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Various genetic and environmental factors are known to be 

associated with chronic obstructive pulmonary disease 

(COPD). We identified COPD-related differentially expressed 

genes (DEGs) using 189 samples accompanying either ade-

nocarcinoma (AC) or squamous cell carcinoma (SC), compris-

ing 91 normal and 98 COPD samples. DEGs were obtained 

from the intersection of two DEG sets separately identified for 

AC and SC to exclude the influence of different cancer back-

grounds co-occurring with COPD. We also measured patient 

samples named group ‘I’, which were unable to be deter-

mined as normal or COPD based on alterations in gene ex-

pression. The Gene Ontology (GO) analysis revealed signifi-

cant alterations in the expression of genes categorized with 

the ‘cell adhesion’, ‘inflammatory response’, and ‘mitochondri-

al functions’, i.e., well-known functions related to COPD, in 

samples from patients with COPD. Multi-omics data were 

subsequently integrated to decipher the upstream regulatory 

changes linked to the gene expression alterations in COPD. 

COPD-associated expression quantitative trait loci (eQTLs) 

were located at the upstream regulatory regions of 96 DEGs. 

Additionally, 45 previously identified COPD-related miRNAs 

were predicted to target 66 of the DEGs. The eQTLs and 

miRNAs might affect the expression of ‘respiratory electron 

transport chain’ genes and ‘cell proliferation’ genes, respec-

tively, while both eQTLs and miRNAs might affect the expres-

sion of ‘apoptosis’ genes. We think that our present study will  

contribute to our understanding of the molecular etiology of 

COPD accompanying lung cancer. 
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INTRODUCTION 
 

Chronic obstructive pulmonary disease (COPD), a complex 

age-related disease, has two components: chronic bronchitis, 

characterized by productive cough, and emphysema, 

demonstrated by destruction of the lung parenchyma (Agu-

stí et al., 2012; Mannino and Buist, 2007; Rabe et al., 2007; 

Vestbo et al., 2013). COPD patients also suffer from short-

ness of breath due to chronic airway obstruction and in-

flammation (Fabbri et al., 2003; Vestbo et al., 2013). COPD 

is generally diagnosed by chronic and irreparable impairment 

of lung airflow (Aaron et al., 2007; Barnett, 2005; Calverley 

et al., 2007; Vestbo et al., 2013). The most prominent cause 

of COPD is cigarette smoking (CS), although this factor is 

not the only cause of the disease, and not all smokers have 

the disease (Buist et al., 2008; Kim et al., 2017; Lundback et 

al., 2003; Mannino et al., 2003; Stone et al., 1983; Swanney 

et al., 2008). 

Several recent studies have shown that genetic factors  
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contribute to COPD (Anderson and Bozinovski, 2003; Fore-

man et al., 2012; Jeong et al., 2018; Sakao et al., 2003; 

Sandford et al., 1998). For instance, loss-of-function muta-

tion of α1-antitrypsin is a well-known genetic risk factor, 

although it is responsible for only 1-5% of COPD patients 

(Smith and Harrison, 1997; Stoller and Aboussouan, 2005). 

In addition, with the recent success of genome-wide associa-

tion studies (GWAS), the list of COPD-associated genes is 

expanding rapidly, including FAM13A, HHIP, IREB2, RAB4B, 

EGLN2, MIA, CYP2A6 (Hardin and Silverman, 2014; Hobbs 

et al., 2017; Kim and Lee, 2015). Note that many COPD-

associated single nucleotide polymorphisms (SNPs) are lo-

cated in noncoding regions such as intergenic and intronic 

regions (Artigas et al., 2011; Repapi et al., 2010) rather than 

in protein-coding regions, which is also the case for other 

disease-associated SNPs. These noncoding but disease-

associated SNPs may contribute to the altered regulation of 

gene expression, splicing, and epigenetic modifications. 

