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Abstract: 
Abnormal accumulation of amyloid beta peptide (Aβ) is one of the hallmarks of Alzheimer's disease progression. Practical limitations such as cost , poor hit 
rates and a lack of well characterized targets are a major bottle neck in the in vitro screening of a large number of chemical libraries and profiling them to 
identify Aβ inhibitors. We used a limited set of 1,4 dihydropyridine (DHP)-like compounds from our model set (MS) of 24 compounds which inhibit Aβ as a 
training set and built  3D-QSAR (Three-dimensional Quantitative Structure-Activity Relationship) models using the Phase program (SchrÖdinger, USA). We 
developed a 3D-QSAR model that showed the best prediction for Aβ  inhibition in the test set of compounds and used this model to screen a 1,043 DHP-like 
small library set of (LS) compounds. We found that our model can effectively predict potent hits at a very high rate and result in significant cost savings when 
screening larger libraries. We describe here our in silico model building strategy, model selection parameters and the chemical features that are useful for 
successful screening of DHP and DHP-like chemical libraries for Aß inhibitors. 
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Background: 
Alzheimer’s disease (AD) is an ever-increasing health concern among the 
aging population and is the most common form of dementia affecting more 
than 25 million individuals worldwide [1]. While the cause of the disease is 
uncertain, there are two major neuropathological hallmarks present in the 
brains of AD patients at autopsy: the extracellular senile plaques and the 
intracellular neurofibrillary tangles [2]. Neurofibrillary tangles contain 
hyperphosphorylated microtubule-associated protein tau, while senile plaques 
contain a core of β-amyloid (Aß) peptide. Current treatments for AD include 
cholinesterase inhibitors and glutamate antagonists [3]. Although useful, 
these symptomatic treatments do not stop the disease process or prevent 
neuronal degeneration [4]. There is an on-going need for the development of 
new treatments for AD. Although the central role of Aβ therapy remains to be 
proven in clinical trials, data over the past two decades place the 
accumulation of Aβ peptides and, in particular, soluble forms of these 
peptides as key molecules initiating the pathological cascade that eventually 
leads to the full pathology of AD. Consequently, significant resources have 
been allocated to the discovery of new pharmaceutical entities that have Aβ-
lowering properties. 
 
Drug discovery is typically a complex multi step process that involves 
screening of a large number of compounds for potential ‘hits’ in relevant 
assays.  Using information from these hits, medicinal chemists design and 
synthesize compounds to identify novel molecules or optimize compounds 
into suitable leads that can be tested in preclinical experiments. Available 
chemical libraries are expanding at a rapid pace due to combinatorial 

chemistry thus allowing exploration for inhibitors in new chemical space. 
However, the cost of identifying hits from assay screens of vast libraries can 
be cost prohibitive. One way to reduce cost is to limit screening to a focused 
library of compounds that represent the chemical space of interest constituted 
by related chemotypes. With advances in combinatorial synthesis technology, 
several thousand  compounds can be rapidly synthesized thus expanding the 
relevant chemical space [5]. Hence, there is a need for predictive models like 
QSAR (Quantitative Structure Activity Relationship) that will prioritize 
compounds for screening, aid rational synthesis and facilitate lead 
identification [6]. A QSAR model is useful in relating biological activity to 
physico-chemical and structural descriptors of compounds. By applying 
QSAR techniques, lead compounds have previously been identified for a 
range of biological targets [7]. A 3D-QSAR model is built using the 
alignment of three dimensional conformers of active compounds and can be 
subsequently used to score a candidate compound on the basis of a fitting 
function that evaluates the alignment of three dimensional chemical features 
to the model [8-10]. A pharmacophore is constituted by common chemical 
features (such as hydrogen donors, hydrogen acceptors, hydrophobic groups, 
charged groups and aromatic rings) that are distributed spatially to interact 
with the biological target and exert activity [11]. Development of 3D 
pharmacophore models based on the biological activity of compounds 
enables ligand-based drug design that guides experimental chemical synthesis 
of compounds with higher potency even when the 3D structure of the 
biological target is unknown [12]. 
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During the course of the examination of risk factors for AD, such as 
hypertension, it has become clear that certain anti-hypertensive compounds 
may be protective, not just against stroke-related dementia, but also 
independently against AD. For instance, in the Syst-Eur trial, which involved 
active treatment with the dihydropyridine (DHP) calcium channel blocker 
(CCB) nitrendipine in over 2,400 patients, there was a 55% reduction in the 
incidence of AD [13]. Nitrendipine and nilvadipine are closely related DHPs 
that provide clinical protective signals against AD whereas amlodipine and 
nifedipine do not confer such protection. Clearly then, the AD protection 
afforded by some of the members of the DHP class of antihypertensive drugs 
appear to be unique to a subgroup of the class and is not related to the 
antihypertensive activity of the compounds. Since Aβ is implicated in 
Alzheimer's disease, we set out to explore whether DHP-like compounds can 
inhibit Aβ production in an engineered mammalian cell that over expresses it. 
Although some of the DHPs inhibited Aβ production, the exact target is 
unknown, therefore, we used a ligand based approach to build a 3D QSAR 
model using few model compounds. Using a DHP-like model set (MS) of 
compounds we built a QSAR model with Phase software (Schrodinger, USA) 
to predict the activity of compounds in a small library set (LS) (Figure 1). 
We describe here our 3D-QSAR model building approach, the application of 
the model to screen for hits in a DHP-like compound library and its ability to 
identify potent new hits in a compound library of DHP like structures. 
 
