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Abstract: Parasitic diseases have serious health, social, and economic impacts, especially in the
tropical regions of the world. Diseases caused by protozoan parasites are responsible for considerable
mortality and morbidity, affecting more than 500 million people worldwide. Globally, the burden of
protozoan diseases is increasing and is been exacerbated because of a lack of effective medication
due to the drug resistance and toxicity of current antiprotozoal agents. These limitations have
prompted many researchers to search for new drugs against protozoan parasites. In this review, we
have compiled the latest information (2012–2017) on the structures and pharmacological activities of
newly developed organic compounds against five major protozoan diseases, giardiasis, leishmaniasis,
malaria, trichomoniasis, and trypanosomiasis, with the aim of showing recent advances in the
discovery of new antiprotozoal drugs.

Keywords: protozoan diseases; parasitic; giardiasis; leishmaniasis; malaria; trichomoniasis;
trypanosomiasis

1. Introduction

It is well known that parasitic diseases are a serious health problem, that has a deep impact
on the global human population [1]. Among parasites, protozoan parasites, such as Trypanosoma
cruzi, Leishmania mexicana, Plasmodium falciparum, Giardia intestinalis, and Trichomonas vaginalis, are the
major disease-causing organisms. They are responsible for spreading infections worldwide, especially
in undeveloped countries, where a tropical or temperate climate and poor sanitary and hygiene
conditions are common [2–4]. Protozoan parasites are single-celled eukaryotes characterized as a
diverse polyphyletic group. The infections caused by these parasites are responsible for 500 million
deaths worldwide [5–8]. These infections are considered neglected because relatively little attention
has been devoted to their surveillance, prevention, and treatment [9]. According to the global burden of
disease analysis report by the World Health Organization in 2008, around 17% of deaths worldwide are
caused by neglected tropical diseases [10]. These neglected protozoan diseases are a group of tropical
infections that are particularly dominant in low-income majority populations, and affect millions of
people and animals [6,11]. The major neglected protozoan diseases are Chagas disease, leishmaniasis,
trichomoniasis, amebiasis, and giardiasis [9,12,13].

The modes of transmission of these protozoan parasites differ from each other. Some of
them are transmitted by insects that are vectors of Plasmodium species (malaria), T. brucei (human
African trypanosomiasis, HAT), T. cruzi (Chagas disease), and Leishmania species (leishmaniasis).
In addition, E. histolytica (amebiasis), Cryptosporidium parvum (cryptosporidiosis), Cyclospora cayetanensis
(cyclosporiasis), and Giardia lamblia (giardiasis) are transmitted through food and water contaminated
with fecal matter [12]. The biochemistry of a large number of protozoan parasites has been studied
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during previous studies. According to the mode of infection of the parasites, many organic molecules
have been manufactured in the last 50 years for the development of new antiprotozoal agents. Some of
these agents, e.g., metronidazole and tinidazole (for amebiasis, trichomoniasis, and giardiasis), sodium
stibogluconate (for leishmaniasis), chloroquine (for malaria and trichomoniasis), pentamidine and
melarsoprol (for HAT), and benznidazole (for American trypanosomiasis) are very effective and are
currently used in medical practice. However, the available drugs are not the final solution because of
their existing resistance and toxicity [14–30]. The above-mentioned shortcomings promote the ongoing
drug research effort to identify mechanistically novel, nontoxic, and cost-effective chemotherapies for
the treatment of these neglected protozoan problems [31].

As a continuation of our studies on antiprotozoal drug development, we present the latest
information with respect to recent drug developments against five major protozoan diseases, giardiasis,
leishmaniasis, malaria, trichomoniasis, and trypanosomiasis in the form of a review. Notably, during
the literature review, we found many articles on antiprotozoal drug discovery published between
2012 and 2017 [32–47]. Therefore, keeping their findings in mind, we wrote this review in a different
style; we have described the five major protozoan diseases and compiled their latest synthetic and
pharmacological data individually from 2012 to 2017 in Tables 1–5. This tabular form of data has not
been reported in previously published reviews.

2. Recent Progress of Antiprotozoan Agents

2.1. Anti-Giardiasis

Giardiasis is caused by the protozoan parasite G. intestinalis (also known as G. lamblia or
G. duodenalis). It is also known by the common name “beaver fever,” because this infection was
reported in campers who drank contaminated water that was inhabited by beavers. Giardiasis is the
most common protozoan infection in human beings, and it occurs in both developing and industrialized
countries [48]. Its global incidence is believed to range between 20%–60% [49], with 2%–7% incidence
in industrialized nations [50]. Giardia intestinalis was first described in 1681 after the Dutch microscopist
Antonie van Leeuwenhoek observed the protozoan in his own diarrheic stools. This disease is often
prevalent in poor countries and communities that have untreated water, inadequate sanitation, and
poor dietary status [51]. The infection is caused by fecal–oral transmission and initiated by the ingestion
of infectious cysts from contaminated water or through person-to-person contact. After excystation,
flagellated trophozoites colonize the upper small intestine, where they attach to the epithelial lining
but do not invade the mucosa. The duration of Giardia infection is variable; however, chronic infection
and reinfection commonly occur [52]. Approximately 50% of the symptoms classically associated
with giardiasis are asymptomatic including diarrhea, abdominal pain, nausea, vomiting, and anorexia.
However, infected individuals can also develop extraintestinal and postinfectious complications [53,54].
Chronic extraintestinal sequelae may affect the joints, skin, eyes, and central nervous system, but the
underlying mechanisms are unknown [53,54]. According to research data, Giardia has eight distinct
genetic assemblages labelled as assemblage “A” through “H” [55,56], and assemblages “A” and “B”
are responsible for infection in humans.

Three classes of drugs are currently used for the treatment of giardiasis: metronidazole, mepacrine
analogs, and nitrofurans, such as furazolidone (Figure 1). Metronidazole is the most widely used drug
for the treatment of giardiasis globally and it is generally effective and well-tolerated. However, the
United States Food and Drug Administration (FDA) has not yet approved this drug for the treatment
of Giardia infection because of its toxicity and major side effects, such as seizures, ataxia, peripheral
neuropathy, transient myopia, gastric mucosal irritation, sperm damage, and hematuria [14–18].
Tinidazole is an N1-position modified 5-nitro imidazole, which has been approved by the FDA for the
treatment of giardiasis. Nitazoxanide (NTZ) belongs to an emerging class of 5-nitrothiazole compounds
with potential antigiardial activity [57]. However, although NTZ is generally well tolerated, some
adverse effects such as abdominal pain, diarrhea, and nausea limit the safe use for human beings.
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Mepacrine is no longer available in the United States, and it is being replaced in most of its applications
with safer and more specific drugs. Furazolidone also has serious side effects, such as gastrointestinal
disturbances, hemolytic anemia, disulfiram-like reactions to alcohol, and hypersensitivity reactions, as
well as evidence of tumorigenicity in rodent studies. Furthermore, G. lamblia resistance to this drug
has also been reported [58–60]. Therefore, research focusing on the development of novel, alternative
drugs for the treatment of giardiasis is highly desirable. In view of these considerations, researchers
have designed and synthesized some novel molecules for the treatment of giardiasis, their results are
summarized in Table 1.

Table 1. Selected data of reported antigiardial agents.

Compound Activity Ref.
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Table 1. Cont.