Interestingly, CS can perturb gene expression by affecting 

various epigenetic markers including DNA methylation and 

chromatin modification (Belinsky et al., 2002; Kim et al., 

2001; Lee and Pausova, 2013). A variety of epigenetic ma-

chineries for regulating downstream gene expression are 

known to be altered in COPD (Lawless et al., 2009; Scham-

berger et al., 2014). All these studies consistently indicate 

that both genetic and epigenetic alterations are important in 

the etiology of COPD. However, the mechanism by which 

these genes and their genetic mutations mediate the patho-

genesis of the disease remains to be elucidated. 

Meanwhile, an understanding of the perturbations in 

gene expression in various diseases will potentially contribute 

to the identification of molecular targets to develop new 

therapeutic drugs or prognostic modalities. Transcriptome 

studies using either microarrays or RNA-Seq approaches 

have been employed for those purposes in COPD as well 

(Chen et al., 2008; Kim et al., 2015a; Rangasamy et al., 

2009; Steiling et al., 2013; Wang et al., 2008). For instance, 

according to Wang et al. (2008), extracellular matrix (ECM) 

and apoptosis genes are upregulated, whereas genes in-

volved in anti-inflammatory functions are down-regulated in 

a microarray of 48 human lung samples, including normal 

tissues and samples from patients with various stages of 

COPD ranging from GOLD (Global Initiative for Chronic Ob-

structive Lung Diseases) stage 0 to GOLD stage 3. In addition, 

several other genes involved in inflammatory responses, 

including cytokines and chemokines, and genes involved in 

oxidative stress responses are associated with COPD pro-

gression (Chen et al., 2008; Kim et al., 2015a; Rangasamy et 

al., 2009; Steiling et al., 2013). 

However, alterations in gene expression are notably heter-

ogeneous among studies with different designs using differ-

ent cell types (Novak et al., 2002), which is not surprising 

because 12 different cell types constitute the whole lung 

tissue (Wang et al., 2008). Moreover, most subjects with 

COPD were also diagnosed with lung cancers, which was 

the reason for undergoing lung resection, and thus the DEG 

results cannot be as easily interpreted as the genes that are 

altered by COPD alone (Wang et al., 2008). As shown in the 

study by Spira et al. (2007), gene expressions in normal air-

way epithelial cells derived from patients with lung cancers 

differ in a cancer-specific manner. 

In the present study, we thus attempt to avoid complexi-

ties in estimating DEGs associated with COPD (i.e., COPD-

DEGs) driven by different cancer backgrounds co-occurring 

with COPD or by likely misclassified patient samples named 

group ‘I’, basically by revisiting the previous study published 

by Kim et al. (2015a). In addition, we integrate the COPD-

DEGs with various multi-omics data, revealing novel insights 

relevant to COPD, which may ultimately contribute to im-

proving our understanding of the molecular etiology of 

COPD or to identifying molecular targets for the develop-

ment of a novel diagnostic or prognostic strategy. 

 
MATERIALS AND METHODS 
 

Data download 
For the present study, we obtained the RNA-Seq data pro-

duced from COPD patients with lung cancers from Kim et al. 

(2015a) (https://www.ncbi.nlm.nih.gov/geo/, GSE57148). 

Refer to Kim et al. (2015a) for a detailed procedure describ-

ing the process to align and map the raw FASTQ files to the 

reference genome (GRCh37/hg19) and to generate FPKM 

values for all samples using Tophat and Cufflinks (Trapnell et 

al., 2009; 2010; 2012). 

