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Abstract
Cardiomyopathy is a disease of the heart muscle leading to abnormal structure
or function in the absence of coronary artery disease, hypertension, or valvular
or congenital heart disease. Currently, cardiomyopathy is the leading diagnosis
of heart transplant patients worldwide. Incorporation of next-generation
sequencing strategies will likely revolutionize genetic testing in
cardiomyopathy. The use of patient-specific pluripotent stem cell-derived
cardiomyocytes for disease modeling and therapeutic testing has opened a
new avenue for precision medicine in cardiomyopathy. Stem cell therapy, gene
therapy, interfering RNA, and small molecules are actively being evaluated in
clinical trials.
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Introduction
Cardiomyopathy is a disease of the heart muscle leading to abnor-
mal structure or function in the absence of coronary artery disease, 
hypertension, or valvular or congenital heart disease1. Morpho-
logical subtypes include dilated cardiomyopathy, hypertrophic  
cardiomyopathy (HCM), arrhythmogenic right ventricular (RV)  
cardiomyopathy, left ventricular (LV) non-compaction, and  
restrictive cardiomyopathy. The global number of deaths and dis-
ability attributed to cardiomyopathy and myocarditis has steadily 
increased2,3. Cardiomyopathy represents the leading cause of  
cardiac transplantation4. The hereditary nature of most cardio-
myopathies creates an opportunity for early detection through  
family screening but also has the potential for misdiagnosis5. How 
we classify, detect, and treat cardiomyopathy in 2017 and what is 
on the horizon are the focus of our review. In addition, infiltrative 
myocardial disease as an important differential diagnosis will be 
discussed when appropriate.

Classification
As stated in the “Report of the 1995 World Health Organization/
International Society and Federation of Cardiology Task Force on 
the Definition and Classification of Cardiomyopathies”, a clas-
sification is an attempt to “bridge the gap between ignorance and 
knowledge”6. In that document, the following morphological and 
functional subtypes were recognized:

•    Dilated cardiomyopathy: characterized by ventricular dilata-
tion and impaired contraction

•    HCM: characterized by LV and/or RV hypertrophy, which is 
usually asymmetric and involves the interventricular septum

•    Restrictive cardiomyopathy: characterized by restrictive fill-
ing and reduced diastolic volume of either or both ventri-
cles with normal or near-normal systolic function and wall  
thickness

•    Arrhythmogenic RV cardiomyopathy: progressive fibro-fatty 
replacement of RV myocardium, initially with typical regional 
and later global right and some LV involvement, with relative 
sparing of the septum

•    Unclassified cardiomyopathies: unclassified cardiomy-
opathies include a few cases that do not fit readily into any 
group

The 2006 American Heart Association (AHA) classification  
divided cardiomyopathies into primary, which are solely or  
predominantly confined to heart muscle, and secondary cardio-
myopathies, which show pathological myocardial involvement as  
part of generalized systemic (multi-organ) disorders7. Primary  
cardiomyopathies are subclassified into genetic, mixed (genetic 
and non-genetic), and acquired. In 2007, the European Society 
of Cardiology proposed a new classification in which each mor-
pho-functional subtype was subclassified according to familial/
genetic and non-familial/non-genetic forms. The familial/genetic 
forms were subdivided into unidentified gene defect and specific  
disease subtype, and the non-familial/non-genetic into idiopathic 
and specific disease subtype8. “Specific cardiomyopathies” is used 

to describe cardiomyopathies associated with specific cardiac 
or systemic disorders. For example, a recent AHA document  
reviews diagnostic and treatment strategies for specific cardiomy-
opathies such as cardiac amyloidosis, cardiotoxins, peripartum 
cardiomyopathy, cardiac sarcoidosis, myocarditis, autoimmune 
cardiomyopathy, endocrine and metabolic cardiomyopathies, 
and genetic cardiomyopathies9. Nevertheless, the application of 
morphological criteria can be misleading because diseases with  
similar imaging findings can have completely different pathophysi-
ological mechanisms (for example, HCM and Fabry disease)10.