Compound Activity Ref.
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Important Highlights of Table 1 Compounds

All of the novel compounds designed for giardiasis treatment are listed in Table 1 and their
efficacies were compared with those of the standard drugs metronidazole (MTZ), formononetin,
aminitrozole, nitazoxanide, tizoxanide, nitazoxanide and mebendazole. In brief, Zhang et al. isolated
3,5-dicaffeoylquinic acid from Artemisia argyi, and from it, developed a series of ester derivatives as
potential antigiardial agents. Amongst the synthesized compounds, Compound 7 was reported as
the most potent inhibitor against G. lamblia (IC50 = 4.62 µg/mL) [61]. A series of 3-tetrazolylmethyl-
4H-chromen-4-ones were synthesized by Cano et al. via an Ugi-azide multicomponent reaction and
evaluated for antigiardial activity and, compound 8 was found to be the most potential antigiardial
agent (IC50 = 84.2 µg/mL) in the series [62]. Navarrete-Vázquez et al. [63] synthesized a series
of four 5-nitrothiazole compounds and reported them as novel antigiardial agents. Among them,
compounds 9a (IC50 = 0.122 µM) and 9b (IC50 = 0.151 µM) exhibited potential inhibitory activity against
G. intestinalis. Singh et al. [64] designed and developed a series of chalconyl blended triazole allied
silatranes; these compounds are hybrids of three pharmacologic scaffolds, namely chalcone, triazole
and metal complex (silatranes). All the derivatives were evaluated for the antigiardial activity; among
them compound 10 showed excellent activity against G. lamblia (IC50 = 19.58 µM). Compound 11 is a
derivative of naturally occurring sesquiterpene lactone, which was isolated from Decachaeta incompta by
Bautista et al. It showed greater antigiardial activity (IC50 = 30.6 µg/mL) than its parent compound [65].
Novel nitazoxanide–N-methylbenzimidazole hybrids were designed and synthesized by Soria-Arteche
et al. [66], and evaluated for their in vitro biological activity. Compounds 12a–d expressed good
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antigiardial activity (IC50 = 0.021–0.027 µM) by inhibiting an G. intestinalis culture. Using a novel
methodology based on a double Sonogashira coupling reaction in 2-amino-3,5-diiodopyridine, Leboho
et al. synthesized a series of 2,3,5-trisubstituted 7-azaindoles, as well as 2,5-disubstituted 7- azaindoles.
These synthesized series were evaluated against a G. duodenalis strain, and the results showed that
compounds 13a (IC50 = 14.3 µg/mL) and 13b (IC50 = 8.2 µg/mL) were the most potent agents [67].
Another series of 2-amino-4-arylthiazole derivatives were prepared and evaluated by Mocelo-Castell
et al. [68] as potential anti-giardial agents. The results revealed that compounds 14a (IC50 = 0.87 µM)
and 14b (IC50 = 0.39 µM) were the most potent inhibitors of G. intestinalis. Disulfiram (compound 15)
was proposed to inactivate G. lamblia kinase, and Castillo-Villanueva et al. hypothesized that it acts
on enzymes of G. lamblia. Accordingly, compound 15 (IC50 = 6.6 µM) was efficient inactivator of
immunoreceptor tyrosine-based inhibition motif (ITIM). Therefore, it is feasible that compound 15
could lead to new pharmacotherapies against G. lamblia [69]

In summary, the reported antigiardial agents could be categorized as the natural compounds
and their analogues (e.g., 3,5-dicaffeoylquinic acid derivatives and 8-acyl and 8-alkyl incomptine
A derivatives) and hybrids compounds with the known acitve drug such as nitazoxanide-based
and benzimidazole-based hybrids. It is noteworthy that the hybrid of nitazoxanide and
N-alkylbenzimidazole tethered by amide linker exhibited good activity profiles compared with
nitazoxanide or albendazole, which suggests that hybridization of active compounds could provide
good option for antigiardial drug discovery.
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2.2. Anti-Leishmaniasis

Leishmaniasis, a parasitic disease spread by the bite of an infected female phlebotomine sand fly,
has been known for many years it was first clinically described in 1756 by Alexander Russell, who
named it Aleppo boil [70]. Many names correlate to this group of diseases such as kala-azar, Dum-dum
fever, white leprosy, espundia, and pian bois. A vector borne disease, leishmaniasis is caused by an
obligate intramacrophage protozoan, and it is characterized by its diversity and complexity [71,72].
Approximately 21 Leishmania species have been identified to be pathogenic to humans. Leishmania
is one of several genera within the family Trypanosomatidae, and its species are characterized by
the possession of a kinetoplast, a unique form of mitochondrial DNA. Based on species type host
immune system responses, leishmaniasis has three basic clinical forms: Cutaneous (with skin ulcers),
mucocutaneous (with skin, mouth, and nose ulcers), and visceral (with liver, and spleen enlargement,
as well as bone marrow dysfunctions) [73,74]. Cutaneous leishmaniasis, the most common form of the
disease, is caused by L. braziliensis, L. major, L. mexicana, L. tropica, and several other species [75]. It can
be eventually defeated by the immune system; however, in most cases it progresses and is converted
in to the mucocutaneous form, in which the parasites metastasize to the mucosal tissues. Mucosal
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leishmaniasis is usually caused by L. braziliensis, and it is associated with damage to the palate, nasal
septum, and mucous membranes [76,77]. This form is usually refractory to therapy and can be fatal.
The most dangerous form of the disease is visceral leishmaniasis, commonly called kala-azar. It can
become fatal if it is not rapidly diagnosed and treated, it is responsible for most leishmaniasis-related
deaths [78,79]. In visceral leishmaniasis, which is caused by L. donovani and L. infantum (synonym of
L. chagasi), the parasite mainly infects the liver, spleen, and bone marrow. The infected host shows
symptoms such as fever, weight loss, and anemia [80]. This disease has been recognized as an increasing
health problem worldwide by the World Health Organization (WHO) [81], with high morbidity and
mortality rates in Africa, Asia, and America. Among all tropical diseases, leishmaniasis is ranked
fourth in morbidity and second in mortality rates [82]. Leishmaniasis is widespread, having been
reported in 88 countries across all continents, with the exception of Antarctica [71,83]. It has an annual
death rate of approximately 80,000 people [84], and there are two million new cases occurring annually,
with 12 million people currently infected globally [83,85].

The life cycle of Leishmania sp. begins when the invertebrate host (sand fly) feeds on infected
mammalian blood, thereby imbibing the amastigotes present within the macrophages. In the intestine
of the insect vector, the amastigote transforms into procyclic promastigotes, and later into metacyclic
promastigotes. When the insect bites a mammalian host again, the inoculated virulent promastigotes
enter the blood stream and are internalized by the macrophages, where they differentiate again
into amastigotes, completing the cycle [86]. No effective vaccine is available against leishmaniasis;
chemotherapy is the only effective way to treat all forms of the disease [87–89]. However, some
drugs are available for the treatment of this disease. The first-choice treatment for leishmaniasis
involves the use of the pentavalent antimonial derivatives, sodium stibogluconate, which is highly
toxic with serious side effects, and requires a prolonged treatment regimen [90,91]. Alternatives include
paromomycin, pentamidine, miltefosine and amphotericin-B (Figure 2) However, these drugs have
not found extensive use owing to their severe toxicities and difficulties associated with parenteral
administration and drug resistance [19–22]. Generally, the drugs currently used for the treatment of
human cutaneous and visceral leishmaniasis are toxic, and can cause severe adverse reactions such as
pancreatitis, pancytopenia, reversible peripheral neuropathy, nephrotoxicity, cardiotoxicity, bone pain,
and myalgia [92,93]. Therefore, the development of novel, effective, and safe antileishmanial agents
with reduced side effects is a major priority for health researchers. In view of these considerations,
some researchers have designed and synthesized novel molecules for the treatment of leishmaniasis;
their results are summarized in Table 2.

Table 2. Selected data of reported antileishmanial agents.

Compound Activity Ref.
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Important Highlights of Table 2 Compounds

Compounds of different heterocycles classes are included in Table 2 as potent antileishmanial
agents and the results of their analysis were compared with those of the standard drugs pentamidine,
sodium stibogluconate (SSG), miltefosine, amphotericin-B (AmB), edelfosine and clofazimine (CFM).