 
DEG analysis 
FPKM values downloaded from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/, GSE57148) were con-

verted into log2 (FPKM + 1) values, and quantile normaliza-

tion was carried out for the expression values using R. Sub-

sequently, after assessing the normality using the Shapiro-

Wilk test, we applied two different t-tests to identify DEGs, 

depending on whether the FPKMs exhibited a normal distri-

bution: a two-sample t-test was applied to the data with a 

normal distribution, whereas the non-parametric Wilcoxon 

Rank-Sum test was used for the data that did not display 

normal distribution. We referenced the method used by 

several previous studies (Lee et al. 2015; Ocampo-Candiani 

et al., 2018; Park et al., 2016; Zhang et al., 2017). Two cut-

off values were selected to identify DEGs; Q < 0.01 and an 

absolute fold change (FC) estimated by (COPD mean 

FPKM/normal mean FPKM) ≥ 1.5 for all samples, and Q < 

0.01 and |FC| ≥ 2 for the samples excluding group ‘I’. In addi-

tion, we further classified the 189 samples into three differ-

ent groups – normal (‘N’), intermediate (‘I’), and COPD (‘C’) – 

using k-means clustering (Hartigan and Wong, 1979). 

 
Subgrouping of the COPD samples 
The 189 patient samples in the GSE57148, comprising 91 

samples labeled ‘normal’ and 98 samples labeled ‘COPD’, 

were further divided into COPD coupled with adenocarci-

noma (AC-COPD; 58 normal versus 36 COPD) and COPD 

coupled with squamous cell carcinoma (SC-COPD; 33 nor-

mal versus 62 COPD). Detailed clinical information on the 

sex, age, FEV1/FVC ratio, and cancer types of the samples 

was retrieved from Kim et al. (2015a) and is provided as 

Supplementary Table S1 in the paper; all samples were col-

lected from male patients. 
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Obtaining COPD-related miRNAs 
A total of 45 differentially expressed miRNAs (DE-miRNAs) 

detected in COPD were obtained from Kim and Lee (2017). 

Information about miRNAs and their target mRNAs was 

obtained from miRTarBase (ver. 7.0, http://mirtarbase.mbc. 

nctu.edu.tw)(Chou et al., 2017), where a total of 2,599 

miRNAs and their target genes are deposited. Forty-three 

DE-miRNAs, missing 2 miRNAs, were linked to a total of 

4,786 mRNAs. 

 
Obtaining COPD-related genes and eQTLs 
A total of 910 previously known COPD-associated genes 

were obtained from the gene-disease association (GDA) 

database of DisGeNET (ver. 5.0, http://www.disgenet.org/) 

(Piñero et al., 2016). Lung expression quantitative trait locus 

(eQTL) data were obtained from GTEx Portal (ver. 7, 

https://www.gtexportal.org/)(Lonsdale et al., 2013), where 

a total of 25,283 eQTL-gene interactions with 24,653 SNPs 

and 25,243 genes were found. Among them, we used 

11,297 eQTL genes that were shown to have significant 

interactions with gene expression at an FDR-adjusted p-

value (Q) < 0.05. 

 

Data analysis 
All statistical tests and their related diagrams were imple-

mented with R (ver. 3.5.0, https://cran.r-project.org/doc/ 

manuals/r-release/R-intro.pdf) and Bioconductor packages 

(ver. 3.7)(Huber et al., 2015). k-means clustering was also 

performed with the same R package by setting k = 3. Hap-

loReg (ver. 4.1, https://pubs.broadinstitute.org/mammals/ 

haploreg)(Ward and Kellis, 2015) was used to annotate 

SNPs in the context of regulatory regions such as transcrip-

tion factor binding sites (TFBSs), enhancers, promoters, and 

DNaseI hypersensitivity sites (DHSs). Gene Ontology (GO) 

analysis was conducted using the DAVID tool (ver. 6.8; 

https://david.ncifcrf.gov/)(Huang et al., 2008). A gene set 

enrichment analysis (GSEA) was performed using the GSEA 

package (ver. 3.0)(Subramanian et al., 2005); we used ‘bio-

logical process’ (bp) of curated gene sets c5, which contain 

gene sets collected from the GO database (MSigDB, ver. 

6.2)(Subramanian et al., 2005). The ‘ReactomeFI’ Cytoscape 

plugin was used to investigate the functional interactions 

among the DEGs we identified. In addition, one of the ‘Reac-

tomeFI’ pull-down menu items, ‘cluster FI Network’ (Wu et al., 

2010), was used to identify GO terms for the clustered 

modules. Other batch jobs were performed with custom-

built Python scripts (ver. 3.6.0). 