The MOGE(S) classification of cardiomyopathies proposes a 
descriptive phenotype and genotype nosology system that incor-
porates the following five attributes: morpho-functional pheno-
type, organ(s) involvement, genetic inheritance pattern, etiological  
annotation including genetic defect or underlying disease/ 
substrate, and functional status of the patient and disease proc-
ess using both the American College of Cardiology/AHA stage 
and New York Heart Association functional class. The MOGE(S)  
nosology system is the most recently proposed1. The use of a  
web-based application facilitates the implementation of this  
classification system (http://moges.biomeris.com/moges.html) 
(Figure 1).

Because the presence of a morphological abnormality is not syn-
onymous with cardiomyopathy (for example, imaging criteria for 
LV non-compaction may be seen in more than 10% of persons free 
from cardiovascular disease), and the risk of developing genotype-
positive and phenotype-negative cardiomyopathy is unknown, the 
clinician faces major challenges when evaluating an individual 
patient11,12. Quarta et al. recently proposed a framework to navigate 
this uncertainty13. Their major criteria to diagnose cardiomyopathy 
include “1- Marked morphological abnormalities, clearly outside 
the limits of physiological remodeling, 2- Clear evidence of glo-
bal or regional LV (and/or RV) systolic or diastolic dysfunction, 
or dynamic LV outflow obstruction at rest or on effort, 3- Frequent 
(>10,000 beats per 24 h) and repetitive ventricular ectopic beats, 
which do not subside or tend to increase with exercise and/or are 
polymorphic, or runs of sustained or nonsustained ventricular tach-
ycardia, 4- Symptoms such as dyspnea, angina, pre-syncopal or 
syncopal episodes of non-vasovagal nature (particularly if upon or 
after exertion or after a meal), or reduced performance as assessed 
by cardiorespiratory testing, 5- A positive genetic test — when 
available and robust — or specific family history of cardiomyopa-
thy and/or juvenile heart failure or sudden death; if unknown or 
not investigated, judgment should be suspended until relatives have 
been screened”.

Detection of abnormal structure and function
Non-invasive diagnostic modalities
Echocardiography is often the first diagnostic modality used 
when cardiomyopathy is suspected. Although morphological two- 
dimensional echocardiography and ejection fraction are key  
elements for phenotype characterization, advanced echocardio-
graphic modalities such as tissue Doppler and strain have made 
possible the detection of early stages of myocardial dysfunction.
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Figure 1. Example of MOGES classification utilization. Family diagram: square, male; circle, female; red, history of sudden cardiac death 
(SCD) or hypertrophic cardiomyopathy (HCM); blue, no history of SCD or HCM. Index case: *Age at diagnosis or SCD. Since no genotyping 
was performed, the mode of inheritance cannot be determined with certainty. FC, functional class; ICD, implantable cardioverter defibrillator; 
NYHA, New York Heart Association; s/p, status post.

Abnormal tissue Doppler signals may help to identify the pres-
ence of HCM in the pre-hypertrophic stage and to differentiate  
athlete’s heart from HCM14,15. Machine learning models that  
incorporate longitudinal strain, among other volumetric and 
mechanical function variables, may help in the distinction between 
physiologic and pathologic hypertrophy16. In patients with sar-
coidosis but without evidence or history of cardiac involvement,  
impairment of global LV longitudinal strain was associated with 
increased risk of cardiac events17. In patients exposed to anthracy-
clines, a relative percentage reduction in global longitudinal strain 
of at least 15% early during the course of therapy predicts the  
development of cardiotoxicity18. Abnormal regional patterns of 
strain are useful for the identification of specific cardiomyopathies 
such as apical sparring usually seen in patients with preserved  
ejection fraction heart failure due to cardiac amyloidosis or  
apical compromise in patients with apical HCM19,20. In patients 

with obstructive HCM refractory to medical therapy who under-
went septal myectomy, basal septal (myocardium removed  
during myectomy) mean systolic strain and diastolic strain 
rate correlated with in vitro measured myocardial contractile  
performance21. Longitudinal strain and early diastolic strain  
pre-transplant showed significant correlations with mRNA  
expression of titin isoforms, sarcoplasmic reticulum Ca2+ ATPase, 
and phosphorylated phospholamban in dilated cardiomyopathy22.

