu et al. as the benchmark datasets.
The adverse effects of unbalanced data on predictions are usually mitigated by over- or under-sampling
methods, which are widely applied, and ensemble classifiers are often used together to overcome
the loss of information caused by under-sampling. Both TargetS and EC-RUS performed well on the
independent test sets built by Yu et al. by applying the scheme of under-sampling and ensemble
classifiers. Although the loss of information by multiple under-sampling can be reduced by ensemble
classifiers, serial combinations of multiple machine learning algorithms and high-dimensional features
increase the computation time.

SXGBsite uses the features of PSSM-DCT + PSA and XGBoost with SMOTE to build prediction
models, and Extreme Gradient Boosting algorithm developed by Chen et al. [46] was applied to solve
overfitting and large sample sets caused by over-sampling. XGBoost’s regularization technology
overcomes the overfitting problem, and parallel computing can be used to quickly construct prediction
models with large sample sets, which constitute the basis of SXGBsite. The threshold moving was
used in this study to obtain the best MCC for comparison with other existing methods. The use of
both threshold moving and sampling methods complicated the interpretation of the results, and the
AUC measure without threshold change was used to better evaluate the prediction quality difference
between SMOTE + XGBoost and RUS + ensemble classifiers. On the independent test sets of five
nucleotides, Mg2+, DNA, and Heme, the difference between the AUC of SXGBsite and the best AUC
was within 0.020. Considering the decrease in the running time, we think that the difference in AUC is
acceptable. On the independent test sets of 12 ligands, the new method proposed here produced a
higher prediction quality with a shorter computation time using the two features and a single classifier,
and produced similar results to the best-performing TargetS and EC-RUS on 8 of the 12 independent
test sets.

5. Conclusions

This paper proposes a new computational method, SXGBsite. Sequence information was used for
the protein–ligand binding site prediction, and features extracted by PSSM-DCT+PSA and XGBoost
with SMOTE were used to construct the prediction model. On the independent test sets of 12 different
ligands, SXGBsite performed similarly to the best methods on the datasets with less computation
time, which could be a complement of biological experiments as well as cost reductions. The features
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we used did not perform well on the metal ion datasets, and adding features with better prediction
performance is the next step of the study.
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