 

Quantitative real-time PCR (qRT-PCR) analysis 
Total RNA was extracted from two types of mouse COPD 

models, i.e., five mice from the elastase-induced model (Suki 

et al., 2017) and three mice from the smoking-induced 

model (Cavarra et al., 2001); please refer to previous studies 

to find detailed protocols for constructing mouse COPD 

model systems (Cavarra et al., 2001; Huh et al., 2011; Kim et 

al., 2015b; Suki et al., 2017). Total RNA was isolated using 

the RNeasy Mini Kit (Qiagen, Germany) according to the 

manufacturer`s instructions, and the concentration was 

quantified with an Epoch Microplate Spectrophotometer 

(Biotek Instruments, Inc.). The quality of total RNAs was then 

tested by measuring the ratio of absorbance at 260 nm and 

280 nm. Reverse transcription was conducted using the 

TOPscript RT DryMIX kit (Enzynomics); for PCR, 1 μl of syn-

thesized cDNA was used with AccuPower PCR pre-MIX (Bi-

oneer). Quantitative real-time PCR (qPCR) was performed to 

quantify the mRNA expression of candidate genes using the 

ABI Step One Plus System Instrument (Applied Biosystems). 

The qPCRs were performed according to the manufacturer’s 

instructions with TOPreal qPCR 2X PreMIX SYBR Green 

with high ROX (Enzynomics) in a Microamp fast 96-well 

reaction plate. Levels of relative gene expression were nor-

malized to GAPDH expression. The primer sequences are 

provided in Supplementary Table S2. 

 

RESULTS 
 

Overall schematic of the workflow 
We collected RNA-Seq data from a total of 189 samples 

from the Gene Expression Omnibus (GEO) database (see 

Methods) to revisit the previous findings (Kim et al., 2015a) 

regarding COPD-associated gene expression signatures. As 

described in the original paper, the samples were all derived 

from either adenocarcinoma (AC) or squamous cell carci-

noma (SC) of the lungs, regardless of whether they were 

labeled normal or COPD. Therefore, the terms ‘normal’ and 

‘COPD’ here refer to lung cancer patients without COPD and 

lung cancer patients with COPD, respectively. We thus de-

cided to classify COPD patients into two groups by the lung 

cancer types from which they suffered simultaneously, i.e., 

COPD patients with adenocarcinoma (AC-COPD) and COPD 

patients with squamous cell carcinoma (SC-COPD)(Fig. 1). 

Accordingly, the samples from AC and SC patients without 

COPD were named ‘AC-normal’ and ‘SC-normal’, respectively. 

Consistent with the study by Kim et al. (2015), patients 

with COPD tended to be older, to have more pack-years of 

CS, and to have a significantly lower FEV1/FVC ratio than 

individuals without COPD (Supplementary Fig. S1). However, 

a significantly greater proportion of patients with COPD 

presented SC than AC; in contrast, a greater proportion of 

normal samples presented AC than SC (Supplementary Fig. 

S1). The biased distribution of patients with COPD between 

the AC and SC groups might skew the results of the DEG 

estimation; specifically, the DEGs between normal controls 

and patients with COPD might be skewed by DEGs between 

AC and SC. Therefore, in the present work, we decided to 

analyze COPD-associated gene expression signatures sepa-

rately for AC and SC; the overall schematic of the present 

work is depicted in Fig. 1. 

 

Existence of an intermediate group of patients with 
ambiguous expression patterns 
We separately identified DEGs for the two COPD groups 

classified by the two cancer types, AC and SC, using cutoff 

values of Q < 0.01 and |fold change (FC)| ≥ 1.5 (see Meth-

ods). As a result, 150 DEGs were identified between 58 AC-

normal and 36 AC-COPD samples (named AC-DEGs), and 

58 DEGs were identified between 33 SC-normal and 62 SC-

COPD samples (named SC-DEGs).
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Fig. 1. Overall schematic of the workflow. AC: adenocarcinoma; SC: squamous cell carcinoma; Q: FDR-adjusted p-value; FC: fold change; 

N: normal group; I: intermediate group; C: COPD group. 