Vector flow mapping, a novel method of Doppler signal analysis, 
has shown that the cause of systolic anterior motion of the mitral 
valve and obstruction in HCM is early systolic ejection flow or iso-
volumetric vortical flow impacting the posterior aspect of the mitral 
valve and not Venturi forces related to high flows in the LV outflow 
tract23. Also, vortex formation has been correlated with functional 
capacity in a pilot study24.
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Cardiac magnetic resonance imaging has become an integral part 
of cardiomyopathy evaluation and risk stratification. Apical–basal 
bundles and mitral valve abnormalities (for example, increased ante-
rior mitral valve length) have emerged as new phenotypic markers 
of HCM that are observed also in the pre-hypertrophic stage25,26. 
Fractal dimension, a parameter used to quantify myocardial mus-
cle trabecular complexity, is increased in HCM mutation carriers 
without LV hypertrophy27. LV structural abnormalities in patients 
with arrhythmogenic RV dysplasia have also been described with 
increased frequency28,29.

The presence, distribution, and burden of macroscopic myocardial 
scar tissue as measured by late gadolinium enhancement (LGE) are 
of particular importance. In a meta-analysis of 2,390 patients with 
various types of dilated cardiomyopathies, LGE was independently 
associated with higher risk of sudden cardiac death (SCD) and ven-
tricular arrhythmias30. In HCM, for every 10% increase in LGE, 
there was a 40% increase in SCD events. Of particular importance 
is that, in patients who were considered to be at low risk of SCD 
by traditional risk stratification systems, the presence of LGE of at 
least 15% of the myocardial mass had a five-year risk of SCD of 
6%31. In patients with Duchenne muscular dystrophy, the presence 
of LGE is associated with a progressive decline in LV ejection frac-
tion (LVEF), and the magnitude of this decline is proportional to 
the number of myocardial segments with LGE32. In patients with 
cardiac amyloidosis, cardiac magnetic resonance imaging shows a 
characteristic pattern of global subendocardial LGE; in addition, 
patients with systemic AL amyloidosis show markedly increased 
non-contrast T1 relaxation times in the myocardium when com-
pared with healthy controls and patients with aortic stenosis33,34.

Extracellular volume fraction, which includes both diffuse and 
macroscopic patchy fibrosis using the modified look–locker inver-
sion (MOLLI) recovery method, has been shown to correlate bet-
ter with regional LV myocardial velocities than ejection fraction in 
patients with non-ischemic cardiomyopathy35. Increased interstitial 
fibrosis is a marker of subclinical cardiac involvement in patients 
who are carriers of lamin A/C gene mutation36.

Recently, in vivo diffusion tensor cardiac magnetic resonance has 
been shown to characterize the microstructural dynamics by ana-
lyzing sheetlet (laminar microstructures 5–10 cardiomyocyte thick) 
mobility and orientation during the cardiac cycle. Reduced mobility 
is seen in both dilated cardiomyopathy and HCM. Nevertheless, in 
HCM, abnormal diastolic conformation is present, whereas abnor-
mal systolic conformation characterizes dilated cardiomyopathy37.

The use of four-dimensional (4D) flow (3D + time = 4D) allows 
the generation of 3D streamlines that permit the analysis of dif-
ferent flow patterns. The application of this technique in patients 
with HCM, with and without obstruction, revealed abnormal flow 
patterns in the ascending aorta in both groups. The significance of 
these findings is unknown38.

Cardiac positron emission tomography evaluates the presence of 
perfusion and metabolic abnormalities. In cardiac sarcoidosis, the 
coexistence of myocardial perfusion defects and increased focal 
metabolic activity, which reflects active disease, is associated with 

increased risk of death and ventricular tachycardia39. 99mTechnetium 
phosphate derivatives can bind to transthyretin in the myocardium 
and can be used to identify wild-type and mutant transthyretin-
related amyloidosis. If amyloidosis is suspected and a scan is nega-
tive, this favors the diagnosis of light-chain amyloidosis40.