In brief, a series of thiosemicarbazide derivatives were prepared and evaluated for thier
antileishmanial activities. Compounds 21a and 21b were reported as the most active candidates, with
IC50 values in the range of 16.4 µM to 22.0 µM, after screening the whole series against L. amazonensis
cultures using promastigotes and amastigote assays [94]. Among the compounds developed by Rashid
et al., compound 22 was found to be a highly active antileishmanial agent. Basically, compound 22 is a
designed hybrid compound in which two biological scaffolds, pyrazoline and pyrimidine are linked
with each other. It showed excellent biological activity the highest among all theh hybrids in its series
against L. major and L. donovani with IC50 values of 0.47 ± 0.02 and 1.5 ± 0.17 µg/mL, respectively [95].
Sangshetti et al. [96] synthesized 4,5,6,7-tetrahydrothieno[3,2-c]pyridine-based hydrazone derivatives
and determined their antileishmanial inhibitory activities. Among the derivatives in this series,
compounds 23a and 23b showed significant biological activities against L. donovani promastigotes,
IC50 values of 98.75 and 93.75 µg/mL, respectively compared to that of the strandard drug SSG
(IC50 = 490 µg/mL). A series of chalcones are also included in Table 2, and their activity against
L. donovani cultures clearly showed that among them, the compounds containing chromane, pyridine,
and a substituted 4-hydroxy phenyl ring (compounds 24a and 24b) exhibited excellent antileishmanial
activities (IC50 values of 2.8 and 2.0 µM, respectively) [97]. Among a series of carboline derivatives
reported by Manda et al. [98], compounds 25a (IC50 = 12.7 µM) and 25b (IC50 = 9.1 µM), which are
derivatives of the commercially available tetrahydro-β-carboline prepared in a single procedure were
the best candidates against L. donovani (promastigotes). Zhu et al. [99] reported compounds 26a and
26b, which are derived from arylamidamide using the reaction between amino diarylfurans and
2-pyridyl thioimidate analogs, as the most active antileishmanial agents against both intracellular
L. donovani and L. amazonensis amastigotes, with IC50 values ranging from 0.13 to 0.31 µM. A series
of 4-alkapolyenylpyrrolo[1,2-a]quinoxaline derivatives, including compounds 27a and 27b, which
exhibited remarkable inhibitory potential against two Leishmania spp. strains namely L. major and
L. donovani (IC50 values between 1.2 and 10.5 µM), were prepared and reported by Ronga et al. [100].
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Of all the compounds synthesized by Bekhit et al. [101], compound 28, whose hybrid analog baasically
resulted from hybridization with five-membered heterocyclici moieties, including 1,3,4-thiadiazoles
and pyrazolines, exhibited the greatest potential in terms of antileishmanial activity. It was the best
candidate among the series against L. aethiopica promastigotes (IC50 = 0.0142 µM) and amastigotes
(IC50 = 0.13 µM). Compound 29, an acetamide derivative of (+) -dehydroabietylamine derivative
reported by Dae-ayuela et al [102], was found to be the most potent leishmanicidal agent among the
series (IC50 = 1.5 µM). It was even more active than the reference compound, miltefosine (IC50 = 3.4 µM).
A series of 2-phenyl-3-(pyridin-4-yl)imidazo[1,2-a]pyrazine derivatives were synthesized by Marchand
et al. [103], and their antileishmanial activities were evaluated. Among the synthesized molecules,
compounds 30a and 30b were found to be the most potent analogs against L major promastigotea
and amastigotes with IC50 values between 0.2 and 6.4 µM. Sangshetti et al. [105] synthesized a series
of indolyl–coumarin hybrids, and after evaluating their antileishmanial potential in vitro reported
that compounds 31a and 31b were excellent antileishmanial agents (IC50 values between 95 and
99 µg/mL) compared to the standard drug SSG (IC50 = 490 µg/mL) [104]. The sntileishmanial
potentials of 1,3,6-trisubstituted β-carboline derivatives, synthesized by Lunagariya et al. were
evaluated, and compound 32 (IC50 = 9.0 µM) was found to show an comparable antileishmanial
activity comparable to that of the standard drug, miltefosine (IC50 = 11.9 µM). Kumar et al. [106]
reported the synthesis of a new series of aryl substituted ketene dithioacetals, which were evaluated
in vitro for their activity against L. donovani. Based on their results, compounds 33a and 33b were
reported as the most potent antileishmanial agents, with IC50 values of 5.12 and 3.56 µM respectively.
Among the 4-arylamino-6-nitroquinazolines synthesized by Saad et al. [107], compounds 34a and
34b were found to be the most potent inhibitors of L. major promastigotes (IC50 values of 1.87 and
4.37 µM, respectively) compared to the standard drug, pentamidine (IC50 = 5.09 µM). Gopinath
et al. [108] developed a series of substituted quinoline analogs and assessed their antileishmanial
activities. They found compound 35 to be the most active (IC50 = 0.84 µM). Among the diselenide and
sulfonamide derivatives developed by Baquedano et al. [109] compounds 36a–c were found to be potent
antileishmanial agents, with IC50 values of 1.40, 1.47 and 0.83 µM, respectively, against L. infantum
intracellular amastigotes. An assessment of the antileishmanial potential of triazolopyridyl pyridyl
ketone derivatives developed by Adam et al. [110] revealed that compounds 37a and 37b elicited potent
growth inhibition against cultured Leishmania spp. promastigotes and amastiogotes with IC50 values
ranging between 19.5 and 114.6 µM. Sharma et al. [111] synthesized Triazino indole–quinoline hybrid
as antileishmanial agents targeting L. donovani. Their results showed that compounds 38a and 38b
significantly inhibited L. donovani extracellular promastigotes and intracellular amastigotes with IC50

values ranging between 0.36 and 8.57 µM. Among the heteroretinoid-bisbenzylidine ketone hybrids
developed by Tiwari et al. [112], compounds 39a–c were identified as the most potent agents against
L. donovani intramacrophagic amastigotes, with IC50 values between 1.83 and 5.02µM. Pandey et al. [113]
synthesized indole-2-carboxamide derivatives using utilizing the isocyanide based multicomponent
reaction and evaluated them against L. donovani. Their results showed that among them, compound
40 (IC50 = 0.6 µM) exhibited a more promising antileishmanial activity than those of standard drugs,
including SSG (IC50 = 56.1 µM) and miltefosine (IC50 = 8.4 µM). Several Clofazimine analogs were
synthesized by Barteselli et al. [114] and their antileishmanial activities were screened using an in vitro
evaluation, which demonstrated that compound 41 was the most potent antileishmanial agent against
L. infantum, and L. tropica. A series of 8 imidazole derivatives were developed by Vita et al. [115], and an
in vitro analysis of their antileishmanial activities showed that out of the 8 compounds, compounds 42a
and 42b were the most potent antileishmanial molecules with IC50 values of 12.7 and 8.0 µM against
L. infantum respectively. Reddy et al. [116] synthesized a large series of benzyl phenyl ether derivatives
and evaluated their biological activities. Their results showed that compounds 43a–e were potent
antileishmanial agents and compounds 43b (IC50 = 1.6µM), 43d (IC50 = 1.27µM) and 43e (IC50 = 1.39µM)
showed the greater antileishmanial activity against L. donovani compared to that of the standard drug,
pentamidine (IC50 = 1.84 µM). Zhang et al. [117] prepared a novel series of oxyneolignans virolin,