 

 

 

We conducted heatmap analysis accompanied by unsu-

pervised hierarchical clustering for AC and SC to investigate 

whether these DEGs demarcated the normal and COPD 

samples (Figs. 2A and 2D). The classification of samples by 

the DEGs was not perfect in either cancer types (i.e., some 

normal samples are clustered in an intermingled way with 

some COPD samples, and vice versa), leading to the recogni-

tion of a third group of patient samples, separate from nor-

mal and COPD. 

We thus performed k-means clustering of samples by set-

ting a parameter k = 3 for AC and SC and integrated the 

resulting sample clusters by principal component analysis 

(PCA). The third group, the intermediate group, which was 

classified as neither normal nor COPD, is represented by gray 

dots in the PCA graph (Fig. 2B and 2E). For AC and SC, the 

samples were thus reclassified into three groups, i.e., group 

‘N’ (normal), group ‘I’ (intermediate), and group ‘C’ (COPD); 

see Methods. 

Interestingly, the median FEV1/FVC ratio of group ‘I’ was 

approximately equivalent to group ‘N’, although the ratio 

ranged widely from less than 50% (clinical COPD) to greater 

than 80% (clinically normal) for both AC and SC (Figs. 2C 

and 2F). Based on this result, group ‘I’ may contain misclassi-

fied patient samples, although they had been clinically diag-

nosed with or without COPD. 

Defining reliable DEGs for deciphering the molecular 
etiology of COPD NC-DEGs 
After establishing a third group of patients, group ‘I’, we 

decided to re-identify the three sets of DEGs to determine 

how the gene expression patterns of the patients in group ‘I’ 

e differed. We defined NC-DEGs, NI-DEGs, IC-DEGs by com-

paring gene expression between groups ‘N’ and ‘C’, ‘N’ and ‘I’, 

and ‘I’ and ‘C’, respectively. Several statistical cutoff values for 

defining the three sets of DEGs were tested, from which we 

found that very few NI- and IC-DEGs remained when Q < 

0.01 and | FC| ≥ 2 were applied. However, 237 NC-DEGs still 

remained as DEGs at those stringent cutoffs (Supplementary 

Table S3). The fact that very few DEGs appeared between 

groups ‘N’ and ‘I’, and groups ‘I’ and ‘C’ suggests that estimat-

ing COPD-DEGs by including group ‘I’ in the original labels as 

either normal or COPD renders the DEGs to be less reliable 

markers for demarcating samples. In other words, NC-DEGs, 

rather than NI-DEGs and IC-DEGs, are more confident gene 

sets to investigate the molecular etiology of COPD, which is 

why we chose to use NC-DEGs for a reliable identification of 

COPD-DEGs. 

Next, we tried to obtain common COPD-DEGs between 

AC-COPD and SC-COPD groups by collecting common NC-

DEGs identified based on the intersection between the NC-

DEG sets of AC and SC. As shown in Fig. 3, 237 common
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Fig. 2. Heatmap and PCA analysis of DEGs and a comparison of clinical characteristics of N, I and C samples in the AC and SC groups. 

DEGs were isolated separately for AC and SC, as displayed. Left panels (A and D) show the results of the heatmap analysis accompanied 

by the unsupervised clustering of samples using the 150 AC-DEGs and 58 SC-DEGs. Dendrograms showing distances between the 

samples, generally displayed at the top of heatmaps, are omitted, and colored bars are used instead to represent normal samples (col-

ored cyan blue) and COPD samples (colored red). The middle panels (B and E) show the results of the PCA accompanied by k-means 

clustering (k = 3). Each dot represents one patient sample; normal, intermediate, and COPD samples are colored cyan, gray, and red, 

respectively. Some outlier samples that were clinically diagnosed as normal but showed similar gene expression to COPD, or vice versa, 

as indicated with colored cyan blue and red circles, respectively. These outliers were excluded from further analyses. The right panels (C 

and F) show boxplots of the FEV1/FVC ratios for N, I and C samples. The red dotted lines represent the median value of N. Significance 

was tested using Student’s t-test (*p < 0.05; **p < 0.01; ***p < 0.001). 