Invasive diagnostics
Invasive hemodynamic evaluation is particularly useful to differen-
tiate restriction from constriction. In this case, simultaneous pres-
sure measurements of the right and left ventricles are performed 
ideally with high-fidelity conductance catheters to evaluate for 
the presence of enhanced ventricular interaction and systolic area 
index in the case of constrictive pericarditis. Careful evaluation is 
necessary to avoid missing the diagnosis of a potentially reversible  
condition41.

Endomyocardial biopsy
Transvenous endomyocardial biopsy is an invasive procedure with 
a reported major complication rate (for example, tamponade) of 
less than 1%42. The importance of tissue-based diagnosis for accu-
rate prognostication in patients with unexplained cardiomyopathy 
has been known for a long time43. The procedure is usually per-
formed by using fluoroscopic guidance, with increasing interest 
in the use of 3D echocardiography to decrease the chances of RV 
free wall biopsy44. The endomyocardial biopsy sensitivity can reach 
almost 100% in amyloidosis or approximately 30% in focal dis-
eases such as sarcoidosis45,46. Usually, RV biopsy is performed, but 
the biventricular approach has been reported to increase diagnostic 
yield with a similar major complication rate in very experienced 
operators47. The performance of voltage mapping to guide endomy-
ocardial biopsy has been described to increase diagnostic yield in 
patients with focal myocardial diseases such as sarcoidosis or lym-
phocytic myocarditis48.

In myocarditis, the use of immunohistochemistry to characterize 
inflammatory mechanisms, molecular techniques such as polymer-
ase chain reaction to detect viral genomes, and—more recently—
the analysis of non-coding transcripts such as microRNA hold the 
promise to continue to improve prognostication and treatment in 
this potentially lethal condition49,50. Interestingly, the presence 
of focal derangement or diffuse lysis of myofilaments observed 
by electron microscopy in the endomyocardial samples obtained 
from the posterolateral LV wall of patients with dilated cardiomy-
opathy admitted with acutely decompensated heart failure was a 
strong predictor of death or heart failure re-hospitalization during a  
follow-up period of 4.9 ± 3.9 years51.

Device therapy/roles of electrophysiology study/ablation
Implantable cardioverter defibrillators are indicated for the preven-
tion of SCD in selected patients with heart failure and reduced ejec-
tion fraction and HCM at high risk of sudden death52,53. In cardiac 
sarcoidosis, the use of programmed electrical stimulation may assist 
in SCD risk stratification54. Approximately 30% of patients will fail 
to respond to cardiac resynchronization therapy, and many causes 
or associated factors have been identified (for example, atrial fibril-
lation and less than 90% of biventricular pacing)55. A novel mecha-
nism to potentially improve cardiac resynchronization response is 
pacemaker-induced transient asynchrony. Six hours of daily RV 
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pacing halted LV dilatation and myocyte dysfunction in a tachycar-
dia-induced cardiomyopathy model in dogs56. The recognition of a 
significant premature ventricular contraction burden (>24%) should 
increase the suspicion of premature ventricular contraction-induced 
cardiomyopathy; this is important because ablation of the ectopic 
foci may lead to improvement of cardiac function57.

Electro-anatomic scar patterns differentiate RV outflow tachy-
cardia from arrhythmogenic RV/dysplasia (ARVD) or cardiomy-
opathy. In ARVD, dominant sub-tricuspid scars with extensions 
toward the apex and RV outflow tract (RVOT) are seen where, 
in RVOT, isolated RVOT scar may be seen58. The use of electro- 
anatomical mapping to guide endomyocardial biopsy has been  
previously described48.

Genetic evaluation and testing
Most cardiomyopathies are monogenic disorders. Unexplained  
cardiomyopathy, family history of SCD or cardiomyopathy, and 
electrocardiogram suggesting an inherited arrhythmia should  
trigger genetic evaluation59.

The first fundamental step is a family history using a standardized 
template (for example, https://familyhistory.hhs.gov/FHH/html/
index.html) if possible. Early consultation with genetics profession-
als is encouraged. It is important to convey the reason for consulta-
tion and potential implications to the patient. In cardiomyopathy, 
the main roles of genetic testing are to aid in the identification of 
family members at risk for the condition and to inform screening 
strategies.