Methodology : 
Measurement of Aß inhibition 
A cell based assay was used for screening of the DHP and DHP-like 
compounds using Chinese Hamster Ovary cells stably transfected with wild-
type APP751 (7W cells) overproducing human Aβ [14] that we previously 
used to identify Aβ lowering compounds [15]. Briefly, 7W cells were grown 
in DMEM (ATCC, Manassas, VA, USA) supplemented with 10% fetal 
bovine serum (Invitrogen, Carlsbad, CA, USA), 1× Penicillin–Streptomycin 
Fungizone mixture (Cambrex, Rockland,ME, USA) and 0.3% Geneticin 
(Invitrogen, Carlsbad, CA, USA). Cells were plated on 96 well-culture plates 
at a density of 5×104 cells per well in 200 μL of culture medium. Culture 
medium was replaced in each well with 200 μL of fresh culture medium 
containing the vehicle (DMSO) or 5 μM of the compound, 24 hours after 
plating. On each 96 well-plate, 8 wells were used as control to determine the 
basal Aβ production and up to 80 compounds per plate were tested. 
Following 24 hours of incubation with the compounds, Aβ1-40 and Aβ1-42 
levels were evaluated using commercially available Aβ ELISAs (EMD 
Biosciences Inc., CA, USA). Toxicity of the compounds was evaluated by 
monitoring the release of lactate-dehydrogenase release in the culture 
medium using a cytotoxicity detection kit (Roche, Inc.). Compounds showing 
cellular toxicity were discarded from further analysis. 
 
Calculation of IC50 for selected compounds 
Twenty four seed compounds that contain a DHP core (4-phenyl-1,4-
dihydropyridine [Smiles: C1(C=CNC=C1)C2=CC=CC=C2] ) were tested in 
quadruplicate at 0.1; 0.5; 2.5; 5;10 and 50 μM in 7W cells for their effects on 
Aβ. These seed compounds were selected based on ready commercial 
availability during our initial screen and have different potency towards Aβ 
inhibition. The half maximal inhibitory concentration (IC50) of the 
compounds for Aβ was calculated with the software Graphpad Prism V5 for 
Windows.  
 
Development of a 3D-QSAR model 
Our model set (MS) contained twenty-one “seed” compounds and were 
determined to have IC50s for Aβ40 lowering ranging from 200nM to 20 μM. 
All IC50s were converted to a logarithmic scale using the formula, 
pIC50 = -log10IC50. We used the MS compounds to build and validate a 
suitable QSAR model using Phase software available in the Schrordinger 
Package (release 2009). Phase uses a multi-step approach to model build. 
First, 2D chemical formulas were processed using LigPrep, to convert 2D 
into 3D conformers. Each of these conformers were energy minimized using 
MacroModel by applying an OPLS 2005 force field. The library of energy 
minimized conformers was used as input to the Phase program. We randomly 