 

 

 

NC-DEGs (the bottom panel), including 131 upregulated 

and 106 downregulated genes, differentiated COPD from 

normal samples without ambiguity for both AC (the top left 

panel) and SC (the top right panel) using a heatmap accom-

panied by unsupervised hierarchical clustering. Notably, 

samples from group ‘I’ were excluded from this analysis of 

both AC and SC. 

 

Common DEGs for both AC and SC reveal well-known 
COPD-related genes 
The intersection between NC-DEGs for AC and SC produced 

two additional groups of gene sets, ‘AC-specific’ (316 genes) 

and ‘SC-specific’ (62 genes), as well as the common NC-

DEGs (Fig. 4). Moreover, according to the direction of the 

changes in expression (up- or downregulation), these three 

categories of NC-DEGs were divided into six categories: 

‘Common-up’ (131 genes), ‘Common-down’ (106 genes), 

‘AC-specific-up’ (140 genes), ‘AC-specific-down’ (176 genes), 

‘SC-specific-up’ (29 genes), and ‘SC-specific-down’ (33 

genes)(Fig. 4A). 

We performed a GO analysis of each of the 6 categories of 

DEGs, confirming several previously well-known COPD-

related genes in the ‘common’ category. For instance, GO 

functions such as ‘inflammatory response’, ‘cell adhesion’, 

and ‘ECM’ were significantly enriched in the ‘Common-up’ 

category, whereas mitochondria-related functions were 

significantly enriched in the ‘Common-down’ category (Fig. 

4A). Interestingly, all these functional GO terms were com-

pletely consistent with the findings from recent reviews aim-

ing to decipher the molecular pathology of COPD (Chen et 

al., 2008; Wang et al., 2008). Similar GO functional terms 

appeared in both AC-specific and SC-specific categories, 

although the numbers of genes associated with specific 

functional terms differed, suggesting that genes involved in 

molecular pathways associated with COPD etiology were 

commonly altered as well. Notably, however, inflammatory 

and apoptosis genes were prominent functional terms for 

the AC-specific category, but not the SC-specific category, 

whereas cell proliferation genes showed the opposite trend 

(Fig. 4A). We postulate that this difference in functional GO 
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Fig. 3. Heatmaps created with NC-DEGs. NC-DEGs were isolated for AC- and SC-COPD samples, as described in the main text. 

Heatmap analyses coupled with unsupervised clustering, as described in Fig. 2, were conducted for AC and SC, respectively (top 

panels). By examining the intersection of the DEG results from the AC- and SC-COPD groups, we identified commonly altered 

NC-DEGs named common NC-DEGs (see the main text). Heatmap analyses coupled with unsupervised clustering were per-

formed on the common NC-DEGs and all (AC plus SC) samples (bottom panels). 

 

 

 

terms exists because the etiology of COPD in patients with 

AC and SC is not identical due to different genetic and epi-

genetic conditions associated with each cancer type. Notably, 

the GSEA generally provided the same interpretation as the 

GO analysis (data not shown). 

We then created a functional interaction network with the 

ReactomeFI Cytoscape plugin (see the Methods) using these 

615 NC-DEGs assigned into the six different categories (Fig. 

4B), confirming that these genes, regardless of the catego-

ries to which they are assigned, are associated with COPD. 