In a large study of 312 patients with dilated cardiomyopathy, a trun-
cating titin mutation was present in one-fourth of familial and in 
18% of sporadic cases. Truncating titin mutations were observed in 
only 1% and 3% of patients with HCM (n = 231) and controls (n = 
249), respectively60.

Coppini et al. have reported that patients with HCM who have a 
mutation affecting the thin filament are at increased risk of devel-
oping LV dysfunction, heart failure, and severe diastolic dysfunc-
tion when compared with patients with thick filament mutations61.  
Nevertheless, it is important to recognize that HCM is a disease 
where gene-phenotype correlations are more notable for their 
absence than presence.

Studies showing the impact of genotype in prognosis in ARVD/C 
have been reported. Patients with ARVD/C and carriers of a desmo-
somal gene mutation have worse outcomes when compared with 
those with titin mutations62. In addition, in a large cohort of patients 
with ARVD/C who had pathogenic mutations, desmoplakin muta-
tions were overrepresented in patients with SCD/ventricular fibril-
lation as a presenting symptom63. In the same study, the negative 
prognostic implications of having more than one pathogenic muta-
tion and male sex were also reported.

Future applications may include the development of genotype- 
specific therapies, and pilot studies of pharmacologic therapies 
in the pre-phenotype phase have been completed (see below).  
If concomitant congenital malformations are present and a  

chromosomal disorder is suspected, a chromosomal microar-
ray analysis should be considered. When cardiomyopathy is the 
main feature and genetic abnormalities at the nucleotide level are 
suspected, several options are available. Gene panels directed to 
specific morpho-functional phenotypes that screen for patho-
genic mutations are available. Results of genetic testing have five  
categories: pathogenic, likely pathogenic, variables of unknown 
significance, likely benign, and benign. The diagnostic yield of 
these panels is variable and ranges from 50 to 60% in ARVD and 
from 20 to 30% in dilated cardiomyopathy64. Pan-cardiomyopathy 
panels have not been shown to increase the diagnostic sensitivity in  
HCM65. The decrease in cost and turn-over time of next-genera-
tion sequencing strategies, including exome (sequences the genes 
involved in protein synthesis) and whole genome (sequences both 
coding and non-coding), has led some institutions to adopt this 
strategy. From a clinical standpoint, one of the main challenges 
of non-directed second-generation sequencing is the increase 
in the identification of variants of unknown significance; this is  
non-actionable genetic information66. Nevertheless, recent reports 
combining these techniques with functional studies show encour-
aging results in detecting new pathogenic mutations67. The  
creation of large repositories of genetic and phenotypic infor-
mation, along with powerful analytic techniques, will shape the  
implementation of next-generation sequencing68.

The incorporation of genetic information in epidemiologic studies 
with long-term follow-up has opened a new chapter in understand-
ing the natural history of disease. Amyloidosis is a systemic dis-
ease due to the deposition of misfolded proteins that may affect 
the heart. There are two main forms of cardiac amyloid disease: 
AL amyloidosis due to immunoglobulin light chains and transthy-
retin amyloidosis. Patients with transthyretin may have wild-type  
(previously called senile amyloidosis) or genetic variants. The 
V122I variant, where isoleucine is substituted for valine, has a 
prevalence of approximately 3% in African-Americans and is the 
most common point mutation associated with hereditary tran-
sthyretin amyloidosis. Carriers of this mutation were believed  
to have an increased risk of death. In a study that included  
3,856 African-Americans, 124 carriers were detected, and over a 
follow-up period of 21.5 years, those patients were at increased  
risk of heart failure development, but there were no statistically sig-
nificant differences in mortality69.

Other genetic variants include Val30Met (Any, Portuguese,  
Spanish) and Thr60Ala (Irish), both of which commonly affect  
the nerves and the heart. Nevertheless, early cardiac involvement is 
not as frequent in Val30Met70.