Molecules 2019, 24, 3886 14 of 45

surinamensin, and analogs using an asymmetric synthetic method. Thereafter, their ability to inhibit
the growth of different protozoal strains was tested. Their results showed that compounds 44a and 44b
exerted the maximum antileishmanial activities with IC50 of 2.29 µg/mL and 2.48 µg/mL, respectively.
The antiprotozoal activities of novel oxadiazolyl pyrrolo triazole diones derivatives synthesized by
Dürüst et al. [118] was investigated. The results showed that compounds 45a (IC50 = 1.6 µg/mL)
and 45b (IC50 = 2.0 µg/mL) were the most active antileishmanial agents against L. donovani. Pierson
et al. [119] synthesized a series of novel 4-arylcoumarin derivatives, and the determination of their
antiprotozoal activities against various biological strains revealed that compounds 46a–c, with different
substitutions on phenyl rings, displayed the most potent activity against L. donovani amastigotes
(IC50 = 1.1–5.4 µM). Patric et al. [120] developed a series of bis-pyridylimidamide derivatives, and
an assessment of their antileishmanial activities showed that among them, compound 47a was the
most active, and inhibited the L. amazonensis strain with an IC50 value of 0.095 µM, while the others,
including 47b (IC50 = 0.123 µM) and 47c (IC50 = 0.211 µM), exhibited slightly more potent activity
compared with amphotericin B (IC50 = 0.124 µM). Diaryl sulfide inhibits L. infantum promastigotes, and
an evaluation of the inhibitory activity of its deriatives by Saccoliti et al. [121] showed that compound
48 inhibited L. infantum promastigotes by a dose-dependent amount with an IC50 value of 29.43 µM.
Preeti et al. [122] developed tellurium derivate, immunomodulatory, and demonstrated that compound
49 could eliminate L. donovani promastigotes, and an evaluation by in vitro assay showed that it had
a significant growth inhibitory effect on L. donovani promastigotes with an IC50 value of 26.9 µM.
Rodríguez-Hernandez et al. [123] converted hederagenin into 1,2,3-trizolyl derivatives aiming to obtain
antileishmanial and cytotoxic compounds. Of the synthesized compounds, compound 50 was found
to be the most potent antileishmanial molecule, with an IC50 value of 5.6 µM. The thiadazole scaffold is
a prevalent heterocyclic ring with antiparasitic activity. Tahghighi et al. [124] developed its derivatives,
among which compounds 51a and 51b (IC50 between 0.08=9.35 µM) were found to be the most potent
antileishmanial agents inhibiting extracellular promastigotes and amastigotes.

In summary, antileishmanial agents of diverse scaffolds such as chalcone, arylamidine,
thiohydrazone, and polyheteroaromatics, were reported. Som of the compounds exhibited comparable
activity with pentamidine or miltefosine. In particular, 1,5-diphenylpenta-1,4-dien-3-one derivatives
(39) and Ether-tether phenylamidine (43) displayed good activity profiles.

2.3. Anti-Malaria

Malaria is a deadly mosquito-borne disease that mainly affects humans. It is an infectious disease
caused by protozoan parasites belonging to the genus Plasmodium. Five different species of Plasmodium,
P. falciparum, P. ovale, P. malariae, P. vivax, and P. knowlesi are responsible for the spread of malaria;
P. falciparum is considered the most dangerous and virulent form. The disease is transmitted via
the sucking of human blood by infected female Anopheles mosquitoes [125], and symptoms include
fever, fatigue, vomiting, and headache; in severe cases, it can cause yellow skin, seizures, coma, and
death [126]. The symptoms usually begin 10 to 15 days after infection, and disease recurrence may
be observed months later if not properly treated. In those who have recently survived an infection,
reinfection usually causes milder symptoms. This partial resistance disappears over months to years if
the person has no continuing exposure to malaria [126]. According to the 2014 world malaria report
by the WHO, a total of 198 million cases of malaria and nearly 584,000 malaria deaths occurred in
2013 [127]. In 2013, 3.4 billion people were at risk of malaria, of whom 1.2 billion were at a higher
risk with more than one case per 1000 people, especially in over 97 countries in tropical areas with
the ongoing transmission of malaria. Ninety percent of the above-mentioned deaths occurred in
sub-Saharan Africa, of which 77% were children under the age of five. In 2010, an estimated 660,000
malaria deaths were reported worldwide [128]. Additional reports suggest that malarial infection and
mortality are more widespread than previously estimated by the report of Murray et al., with up to 200
million clinical cases and 1.2 million deaths reported in 2010 alone [129]. Because of its devastating
effects on the human population, the WHO rates malaria as one of the top three infectious diseases
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worldwide [130]. In brief, malaria has become one of the major causes of illness in humans, with
approximately 250 million clinical cases reported around the world annually, particularly in poor or
developing countries [127]. P. falciparum causes most of the severe cases and the most deaths, and
nearly 80% of all reported cases and as mentioned above 90% of malaria-attributed deaths occur in
Africa [131]. Moreover, P. vivax is the predominant species, in Asia, the Middle East, Central and South
America, and the Western Pacific [132]. Malarial parasites exhibit a complex life cycle involving an
insect vector (mosquito) and a vertebrate host (human), and all species exhibit a similar life cycle with
only minor variations. The infection is initiated when sporozoites are injected into the human body
through the saliva of a feeding Anopheles mosquito. When sporozoites enter the human body and travel
through the bloodstream to the liver they transform into exoerythrocytic forms (EEFs) [133]. Based
on the Plasmodium species, these forms are converted into mature exoerythrocytic-stage schizonts, or
enter a dormant phase in which they are called hypnozoites, which only two species of Plasmodiums,
P. vivax and P. ovale make. These hypnozoites reactivate several weeks to months (or years) after
the primary infection and are responsible for malaria relapses weeks, months, or even years after
the initial infection [134]. Fully developed exoerythrocytic-stage merozoites eventually exit the liver
and re-enter the bloodstream [133]. They enter the red blood cells (RBCs) and replicate asexually
causing RBC destruction, which leads to the characteristic symptoms associated with malaria such
as anemia, fever, and chills [135]. A small percentage of these asexual blood-stage parasites then
differentiate into sexual erythrocytic stages (female and male gametocytes) whose transmission back
to the mosquito vector during a subsequent blood meal completes the life cycle [136]. Important
antimalarial agents are presented in Figure 3. In the past, malaria was treated with the bark of
cinchona (Cinchona rubra [Rubiaceae]); however, at this time, it was not known that cinchona bark
contains quinine, which was later isolated and shown to have antimalarial properties [137,138]. Some
medicinal chemists developed simpler synthetic analogs of quinine such as chloroquine, amodiaquine,
primaquine, and piperaquine, which all had a quinine pharmacophore, but did not have multiple
stereogenic centers. Among them, chloroquine was found to be the most efficient drug, and it has served
humanity for over five decades [42,139]. However, the spread of chloroquine resistance prompted
medicinal chemists to re-investigate the chemistry and pharmacology of alternative 4-aminoquinoline
antimalarials such as amodiaquine [132], which has proven to be effective against chloroquine-resistant
parasite strains [23–27]. Amodiaquine is effective against many chloroquine-resistant strains of
P. falciparum [126]. However, its clinical use has been severely restricted because of its associations
with hepatotoxicity and agranulocytosis [28,29]. Although in recent years a natural endoperoxide
artemisinin and its semisynthetic derivatives artemether, artesunate, and dihydroartemisinin have
been employed for the treatment of malaria owing to chloroquine resistance in parasites, but the global
deployment of artemisinin-based combination therapy is limited by its relatively high cost of treatment,
safety concerins during pregnancy, and early signs of resistance in Southeast Asia [140–142]. Despite
the market availability of large numbers of antimalarial drugs, no perfect drug is known because
individual drugs and drug combinations have their own limitations including poor compliance, side
effects, toxicity, and resistance. Therefore, owing to the aforementioned conditions, some researchers
have designed and synthesized novel molecules for antimalarial purposes. In this review article, we
have compiled the latest data on antimalarial agents designed from 2012–2017. The details of these
antimalarial agents are summarized in Table 3.
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artesunic acid, artemisinin derived alcohol, di-artemisinin, proguanil, and quinone. 