Most of the input DEGs were inter-connected in a large 

network and the functional terms of each clustered sub-

group in the network were consistent with the functions 

mentioned above, suggesting that these DEGs may partici-

pate in the pathogenic pathway leading to COPD. The inte-

gration of an additional source of functional information 

about these DEGs, i.e., previously known COPD-associated 

genes, including EGFR, PTGS2, IL6, CXCR1 and CXCR2, ob-

tained from DisGeNET (see the Methods), into this Cyto-

scape-generated diagram, as depicted by the gene symbols 

inside the bigger circles, provided strong support for the 

hypothesis that these DEGs potentially represent very reliable 

gene sets for deciphering the molecular etiology of COPD. 

 

Statistically significant miRNA-DEG pairs and eQTL-DEG 
pairs 
We next attempted to further characterize the 237 common 

NC-DEGs by integrating them with other multi-omics data. 

Previously, Kim and Lee (2017) reported a total of 45 miR-

NAs to be differentially expressed in COPD patients (i.e., DE-

miRNAs) compared with normal controls. It is hypothesized 

that the alteration of miRNA expression could lead to altera-

tions in target gene expression, considering that miRNAs are 

well-established regulators of gene expression. Consequent-

ly, we searched the 237 common NC-DEGs for genes pre-

dicted to be targeted by these 45 DE-miRNAs by examining 
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Fig. 4. GO and network analysis of the common NC-DEGs. (A) GO analysis of up- or downregulated ‘AC-specific’, ‘SC-specific’, and 

‘common’ DEGs, as described in the main text. Red and blue represent GO functional terms for up- and downregulated genes, respec-

tively. The top five GO terms selected based on the -log10(p-value) are depicted in bar graphs and are presented on the right side of the 

bars. (B) A functional interaction network was created with the Reactome FI plugin of the Cytoscape tool (see the Methods). Each gene 

in each circle is linked by functional interaction; red outlines: upregulated, blue outlines: downregulated, black symbols inside blank 

balls: common DEGs, yellow symbols inside gray balls: AC-specific DEGs, white symbols inside black balls: SC-specific DEGs. The larger 

sized circle indicates known COPD-associated genes. 
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the intersection of these DEGs with previously known 

miRNA-target mRNA pairs (see the Methods). As a result, 

43 of the 45 miRNAs were associated with a total of 4,786 

mRNA targets. By overlapping the 237 DEGs with the 

4,786 miRNA targets, 66 NC-DEGs were identified (Tables 

1 and Supplementary S4). Subsequently, a random permu-

tation experiment was conducted to determine the extent 

of the significant enrichment of the 66 miRNA-DEG pairs 

among the 237 DEGs within the total of 4,786 genes. We 

confirmed that the 66 genes linked to the DE-miRNAs were 

impossible to obtain by chance, indicating that the 66 DEGs 

were significantly enriched through an interaction with DE-

miRNAs (Fig. 5A). 

Another mechanism of gene expression alteration is ge-

netic mutations that occur in cis-acting regulatory elements, 

such as promoters and enhancers. The genetic changes as-

sociated with gene expression have been studied by the 

identification of eQTLs. We acquired this eQTL information 

from the GTEx database (see Methods) to investigate 

whether the NC-DEGs are affected by any eQTL. Ninety-six 

common NC-DEGs mapped onto the locations of eQTL SNPs 

within their regulatory regions (Tables 1 and Supplementary 

S5). A similar random permutation experiment to the anal-

ysis of the DEG-miRNA pairs was applied. During each 

 

 

 

Table 1. Results of the GO analysis 

Category (n) Gene Ontology p-value 

miRNA 

specific 

(46) 

positive regulation of smooth muscle cell proliferation 4.26E-07 

positive regulation of transcription from RNA polymerase II promoter 2.61E-05 

positive regulation of cell proliferation 1.64E-04 

cellular response to tumor necrosis factor 2.79E-03 

cell adhesion 6.11E-03 

Both 

(20) 

positive regulation of ERK1 and ERK2 cascade 9.54E-04 

negative regulation of apoptotic process 1.49E-03 

positive regulation of fibroblast proliferation 1.68E-03 

positive regulation of MAP kinase activity 2.00E-03 

leukocyte migration 8.26E-03 

eQTL 

specific 

(76) 