selected 70% (17) of  the MS compounds as a training set to build the model 
while the remaining 30% (7 compounds) served as a test set to evaluate the 
robustness of the model. An extensive list of atomic groups and bond patterns 
are available within Phase to map pharamacophore features such as Hydrogen 
Acceptor (A), Hydrogen Donor (D), Hydrophobic (H), Charged groups (N or 
P) and Aromatic ring (R). Features were mapped for each of conformer using 
the default list of SMARTS pattern to identify spatial distribution of 
pharmacophore features in different conformers. A group of common 
physico-chemical features aligned in 3D space forms the basis for site point 
and a set of site points forms the basis for a pharamacophore. In the Phase 
program a site point is identified as one of the several possible conserved 
chemical features and a specific combination of site points (or features) form 
hypotheses variants to define a pharmacophore [16]. Thus a pharmacophore 
consists of a set of pharmacophore site points found common among active 
ligands.  In order to find a common pharmacophore, a tree-based partitioning 
technique is applied to group intersite distances of all active compounds in a 
16Å box. The minimum distance between two sites was kept at 2 Å to reject 
closely positioned pairs of features. The maximum depth of the tree was set 
to 4 branches. For this study we identified a five point pharmacophore, 
AADHR (Figure 2) consisting of two distinct hydrogen acceptor sites (A), 
one hydrogen donor site (D), one hydrophobic site (H) and one aromatic 
group feature (R). The geometrical features of the hypotheses can be 
extracted as a set of intersite distances and angles connecting every three 
sites. For example, the intersite distance between A1 and A4 is 7.158 Å, 
between A2 and D1 is 4.938 and D1 and A1 was 4.839 Å. The angle between 
D1, A2 and A1 is 42.4°. The feature AADHR had the highest specificity and 
survival score among all competing hypotheses. The AADHR was used to 
build a QSAR model derived from a regular grid of cubic volume elements 
that span the space occupied by the training set of ligands. The 
pharmacophore features that were present in the 3D cubic grid were scored 
for all compounds. The entire workflow is shown in Figure 1. 
 
Focused Chemical Library for DHPs 
We used the dihydropyridine core ring as a query in the TimTec library 
(http://www.timtec.net) to obtain 95% substructure similarity. There were a 
total of 1043 DHP and DHP like compounds that were pre-filtered for drug-
like properties. This is referred to as the library set (LS) of focused DHP and 
DHP-like compounds. 
 
Prediction of hits using the 3D-QSAR model 
We performed an in vitro screening of the 1043 DHPs and DHP-like 
compounds in our cell based assay to measure the inhibition of Aß. We 
applied our 3D-QSAR model based on the AADHR pharmacophore to 
predict compound activity and rank them based on their predicted potency. 
The model was built using a maximum of three partial-least squares factors. 
The model’s robustness was tested for its ability to predict both the training 
set and the test set. The R2 value of training pIC50 prediction was 0.81 
(significance p<0.05) and the model had a large F-score of 18.6 (p-value 
5.45x10-5) indicating a high confidence in the model (Figure 3). The test 
compound activities were predicted with an R2 of 0.56. We used this 3D-
QSAR model to predict and rank the 1043 LS compounds. We further 
compared the rank of predicted potency using our model with experimentally 
observed inhibition of the LS compounds. 
 
Activity based classification of Compounds: 
We empirically classified LS compounds based on the % inhibition as Strong 
(SH), Medium (MH) and Weak hits (WH).  There was a strong correlation 
between Aβ 40 and Aβ 42. Since the dynamic range of Aβ 40 inhibition due 
to abundance is greater than Aβ 42, we classified the compounds based on Aβ 
40 inhibition. SH compounds are those that inhibited 90% Aβ 40 production 
at 5 μM. MH compounds inhibited Aβ 40 production between 60% and 89% 
at 5 μM, while WH compounds inhibited Aβ 40 production between 40% and 
59% at 5 μM. Any compound lower than 40% was considered inactive for the 
purpose of this study. There were a total of 56 SH, 146 MH, 173 WH and 668 
inactive compounds in the LS. 
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Figure 1: Workflow followed in this study. 
 