Pingaew et al. [143] synthesized 11 chalcone coumarin hybrids linked by the 1,2,3-triazole ring. 
All the derivatives were screened, and the evaluation of their potent antimalarial activity showed 
that among them, compound 62 significantly inhibited a P. falciparum culture with an IC 50 value of 
1.60 µM. Nisha et al. [144] developed β-amino-alcohol tethered 4-aminoquinoline-isatin conjugates, 
and evaluation of their antimalarial activities revealed that compounds 63a and 63b were the most 
potent antimalarial agents, with IC50 values of 11.7 and 13.5 nM respectively. Kumar et al. [145] 
synthesized various triazole tethered isatin-ferrocene derivatives and evaluated their antimalarial 
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Important Highlights of Table 3 Compounds

Compounds of different heterocycle classes are included in Table 3 as potent antimalarial agents
and the results of their assessment were compared to those of the standard drugs dihydroartemisinine,
chloroquine, artemisinin, mefloquine, puromycin, artesunate, artemether, artesunic acid, artemisinin
derived alcohol, di-artemisinin, proguanil, and quinone.

Pingaew et al. [143] synthesized 11 chalcone coumarin hybrids linked by the 1,2,3-triazole ring.
All the derivatives were screened, and the evaluation of their potent antimalarial activity showed
that among them, compound 62 significantly inhibited a P. falciparum culture with an IC 50 value of
1.60 µM. Nisha et al. [144] developed β-amino-alcohol tethered 4-aminoquinoline-isatin conjugates, and
evaluation of their antimalarial activities revealed that compounds 63a and 63b were the most potent
antimalarial agents, with IC50 values of 11.7 and 13.5 nM respectively. Kumar et al. [145] synthesized
various triazole tethered isatin-ferrocene derivatives and evaluated their antimalarial activities against
chloroquine-susceptible and chloroquine-resistant P. falciparum strains. The results showed that
compounds 64a and 64b were potent antimalarial agents. Several aminoalkylated quercetin derivatives
were synthesized by Helgren et al. [146] by using the mannich reaction were screened for antimalarial
activity using an in vitro assay. The results demonstrated THAT compounds 65a and 65b were the
most potent antimalarial agents against three drug-resistant malarial strains (D6 and W2), with IC50

values between 0.065 and 0.079 µM. A series of fosmidomycin analogs were developed by Phillips
et al. [147] and analyzed in vitro. The results showed that of all the synthesized compounds, compound
66 was the most potent antimalarial molecule with an IC50 values of 27.4 nM against chloroquine- and
mefloquine-resistant Dd2 strains of P. falciparum. Yadav et al. [148] synthesized a series of marine-derived
indole alkaloid derivatives, and an evaluation of their biological activities showed that compound 67
was the most potent antimalarial agent. Le et al. [149] designed a novel series of 11-aza-artemisinin
analogus and tested them to determine their ability to inhibit the growth of FcB1 strains of P. falciparum.
The results showed that compounds 68a–c exerted the greatest antimalarial activities with IC50 values of
0.3, 0.7, and 1.5 µM respectively. Two dimers and two trimers of artemisinin hybrids were synthesized
by Reiter et al. [150] and their antimalarial activities were investigated using an antimalarial assay
against P. falciparum 3D7 strains. Of all the compounds, compound 69 was reported to be the most
active antimalarial agents, with an IC50 value of 2.6 ± 0.4 nM. Parthiban et al. [151] synthesized a series
of chloroquinoline-4H-chromene conjugates with piperazine and azpane rings as tethers, and the
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determination of their antimalarial activities against 3D7 and K1 strains of P. falciparum showed that
compounds 70a and 70b displayed the most potent antimalarial activity with IC50 values between 0.29
and 1.78 µM. Bhat et al. [152] developed a series of hybrid 4-aminoquinoline 1,3,5-triazine derivatives,
and an assessment their antimalarial activities showed that compounds 71a and 71b were the most
active inhibiting chloroquine-sensitive (3D7) and chloroquine-resistant (RKL-2) P. falciparum strains
with IC50 values between 1 and 25 µM. The results of the docking studies, revealed that the most active
compounds bound well with P. falciparum dihydrofolate reductase thymidylate synthase (pf -DHFR-TS).
Different oxirane compounds were synthesized by Carneiro et al. [153] and subjected to antimalarial
screening against chloroquine-sensitive 3D7 strains of P. falciparum after evaluation, compounds 72a and
72b were reported to be the most active species among 18 synthesized compounds. Karad et al. [154]
synthesized various analogs of morpholinoquinoline-based conjugates with an incorporated pyrazoline
ring, and the evaluation of their antimalarial activities in vitro using the biological assay revealed that
compounds 73a and 73b were the most active antimalarial agents with IC50 values between 0.015 and
0.018 µM. Devender et al. [155] synthesized a new series of triazoles and in vitro antimalarial activity
evaluation found that among the different compounds synthesized, compounds 74a and 74b displayed
excellent biological activity against 3D7 and K1 P. falciparum strains, with IC50 value between 0.3 and
2.11 µM. Svogie et al. [156] prepared a series of indolyl-3-ethanone α-thioethers, and an evaluation of
their antimalarial activities revealed that compounds 75a (IC50 = 0.24µM) and 75b (IC50 = 0.09µM) were
the most active species against 3D7 P. falciparum strains. The development of new antimalarial agents,
led to the synthesis of a new series of imidazo[4,5-c]quinolin-2-one derivatives by Patel et al. [157]
using a four-step synthetic route. The evaluation of an antimalarial activities of derivatives using
an allamar-Blue gametocytocidal assay showed that compound 76a was the most potent candidate
among the series. Seebacher et al. [158] prepared a series of several azabicyclic compounds, and an
evaluation of their antimalarial activities showed that compounds 77a and 77b, with IC50 values of
0.28 and 0.095 µM, respectively, showed a remarkable antimalarial activity against 3D7 P. falciparum
strains. Further analysis proved that compound 77b was the most potent P. falciparum inhibitor of
the active species. A new imidazole-based series of substituted ester and carbamate derivatives were
synthesized by Vita et al. [115], and an in vitro investigation revealed that compound 78 showed the
highest antimalarial effect against K1 P. falciparum strains (IC50 = 0.6 µM). Inam et al. [159] designed
and synthesized several acylhydrazine derivatives, attached to chloroqunoline nuclei with piperazine
rings. An evaluation of their antiprotozoal activities revealed that among the compounds, compounds
79a (IC50 = 0.33) and 79b (IC50 = 0.2 µM) were moderately active against w2 strains of P. falciparum.
Patrick et al. [116] developed a large series of cationic benzyl phenyl ether derivatives for application in
antiprotozoal drug development. Their results showed that compounds 80a–c were extremely potent
P. falciparum inhibitors, with IC50 values of 0.006, 0.004, and 0.006 µM, respectively. The screening
and evaluation of the antiprotozoal activities of fifteen 8,4-oxyneolignans analogs prepared by Rye
et al. [117], using asymmetric synthesis revealed that compounds 81a–c showed IC50 values between
0.608 and 2.50 µM against P. falciparum. Dürüst et al. [118] developed several derivatives of triazoles
coupled with 1,2,4-oxadiazole moieties, and an investigation of their antiprotozoal activities revealed
that compounds 82a and 82b were the most active P. falciparum inhibitors, with an IC50 values of 13.2
and 14.7 µg/mL, respectively. A new series of metal complexes designed and prepared by Juneja
et al. [160] were evaluated for their antimalarial activity against w2 P. falciparum strains. The in vitro
study revealed that compounds 83a–c were the best candidates with IC50 values between 1.1 and
1.9 µM. McKeever et al. [161] developed aminoalkyl derivatives form guanidine diaromatic minor
groove binder, and evaluated their antiprotozoal activities. The results showed that compounds 84a
(IC50 = 0.106 µM) and 84b (IC50 = 0.149 µM) elicited a significant P. falciparum culture inhibitory. Patrick
et al. [120] synthesized thirty-six 4,4”-Diamidino-m-terphenyl analogs, which were tested for their
antiprotozoal drug development. Among these 36 compounds, compounds 85a and 85b, which bear a
dimethyltetrahydropyrimidinyl ring at the para-position, exhibited significant antimalarial activity
with IC50 values of 0.002 and 0.003 µM, respectively, which were lower than that of their parent drug,
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chloroquine. From the study, it was evident that a substituent attached at position 4 of a phenyl ring
would lead to the exhibition of excellent inhibitory action. Opsenica et al. [162] synthesized a novel
series of aminochloroquinoline derivatives, and assessed their antimalarial activities in vivo using
different P. falciparum strains. The results revealed that compounds 86a–c were notable antimalarial
agents with IC50 values between 3.95 and 45.78 nM. Hanessian et al. [163] designed a novel series
of pactamycin analogs, and an evaluation of their biological activities found that compounds 87a
(IC50 = 3.5 nM) and 87b (IC50 = 6.7 nM) were the most potent molecules against D6 and Dd2 strains of
P. falciparum. Abada et al. [164] evaluated 24 porphyrin precursors and derivatives against different
protozoal strains. Their results showed that compound 88 was the most active member of the series.
Its IC50 value 0.02 µM was 100 to 200 times lower than that of standard drug chloroquine (15–25 µM).
Yeo S J et al. [165] synthesized chloroquine derivatives with phenylmethyl groups and unsaturated
amides, which have anti-malarial activity. Among them, compounds 89a and 89b showed greater
antimalarial activity against 3D7 P. falciparum strains with IC50 values of 0.17 and 0.23 µM, respectively.
Singh et al. [166] synthesized 4-aminoquinolin-ferrocenyl-chalcone derivatives, and the evaluation of
their pharmacological properties revealed that compounds 90a–c were the most potent compounds
against W2 strain of P. falciparum; their IC50 values ranged from 0.37 to 0.53 µM.