Precision medicine and emerging therapeutic strategies
Precision medicine is an emerging approach for disease treat-
ment and prevention that takes into account individual variability 
(genes, environmental factors, and lifestyle) and is of particular 
relevance for cardiomyopathy71. In this regard, the development 
of transcription factor-mediated reprogramming techniques, which 
allowed the production of human-induced pluripotent stem cells 
(hiPSCs), represents a major step forward72. Protocols for the pro-
duction of patient-specific pluripotent stem cell-derived cardiomy-
ocytes (hiPSC-CMs) are available73. Applications of hiPSC-CMs 
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include disease modeling, regenerative medicine, drug discovery,  
and toxicity screening74. For hiPSC-CMs that carry a mutation  
in cardiac transcription, factor TBX20 develops phenotypic 
characteristics of LV non-compaction cardiomyopathy. In this  
experiment, abnormal transforming growth factor-beta (TGF-β) 
signaling was detected. Inhibition of TGF-β signaling and  
genomic correction of the TBX20 mutation were sufficient to 
reverse the phenotype75. Using patient-derived hiPSC-CMs, the 
mechanisms by which titin mutations cause sarcomere insuf-
ficiency in dilated cardiomyopathy were explored76. In another  
exciting experiment, hiPSC-CMs from patients who experi-
ence doxorubicin cardiac toxicity were more sensitive to in vitro  
doxorubicin toxicity than hiPSC-CMs of patients who did not  
experience doxorubicin toxicity. Several mechanisms were  
identified, including decreased cell viability, impaired mitochon-
drial function, metabolic derangements, and increased production 
of reactive oxygen species77. This finding suggests that hiPSC- 
CMs could be a potential tool to predict chemotherapy-induced  
cardiotoxicity.

Mutation silencing therapy in a murine model of HCM has 
shown that irreversible triggers to phenotypic expression occur 
early in development (<6 weeks of life)78. One of the advantages 
of detecting genotype-positive phenotype-negative patients is 
the potential to intervene and alter the trajectory of disease. In a 
pilot and first-of-its-kind study, 38 patient carriers of pathogenic  
sarcomere mutations associated with HCM, but without LV hyper-
trophy, were randomly assigned to diltiazem or placebo. Patients 
who received diltiazem showed stable LV diameter and mean 
thickness-to-dimension ratio compared with control patients  
who showed a decrease and an increase in LV diameter and mean 
thickness-to-dimension ratio, respectively79.

There has been pre-clinical evidence of the potential benefit of 
renin-angiotensin axis inhibition in modifying the course of HCM 
in a randomized controlled trial that included 133 patients with 
obstructive and non-obstructive cardiomyopathy, but the adminis-
tration of losartan, though well tolerated, did not show significant 
difference when compared with placebo with regard to the primary 
endpoint (change in LV mass as measured by computed tomogra-
phy or cardiac magnetic resonance imaging)80,81.

The presence of LGE has been used to identify patients with  
Duchenne and Becker muscular dystrophies who have normal  
LVEF but who are at higher risk of developing cardiac dysfunc-
tion. In this particular patient population, treatment with epler-
enone (Duchenne) and angiotensin-converting enzyme inhibitor  
(Duchenne and Becker) delayed and attenuated adverse cardiac 
remodeling82,83.

The value of moderate exercise training in selected patients with 
HCM has been recently evaluated in a pilot randomized trial. After 
16 weeks, patients randomly assigned to the unsupervised exercise 
protocol had a small but significant increase in exercise capacity as 
measured by cardiopulmonary exercise testing with no significant 
adverse events84. In non-ischemic dilated cardiomyopathy, myocar-
dial blood flow at rest and after cold pressor test improved after  
12 weeks of cardiac rehabilitation85.