 
Figure 2: A five point pharmacophore model (AADHR) predicted by Phase for DHP and selected for our study. The 3D-geometric features associated with the 
model are detailed in Table 1. Underlined alphabets identify different features like Hydrogen Acceptor (A1,A2), Hydrogen Donor (D1), Aromatic Ring (R1) 
and hydrophobic group (H1). 
 

 
Figure 3: Predicted vs Observed pIC50 of 24 DHP like compounds with test sets shown in filled circles and training set in open squares. The correlation 
coefficient of predicted vs observed pIC50 is 0.9 (p<0.05) for the training set and for test set it is 0.75 (p<0.05). 



Bioinformation Volume 5 
open access 

www.bioinformation.net Issue 3 Hypothesis
  

ISSN 0973-2063 (online) 0973-8894 (print)   
Bioinformation 5(3): 122-127 (2010  © 2010 Biomedical Informatics

 

125

 
Figure 4: Distribution of active compounds in the LS based on % inhibition of Aβ40 production at 5 μM. 
 

 
Figure 5 : Enrichment of different classes of active compounds in the top 100 predicted compounds.  SH compounds are highly enriched (factor of 3.35) in the 
top 100 while inactive compounds are depleted. Overall active compounds (sum of compounds in SH, MH, WH) were enriched by a factor of 2 in the top 100 
predicted by our QSAR model. 
 
Results & Discussion: 
Three dimensional QSAR model  
We developed a ligand-based 3D QSAR model for predicting Aβ lowering 
activity of DHP-like compounds using the Phase program (Schrödinger 
Modeling Package) [16]. Phase uses a conformational sampling and a scoring 
technique to match physico-chemical features of the atoms of a compound 
that may be critical for its biological activity. The 3D QSAR model is based 
on the spatial alignment of the chemical features of a training list of 
compounds using a virtual 3D lattice. To this 3D lattice, a weighted list of 
physico-chemical features (hydrophobicity, partial-charges, hydrogen donor, 
hydrogen acceptor, geometry) that are common among active compounds 
was calculated and the distribution of the features in a 3D space was 
extracted as vectors. We selected a model set of 24 DHP and DHP-like 
compounds that display a range of potencies for Aβ inhibition and calculated 
their corresponding pIC50 (-logIC50). We randomly selected 17 of those 
compounds as a training set to build the QSAR models. The best model was 
selected based on its ability to predict the Aβ lowering activity of the training 
set (correlation coefficient of 0.9). This model was applied to predict the 
theoretical potency or pIC50 of the remaining seven compounds and the 
model predicted the pIC50 correlation coefficient of 0.75 (Figure 2). The 
chemical features of the model consists of two hydrogen acceptor vector sites 

(A1 & A2), one hydrogen donor vector (D1), one aromatic ring vector (R1) 
and one hydrophobic group (H1). Table 1 (see supplementary material) 
provides a list of distance and angle separations that are characteristics of 
spatial chemical feature distribution in the 3D grid. 
 
Distribution of hits in DHP-like chemical library 
In our in vitro screen of LS compounds at 5 μM, there were 56 SH 
compounds that inhibited Aß by more than 90% (random probability of 
finding, Pr = 0.054), 146 compounds had medium potency or MH (Pr = 
0.14), 173 compounds were WH (Pr=0.17) and 668 compounds were 
classified as inactive (Pr=0.64). A model with true predictive power must be 
able to identify potent compounds in the top ranking compounds based 
predicted potency. Enrichment of potent hits among top ranked compounds 
based on predicted potency will significantly reduce cost and save time in 
screening large chemical libraries. Figure 4 shows the distribution of 
inhibitors based on the % inhibition of Aβ 40 production at 5 μM in a cell 
based assay for the chemical library of 1043 compounds. 
 
Predicting DHP-like hits using in silico screen 
We applied our 3D-QSAR model to predict the Aβ lowering activity of the 
compounds in a focused DHP library and selected the top and bottom 100 
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compounds based on their predicted potency.  Among the 100 bottom 
compounds selected by the model, 99% showed no Aβ lowering activity and 
only one compound displayed marginal Aβ lowering activity (20% inhibition 
at 5 μM). Within the top 100 compounds, the model identified over 66% of 
active compounds, among them 18 were the most potent Aβ lowering SH 
compounds in the library.  The probability of finding SH compounds in the 
top 100 is three times greater using the QSAR model compared to finding 
them by chance. In the bottom 100 compounds we found just 1 of the SH 
compounds and 66% of the inactive compounds, implying our method 
selectively depleted active compounds in the bottom ranking (Figure 5). 
Thus our prediction model enriches potent compounds in the top 10% 
ranking based on predicted potency while depleting potent compounds in the 
bottom 10%. By screening top 30% of compounds as predicted by our model 
we demonstrate that one must be able identify 73% of all potent compounds 
that inhibit Aβ 40 production at least 90% at 5 μM.  
 