In summary, various chemical scaffolds and its analogues such as triazole-tethered chalcone-
coumarin hybrids, chloroquinoline-isatin hybrids, flavonones, indolesulfonamides, artemisinin
derivatives, N,N′-diaryl substituted piperizines, porphyrin derivatives, and polyaryls present
significant antimalarial activities. In particular, artemisinin derivatives (68) in which lactone was
transformed to lactam, then various hydrophilic substituents were introduced, showed good inhibitor
activity. As novel scaffolds, symmetric terphenyl cyclic amidines (85) exhibited slightly better
antimalarial activity than chloroquine and artemisinin.

2.4. Anti-Trichomoniasis

Trichomoniasis is a protozoan infection caused by the flagellate protozoan T. vaginalis. It is
one of the most prevalent nonviral sexually transmitted diseases worldwide [167]. The protozoan
T. vaginalis affects both men and women. In women, the symptoms of this infection worsen during
menstruation whereas in men the infection is largely asymptomatic; these asymptomatic men are
considered carriers [168]. Trichomoniasis in men and women is associated with birth outcomes [169],
infertility [170], cervical and prostate cancers [171], and pelvic inflammatory disease [172]. In men, this
disease is characterized by irritation inside the penis, mild discharge, or slight burning after urination
or ejaculation and in women, it is associated with yellow-green vaginal discharge with a strong odor.
The infection may also cause discomfort during sex and urination, as well as irritation and itching of
the female genital area. In rare cases, lower abdominal pain can occur. The symptoms usually appear
in women within 5–28 days of exposure. Generally, the prevalence of T. vaginalis infection is found to
be higher among women than men. A recent report on trichomoniasis revealed that the prevalence
of trichomoniasis in non-human immunodeficiency virus (HIV)-infected persons was 10.1% among
women vs. 2.0% among men [173], when compared to HIV-infected women (10%–20% prevalence
of trichomoniasis) [174]. Data regarding the prevalence of T. vaginalis in men who have sex with
men (MSM) are scarce. T. vaginalis infection damages the vaginal epithelium, which increases the
risk of women being infected by HIV, and thereby considerably increasing the chances of infected
women transmitting HIV to her sexual partner(s) [175,176]. In short, T. vaginalis is a co-factor in HIV
transmission and acquisition [177,178]. According to a WHO report, approximately 248 million new
cases of trichomoniasis are reported worldwide annually. It is believed that two to three million
symptomatic infections occur annually among sexually active women in the United States [179]. In the
Republic of Korea, 10.4% of women complaining of vaginal symptoms and signs were found to be
infected with T. vaginalis [180].

According to the literature the pathogenicity of T. vaginalis is due to cysteine peptidases
(CP) enzymes [181,182] which may present on their cell surfaces as secretion products of the
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parasite [183–187]. These enzymes play a critical role in pathogenicity, as well as in the biological
processes of this protozoan. Although, MTZ, which is approved by the FDA is the drug of choice
for trichomoniasis, [188] recent studies have shown that this drug has several toxic effects [14–18],
and the clinical resistance of many microbes has reduced its efficiency [189,190]. In view of these
major drawbacks, there is an urgent need for the development of new and efficient scaffolds against
trichomoniasis. Therefore, researchers have designed and synthesized some novel agents as inhibitors
of T. vaginalis growth. In this review article, we have compiled the latest data (from 2012–2017) on the
development of novel antitrichomonial agents. The results are summarized in Table 4.

Table 4. Selected data of reported antitrichomonal agents.

Compound Activity Ref.
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trichomoniasis and the results of their assessments were compared with those of the standard drugs
nitazoxanide, tizoxanide, MTZ, albendazole, and nonoxynol.