Target therapy/small molecules
MYK-461, a small molecule which binds to myosin decreasing 
its ATPase activity in a dose-dependent manner and consequently  
sarcomere contractility, has been shown to prevent the devel-
opment of the HCM phenotype in a murine model of HCM if  
administered early (8–15 weeks of age) in the pre-hypertrophic 
stage, and it partially reversed structural abnormalities if admin-
istered once the hypertrophic phenotype became manifest86. The 
intravenous administration of MYK-461 decreased contractil-
ity and eliminated systolic anterior motion of the mitral valve,  
relieving outflow obstruction in a feline model of HCM87. Initial 
experience in humans shows encouraging results with a dose-
dependent reduction of contractility and abolition of LV outflow 
gradients in two patients. Of note, one patient experienced  
asystole after receiving the highest dose studied, but it resolved 
without intervention88.

Noonan syndrome and Noonan syndrome with multiple lentigines 
(formerly LEOPARD syndrome) as other RASopathies are auto-
somal dominant disorders caused by germline missense mutations 
of the Ras/mitogen-activated protein kinase (Ras/MAPK) signal-
ing pathway; one of the phenotypic abnormalities is the develop-
ment of HCM. A hyper-tyrosil phosphorylated form of protein-zero 
related (PZR) is present in the hearts of mice with those conditions. 
Yi et al. described that, in a murine model of Noonan syndrome and 
Noonan syndrome with lentigines, the administration of low-dose 
dasatinib (tyrosine kinase inhibitor) improves cardiomyocyte con-
tractility, reduces fibrosis, and—if administered in utero—rescues 
HCM phenotype89.

The LMNA gene encodes lamins C and A that are the major con-
stituents of nuclear lamina, a proteinaceous meshwork that gives 
structural support to the nucleus and enables correct gene expres-
sion and DNA repair. Lamins A and C are generated through alter-
native splicing90. Laminopathies are a diverse group of disorders 
caused by LMNA gene mutations and the most common one is 
dilated cardiomyopathy91. Current pathophysiological mecha-
nisms of LMNA mutations include increased susceptibility to 
mechanical stress, altered gene expression, and accumulation of  
pre-lamin A92,93. The feasibility of alternative splicing modula-
tion with antisense oligonucleotides to increase lamin C and 
decrease pre-lamin A accumulation has been successfully tested in  
fibroblasts of patients with Hutchinson-Gilford progeria  
syndrome and a mouse model94. The recognition of abnormal 
activation of the MAPK and Akt/mTOR (mammalian target of  
rapamycin) pathways has led to promising experimental data 
using protein kinaseinhibitors and mTOR inhibitors, respectively, to  
block the development of cardiac dysfunction in mouse models of 
laminopathies95,96.

Constitutive activation of mammalian target of rapamycin com-
plex 1 (MTOR-1) by tuberous sclerosis mutations is a recognized 
mechanism of tumor formation in this syndrome. In a patient  
with tuberous sclerosis and cardiomyopathy in which phospho-
rylation of ribosomal protein S6 (marker of MTOR-1 activa-
tion) was detected in endomyocardial biopsy, the administration 
of everolimus (MTOR inhibitor) led to improvement in systolic  
function and LV dimensions97.
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Gene therapy in cardiomyopathy and heart failure
Increased understanding of the molecular mechanisms of heart 
failure have led to the recognition of potential targets for gene  
therapy98. Increasing cardiac contractility by targeting molecules 
related to calcium cycling (sarcoplasmic reticulum Ca2+ ATPase, or 
SERCA2a) or increasing beta-adrenergic system function (human 
adenylyl cyclase type 6, or hAC6) and enhancing stem cell tis-
sue repair by increasing the expression of stem cell-derived fac-
tor 1 (SDF-1) have undergone clinical trial evaluation99. Calcium 
upregulation by percutaneous administration of gene therapy in 
patients with cardiac disease (CUPID 2) that included 250 patients 
with NYHA (New York Heart Association) functional class II–IV 
and LVEF of not more than 35% who were randomly assigned 
to intracoronary infusion of adeno-associated virus loaded with  
SERCA gene versus placebo failed to achieve the primary endpoint 
of recurrent events (hospital admission because of heart failure or 
ambulatory treatment for worsening heart failure) with a median 
follow-up of 17.5 months. Nevertheless, the absence of significant 
adverse events is promising and has helped to enhance the interest 
in this therapeutic strategy100. A recent phase II trial has shown a 
significant increase in LVEF in patients who received intracoronary 
delivery of adenovirus hAC6 when compared with placebo101.