Our data show, despite limited information that it is possible to build a 
working 3D QSAR model to predict the Aβ lowering activity of DHP 
compounds and hence perform an in silico screening of a focused library. 
Although, a model built with a large training set of compounds may refine 
predictive power, even a limited number of compounds fitted in the model is 
sufficient to allow an enrichment of a focused library for active compounds.   
 
3D-QSAR model prediction performance 
Screening for hits in large chemical libraries to identify inhibitors of Aβ 
production is an expensive proposition.  Based on in house experiments 
(unpublished) that demonstrated DHPs were able to ameliorate AD 
pathology, we set out to screen a small focused library of DHP like molecules 
and determined their IC50s for Aβ production. Currently there are more than 
35,000 compounds with DHP like cores available from public databases. 
Screening such vast libraries in vitro is an expensive process due to the cost 
of the ELISA used in quantitating Aß. We set out to build a 3D-QSAR model 
using Phase with a limited set of compounds for which the IC50s for 
inhibition of Aβ production were known from our in vitro cell based assay. 
The best 3D-QSAR model was able to predict the test set with a correlation 
coefficient of 0.7. We applied this model to predict the inhibitory potency of 
an intermediate sized focused DHP library and to test the feasibility of 
applying an in silico screen to prioritize compounds for in vitro screening. 
Using an iterative screening and model building process the performance of 

the model can be improved further. To accomplish this, we intend to apply 
3D-QSAR modeling to screen a larger library of DHP and DHP-like 
compounds from several other commercial and public sources.  
 
Conclusion: 
We demonstrate here that a simple 3D-QSAR model is able to enrich for 
biologically potent compounds in the top 10% arranged by predicted potency 
while depleting them from predicted low activity compounds. Our approach 
can be combined with other predictive models for ADME properties and 
linear 2D based models to rapidly screen large chemical libraries in order to 
prioritize potent compounds for further in vitro screening. 
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Supplementary material: 
 
Table 1: Geometric constrains of pharamacophore features identified in this study to predict Aβ production inhibitors using a 3D-QSAR model by Phase 
(Schordinger, USA). There are two Acceptor (A1, A2), one donor (D1), one aromatic (R1) and one hydrophobic site (H1). 
Site1 Site2 Distance (Å)  Site1 Site2 Site3 Angle (in degrees) 

A2 A1 7.158  A1 A2 D1 42.4 

A2 D1 4.938  A1 A2 H1 23.7 
A2 H1 6.594  A1 A2 R1 39 
A2 R1 4.797  D1 A2 H1 19.1 
A1 D1 4.839  D1 A2 R1 78.9 
A1 H1 2.876  H1 A2 R1 61.8 
A1 R1 4.568  A2 A1 D1 43.5 
D1 H1 2.513  A2 A1 H1 67.1 
D1 R1 6.185  A2 A1 R1 41.3 
H1 R1 6.046  D1 A1 H1 24.3 
    D1 A1 R1 82.2 
    H1 A1 R1 106.4 

    A2 D1 A1 94.1 

    A2 D1 H1 121 

    A2 D1 R1 49.6 
    A1 D1 H1 28.1 
    A1 D1 R1 47 
    H1 D1 R1 75.1 
    A2 H1 A1 89.2 
    A2 H1 D1 40 
    A2 H1 R1 44.3 
    A1 H1 D1 127.7 
    A1 H1 R1 46.4 
    D1 H1 R1 81.3 
    A2 R1 A1 99.7 
    A2 R1 D1 51.6 
    A2 R1 H1 73.9 
    A1 R1 D1 50.8 
    A1 R1 H1 27.1 
    D1 R1 H1 23.7 

 