In brief, Navarrete-Vázquez et al. [63] synthesized a novel series eight of nitrothiazole and
benzothiazole derivatives and among them, compounds 91a and 91b showed effective T. vaginalis
cell growth inhibition, with IC50 values of 0.331 and 0.221 µM, respectively. During structure-activity
relationship studies of adenosine and uridine analogs against T. vaginalis, Shokar et al. [191] reported
that compound 92 (IC50 = 0.09 µM) was the most potent candidate for trichomoniasis treatment.
Interestingly, it has also been approved by the US FDA as a potential drug candidate for trichomoniasis
treatment. In a one-step reaction of N-substituted β-lactams with a free azide group and 5- substituted
isatins containing a terminal alkyne, Raj et al. synthesized a series of β-lactam-isatin-triazole conjugates,
and one of them, compounds 93, was found to be capable of selectively inhibiting T. vaginalis growth
with an IC50 value of 7.06 µM [192]. A novel series of metronidazole-chalcone conjugates were designed
and developed by Anthwal et al. [193], and their antitrichomonal activities against a T. vaginalis culture
were evaluated for in vitro. The results revealed that two of the compounds in the series, compounds
94a and 94b were the most effective candidates against both MTZ-susceptible and MTZ-resistant
parasite strains. Soria-Arteche et al. [66] synthesized a series of hybrid compounds bearing nitazoxanide
and N-methylbenzimidazole moieties using different reagents, and the evaluation of their antiprotozoal
activities revealed that among the 13 synthesized molecules, compound 95 (IC50 = 0.023 µM) displayed
greater antitrichomonal activity against T. vaginalis compared to those of the other 12 compounds.
Several hybrid analogs bearing tetrazole and chromane as bioactive scaffolds were synthesized by
Cano et al. [62] using the one pot Ugi-azide multicomponent reaction in the presence of InCl3 as
catalyst. Thereafter, they were screened, and their antiprotozoal activities were evaluated and among
them, compound 96 was identified as the most potent antitrichomonal agent against T. vaginalis with
an IC50 value of 83.9 µM. Nisha et al. [194] prepared a series of N-propargylated-isatin Mannich
derivatives as potential antitrichomonal agents, using the one-pot CuCl-catalyzed Mannich-type
reaction. An evaluation of their activities against T. foetus revealed that three of the synthesized
compounds 97a–c elicited promising inhibitory activity on T. foteus culture growth, with IC50 values
between 11.3 and 24.5 µM. In order to develop novel and effective antitrichomonal agents, a series of
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mono- and bis-uracil-isatin conjugates were prepared using single-step synthetic procedure. After
they were evaluated against a T. vaginalis culture. Kumar et.al [195] found that compounds 98a
(IC50 = 9.86 µM) and 98b (IC50 = 9.79 µM) were the best candidate. Using a single-step CuCl-catalyzed
Mannich-type reaction, Nisha et al. [196] synthesized a large series of Mannish-based compounds in
which isatin and 4-aminoquinoline ring are linked to the piperazine nucleus. An evaluation of their
antitrichomonal activities revealed that compound 99 was the most potent agent against T. vaginalis
with an IC50 value of 23 µM. A series of hybrid conjugates with incorporated β-lactone, triazole, and
isatin nuclei were designed and prepared by Raj et al. [197] as as novel T. vaginalis inhibitors. The
evaluation of the antitrichomonal activities of these compounds in-vitro demonstrated that compounds
100a and 100b were the most active agents inhibiting the growth of a T. vaginalis culture. Saleh
et al. [198] synthesized a new series of hybrid compounds bearing 5-nitrothiazole moiety, and an
in vitro assessment of their antiprotozoal activities, and consequently compound 101 displayed the
most promising biological activity against T. vaginalis strains, with an IC50 value of 4.3 µg/mL. In a study
aimed at developing of antiparasitic agents, Adams et al. [199] prepared thiosemicarbazone-derived
ruthenium metal complexes, and after evaluating their inhibitory properties against the in vitro
growth of a G3 T. vaginalis strain, they found that the compounds 102a (IC50 = 5.47 µM) and 102b
(IC50 = 7.56 µM) displayed the most potent antitrichomonal activities. A novel combinatorial library of
β-amino alcohol-basedβ-lactam–isatin chimeras were designed and developed by Nisha et al. [201], and
an evaluation of their potential against T. vaginalis in vitro demonstrated that among the synthesized
compounds, compound 103 possessed significant antitrichomonal activity, with an IC50 value of
9.73 µM. Stringer et al. [201] prepared a series of rhodium metal complexes and analyzed them for
their antiprotozoal activity. The results showed that compound 104 displayed an IC50 value of 4.80 µM
against a T. vaginalis culture. A novel series of coumarin-glyoxal hybrid compounds were synthesized
by Gupta et al. [202], and their inhibitory activities against T. vaginalis, as well as their spermicidal
activities were evaluated. The results led to the conclusion that compounds 105a–c displayed the most
potent trichomonacidal activity.

2.5. Anti-Trypanosomiasis

Parasitic infections caused by trypanosomatids constitute a major health problem in countries
where poor sanitary conditions are prevalent. Diseases acquired by such infections are considered
‘neglected’ because they receive limited funding for the research and development of new treatments.
Amongst the neglected tropical diseases (NTD), human African trypanosomiasis (HAT) is endemic
throughout sub-Saharan Africa, while American trypanosomiasis (Chagas disease) affects populations
in South and Central America.

2.5.1. HAT/African Sleeping Sickness

HAT, also known as African sleeping sickness, is one of the most neglected diseases in regions of
sub-Saharan Africa; it affects 70 million people in 36 countries. HAT is a vector-borne disease caused
by the protozoa parasite Trypanosoma brucei [203–205]. It is transmitted through the bite of an infected
tsetse fly or passed from an infected mother to her child through the placenta. This disease has two
stages: the first stage involves parasite-included seizures of the hemolymphatic system, and the second
involves the transmission of the parasites into the central nervous system (CNS) across the blood–brain
barrier [206]. Infection of the CNS leads to a number of symptoms including mental impairment,
severe headaches, fever, chronic encephalopathy, and eventual death. The development of effective
vaccines would be an option for preventing this deadly disease; however, trypanosomes can evade the
host immune’s system because of the high degree of antigenic variation in glycoproteins forming their
surface coat [207–212]. Therefore, chemotherapy remains the only viable strategy for the treatment
and control of infection. The current chemotherapy for HAT comprises only four drugs. Three of these
drugs, suramin, pentamidine, and melarsoprol (Figure 4), were developed over 60 years ago, and
exhibit severe side effects. Melarsoprol is an arsenical derivative used for the treatment of HAT in the
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neurological stage, and they have many undesirable or fatal (3%–10%) side effects in addition to the
development of drug resistance, exhibiting a drug failure rate of up to 30%. Pentamidine and suramin
are used for treatment in the early stage of the disease, before the involvement of the CNS. Nevertheless,
they have many severe side effects such as low blood pressure, decreased level of consciousness, kidney
problems, low blood cell levels, and wheezing [30]. Moreover, eflornithine, which is less toxic, is only
effective against T. brucei gambiense subspecies [213]. Treatment with a combination of nifurtimox and
eflornithine is less toxic, but ineffective against the T. brucei rhodesiense subspecies.
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2.5.2. Chagas Disease

American trypanosomiasis (Chagas disease) is caused by the flagellate parasitic protozoan T. cruzi.
This infection was first discovered by the Brazilian physician Carlos Chagas (1879−1934) in 1909.
While Trypanosoma cruzi is transmitted to animals and humans via insect vectors of the Triatominae, a
subfamily of the Reduviidae family of insects, commonly known as “kissing bugs” [214], outbreaks of
chagas disease are usually caused by foodborne T. cruzi since it produces a very aggressive acute form
which is often missed by clinicians. This infection is one of the most threatening diseases in Central
and South America. A large number of people, approximately 18 million annually, are infected with
this parasite. Among them, 50,000 died owing to heart failure. This disease has become a major public
health problem in 22 developing countries in Latin America, where more than eight million people
suffer from this infection annually [215]. As depicted in its life cycle, the infection is transmitted by
two predominant modes: The first is vectorial, through the infected feces/urine of triatomine bugs,
and the second is by blood transfusion: the metacyclic trypomastigotes are released in the feces of the
insect vector as it takes a blood meal, and they enter the bloodstream via a bite wound or mucosal
membrane. Once inside the host, the metacyclic trypomastigotes invade nearby cells and differentiate
into their intracellular amastigote form, which multiplies by binary fission. The transformation into
trypomastigotes occurs prior to the release from the cells back into the bloodstream, proliferating the
infection cycle. Other forms of transmission include congenital, blood transfusion, and contaminated
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food, to a lesser extent. This disease is endemic to Latin America, affecting people from Mexico to
Argentina [216]. The origin and development of this disease is divided into three phases: The (i)
acute (short), (ii) latent (long lasting), and (iii) chronic (very serious condition) phases. In the chronic
phase, symptoms such as cardiomyopathy and malformation of the intestines (e.g., megaesophagus
and megacolon) have been reported. The administration of the antiparasitic drugs benznidazole and
nifurtimox is 100% effective in the short acute phase, and both drugs act through the generation of free
radicals that kill the parasite. If no treatment occurs at this stage, then this infection silently progresses
into the chronic phase in which internal organs such as the heart, peripheral nervous system, esophagus,
and colon are irreversibly affected. Benznidazole and nifurtimox are no longer efficient in the chronic
phase, and the health of the patients deteriorates rapidly leading to death, usually due to heart failure.
Therefore, the development of new antichagasic drugs is of the utmost importance and urgency [216].
In Table 5, we compiled the latest data (2012–2017) on drug development against trypanosomiasis.

Table 5. Selected data of reported antitrypanosomal agents.