Cell therapy in non-ischemic cardiomyopathy
Intravenous allogenic mesenchymal stem cells were shown to  
be safe and effective in improving the 6-minute walk test and  
quality-of-life measures in patients with non-ischemic cardio-
myopathy with a mean LVEF of 31%. There was no evidence  
of myocardial scar as measured by LGE in patients on maximal 
medical therapy102. In a previous article, trans-endocardial injec-
tion of allogenic mesenchymal stem cells was superior to auto- 
mesenchymal stem cells in terms of efficacy (LVEF improvement 
and 6-minute walk test) and safety with an extremely low risk of 
allosensitization103. A phase I clinical trial of transplantation of 
scaffold-free cell sheets derived from autologous muscle to the  
epicardial surface through left thoracotomy in patients with  
severe LV dysfunction due to ischemic (n = 15) or dilated  
cardiomyopathy (n = 12) has shown promising results regarding 
safety with no major procedural adverse events and efficacy with 
improvement in symptoms, 6-minute walk test, and LVEF104.

New developments in treating amyloidosis
Novel therapies that block abnormal protein synthesis such as  
small interfering RNA and antisense oligonucleotides are  
undergoing phase III clinical trial evaluation in transthyretin 
amyloidosis, the most common form of cardiac amyloidosis70.  
In light-chain amyloidosis, the use of an amyloid fibril-reactive 
chimeric monoclonal antibody is undergoing clinical trial evalu-
ation. This approach was shown to be safe in a phase I clinical  
trial that included six patients with refractory amyloidosis. Those 
three patients showed organ response: two cardiac and one  
gastrointestinal105.

Immune modulation in heart failure
Inflammation is a key player in the development and progression 
of heart failure106. Anti- tumor necrosis factor therapy has been  

shown to be ineffective and even potentially harmful in this patient 
population in large randomized clinical trials107. Non-specific 
immunomodulation was also unsuccessful in reducing death from 
any cause and hospitalization from cardiovascular causes108. There 
is increasing interest in the manipulation of the innate immune  
system109. Toll-like receptors, which are the primary receptors of 
the innate immune system and related molecules (for example, 
myeloid differentiation 1), constitute attractive targets that are the 
subject of intense research110,111. In addition, the recognition that 
embryonic-derived macrophages that have anti-inflammatory prop-
erties and promote tissue regeneration are replaced in heart failure 
with monocyte-derived macrophages that have pro-inflammatory 
properties may open a new pathway to cardiac recovery112.

New surgical approaches
In HCM, surgical septal myectomy often resolves mitral regur-
gitation related to systolic anterior motion of the mitral valve;  
nevertheless, some patients need additional mitral valve proce-
dures such as mitral valve repair or replacement113. A novel opera-
tive technique that consists of trans-aortic cutting of thickened  
secondary mitral valve chordae seems to be effective in relieving 
outflow tract obstruction in patients with HCM and mild septal 
thickness with the advantage of avoiding additional mitral valve 
procedures114. This technique is based on the pathophysiologi-
cal hypothesis that fibrotic and retracted secondary chordae may  
cause abnormal tethering of the anterior mitral valve and favor 
the displacement of the “slack portions of the leaflet (and attached  
primary chordae) into the LV outflow tract”114.

Conclusions
The number of patients affected by cardiomyopathies is increas-
ing. Given the strong genetic basis of many cardiomyopathies, a 
complete family history is mandatory. Judicious use of cardiac 
imaging is extremely useful in defining the morpho-functional 
phenotype, informing prognosis, and detecting subclinical disease. 
Genetic testing is being increasingly incorporated into clinical  
practice. MOGES classification provides a good framework to  
facilitate communication and patient classification. The use of 
patient-specific pluripotent stem cell-derived cardiomyocytes for 
disease modeling and therapeutic testing is exciting and hopefully 
will be incorporated into clinical practice in the near future. Gene 
therapy, small molecules, small interfering RNA, and antisense  
oligonucleotides are being tested in clinical trials.
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