Compound Activity Ref.
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affecting people from Mexico to Argentina [216]. The origin and development of this disease is 
divided into three phases: The (i) acute (short), (ii) latent (long lasting), and (iii) chronic (very serious 
condition) phases. In the chronic phase, symptoms such as cardiomyopathy and malformation of the 
intestines (e.g., megaesophagus and megacolon) have been reported. The administration of the 
antiparasitic drugs benznidazole and nifurtimox is 100% effective in the short acute phase, and both 
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drugs is of the utmost importance and urgency [216]. In Table 5, we compiled the latest data (2012–
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[231]

135a 0.52 ± 0.01

135b 0.57 ± 0.02

Important Highlights of Table 5 Compounds

Compounds of different class heterocycles are included in Table 5 as potent agents against
Trypanosoma species and the results of their assessments were compared to those of standard
drugs Tryparsamide, melarsoprol, difluoromethylornitithine, pentamidine, diminazene, suramin,
benznidazole and nifurtimox. Among the substituted benzothiophene derivatives developed by
Bhambra et al. [217], compound 14a and 114b were found to be the most active candidates for HAT
treatment with IC50 values of 0.60 and 0.53 µM, respectively. In another series of imidazole compounds
synthesized by Trunz et al. [218], compounds 115a and 115b demonstrated good potency against
T.b.rhodesiense and their reported IC50 values were 0.16 and 0.10 µM, respectively. Bouchikhi et al. [219]
designed a series of compounds based on glycosyl-isoindigo conjugates, and an evaluation of their
antitrypanosomal activities revealed that among the compounds synthesized, compounds 116a–c
expressed significant biological activity against T. b. brucei strains with IC50 values between 0.51 and
0.84 µM. Among the several halonitrobenzamides derivatives synthesized by Hwang et al. [220],
and evaluated against a T. b. brucei culture compounds, compound 117 was found to be the most
potent inhibitor (IC50 = 1.5 µM). An assessment of the antiprotozoal activities (antitrypanosomal) of a
series of nitroimidazole analogs developed by Samant et al. [221] revealed that among the synthesized
molecules, compound 118 was the most active antitrypanosomal agent (IC50 = 0.25 µM). Ferrins
et al. [222] synthesized various anilides and the evaluation of their antitrypanosomal activity revealed
that among the compounds synthesized, compound 119 (IC50 = 0.091 µM) significantly inhibited a
T. b. rhodesiense culture. A large series of convolutamine analogs were prepared by Pham et al. [223].
Basically, convolutamine, which is a natural product, is a highly effective antitrypanosomal. All the
synthesized convolutamine derivatives were screened against T. b. brucei culture, and compounds
120a and 120b were reported as the most potent inhibitors with IC50 values of 0.7 µM and 0.5 µM,
respectively. Samant et al. [224] synthesized a big library of naphthoquinone derivatives, and the
evaluation of their antiprypanosomal activities in vitro showed that compounds 121a (IC50 = 0.07 µM)
and 121b (IC50 = 0.05 µM) were the most potent compounds in the series. Papadopoulou et al. [225]
synthesized a series of azole-based compounds. An assessment of their antitrypanosomal potentials
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revealed that compounds 122a and 122b were the most active agents with IC50 values against T. b.
rhodesiense and T. cruzi vetween 0.187 and 0.373 µM. Papadopoulou et al. [226] also designed and
developed nitrotriazole-based amide derivatives; an investigation of their antitrypanosomal activities
against T. cruzi revealed that among them compound 123 was the most potent agent against T. cruzi
(IC50 = 0.008 µM). A series of heterocyclic spiro compounds synthesized by Zelisko et al. [227] were
evaluated for their antitrypanosomal activities. The results showed that compound 124 was the most
active molecule (IC50 = 0.2624 µM) against T. b. rhodesiense. An in vitro assessment of the inhibitory
effect of a novel series of β-carboline analogs prepared by Manda et al. [98] against T. b. brucei revealed
that compound 125 was the most potent inhibitory agent among the compounds (IC50 = 1.01 µM). Alves
et al. [228] developed several semicarbazone derivatives, and evaluated their antiprotozoal activities
in vitro by testing their potential to inhibit biological strains. Compound 126 (IC50 = 8.5 µM) appeared
to be the most potent T. cruzi culture inhibitor, with an IC50 values of 8.5 µM. Several azabicyclo nonane
type derivatives synthesized by Seebacher et al. [158] were screened for their anti-protozoal activity.
The results showed that among them, compounds 127a (IC50 = 0.061 µM) and 127b (IC50 = 0.065 µM)
exhibited the greatest activity profiles. Upadhayaya et al. [229] developed a series of quinolone- and
indenoquinoline-based heterocycles, and an evaluation of their antiprotozoal potentials revealed that
compound 128 was a potential candidate against T. cruzi and T. b. rhodesiense with IC50 values of 0.25 and
1.81 µM, respectively. Vita et al. [115] synthesized series of potent and effective imidazole incorporated
phenylethanol derivatives, of which compound 129 exhibited the highest antitrypanosomal activity
(IC50 = 0.04 µM), and showed more potency against T. cruzi strains. Martínez et al. [230] reported
the synthesis of several bisguanidine T. b. rhodesiense strain inhibitors among which compound 130
(IC50 = 0.009 µM) was identified as the most active agent for trypanosomiasis treatment. Patrick
et al. [116] developed a new series of benzyl phenyl ether diamidine derivatives, and investigated
their potential against a T. b. rhodesiense culture. Compound 131, which exhibited a good therapeutic
potential (IC50 = 0.003 µM), was identified as the best candidate. Dürüst et al. [118] synthesized a new
series of 1,2,4-oxadiazole-linked triazole derivatives using the 1,3-dipolar cycloaddition reaction, and
their antiprotozoal activities were analyzed. Of these compounds, compound 132 was identified as
the most potent antitrypanosomal agents (IC50 = 7.0 µM). As already reported, Mckeever et al. [161]
developed a series ofguanidine diaromatic minor grove binder aminoalkyl derivatives. They did not
only evaluate the antimalarial activities of these compounds, they also evaluated their antitrypnosomal
properties and found that compounds 133a (IC50 = 13.1 µM) and 133b (IC50 = 20.2 µM) were the most
potent candidates against T. b. rhodesiense strains. A series of 1,3-dipyridylbenzene derivatives were
evaluated for their antitrypanosomal activity. The results showed that compounds 134a and 134b were
the best candidates against T. b. rhodesiense and T. cruzi strains [120]. Sola et al. [231] synthesized a
novel series of huprine Y dimer derivatives, and assessment of their antiprotozoal activities using a
bioassay showed that compounds 135a (IC50 = 0.52 µM) and 135b (IC50 = 0.57 µM) were the most
significant T. brucei culture inhibitors.

3. Conclusions

Infections caused by protozoan parasites such as giardiasis, leishmaniasis, malaria, trichomoniasis,
and trypanosomiasis are responsible for considerable morbidity and mortality worldwide, with
devastating social and economic consequences. The currently available drugs for the treatment of
and protection against protozoan parasites were discovered over 50 years ago, and a number of
factors limit their utility, such as high cost, poor compliance, drug resistance, low efficacy, and safety
concerns. Therefore, the development of new and more effective drugs with fewer side effects presents
a crucial challenge. Currently, research focused on the developing new drugs to protect against
and treat protozoans are increasing steadily. In this review article, we have presented some of the
developments in this field, with the aim of showing the recent significant advances in the discovery of
new antiprotozoal drugs.
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HAT Human African trypanosomiasis
MTZ Metronidazole
ML Mucosal leishmaniasis
SSG Sodium gluconate
AmB Amphotericin-B
CFM Clofazimine
EEF Exoerythrocytic form
RBC Red blood cell
pf -DHFR-TS P.falciparum dihydrofolate reductase thymidylate synthase
CP Cysteine peptidase
NTD Neglected tropical disease
CNS Central nervous system
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