respiratory electron transport chain 2.00E-03 

lymphocyte homeostasis 1.66E-02 

positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage 1.98E-02 

inflammatory response 3.74E-02 

protein phosphorylation 6.53E-02 
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Fig. 5. Permutation test of miRNA-DEG pairs and eQTL-DEG pairs. A random permutation experiment was conducted to the extent 

of the significance of the number of miRNA-DEGs, 66 genes (A), and the number of eQTL-DEGs, 96 genes (B), by comparing 

the values with random chance. A. During each random iteration that was repeated at least 1,000 times, the number of DEGs 

among the 237 randomly selected genes from the total of 4,786 genes determined to be DE-miRNA target genes was estimat-

ed and plotted against the observed number, i.e., 66. B. During each random iteration that was repeated at 1,000 times, the 

number of DEGs among the 237 randomly selected genes from the total of 11,297 genes with lung eQTLs retrieved from GTEx 

database (see the Methods) was estimated and plotted against the observed number, i.e., 96. 
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Fig. 6. Functional validation of selected 

DEGs using two COPD mouse model sys-

tems. Seven genes were chosen to be vali-

dated by RT-qPCR in the two mouse COPD 

model systems (see Methods). A. RT-qPCR 

results from a mouse model of elastase-

induced COPD; five El-COPD mice and five 

C57BL/6J mice were compared. B. RT-qPCR 

results from a mouse model of smoking-

induced COPD; three Sm-COPD mice and 

three C57BL/6J mice were compared. Sig-

nificance was tested by Student’s t-test (*p 

< 0.05; **p < 0.01; ***p < 0.001). 

random iteration repeated 1,000 times, we estimated the 

number of DEGs coupled with eQTLs of the 237 randomly 

selected genes among the total of 11,297 lung eQTLs (Fig. 

5B). The 96 eQTL-DEG pairs we observed were significantly 

enriched and not expected by random chance (Fig. 5B). 

Consistently, 91% (87/96) of those SNPs were located in 

regulatory regions, such as TFBSs, enhancers, promoters, or 

DHSs (Supplementary Table S5). 

 

Relationships between GO functional classes and 
regulatory alterations 
We then examined whether a general pattern occurred in 

the mechanism of regulatory alterations, mediated either by 

miRNAs or by eQTLs, in functional categories into which the 

common NC-DEGs were assigned. Two groups of DEGs, i.e., 

DEGs targeted by the 45 DE-miRNAs and DEGs mapped to 

eQTLs, were overlapped, resulting in three categories of 

DEGs: genes whose expression was altered only by DE-

miRNAs (designated ‘miRNA-specific’), genes whose expres-

sion was altered only by regulatory mutations (designated 

‘eQTL-specific’), and whose expression was altered by both 

mechanisms (designated ‘both’). As shown in Table 1, only 

20 NC-DEGs, including EGFR, FASTK, and HIPK3, were sub-

ject to regulation by both DE-miRNAs and eQTLs, and the 

functional GO terms of these NC-DEGs were ‘apoptosis’ or 

‘cell proliferation’. Forty-six genes, including IL6, THBS1 and 

HIPK2, were ‘miRNA-specific’ and were grouped into ‘cell 

proliferation’ or ‘cell adhesion’. The remaining 76 genes, 

including ETFB, MMRN1 and MRPL41, were ‘eQTL-specific’ 

and were involved in mitochondrial functions, such as ‘res-

piratory electron transport chain’ or ‘inflammatory response’. 

Interestingly, some genes, such as those associated with the 

‘respiratory electron transport chain’, which are genes that 

are likely related to oxidative stress, were generally altered by 

regulatory genetic mutations rather than miRNA-mediated 

regulatory pathways. 

 

Validating the alterations in the expression of selected 
genes in the mouse COPD models 
Supplementary Table S5 summarizes our integration of 

COPD-related multi-omics data, from which we confirmed 

several novel genes, such as STRA13 and FGG, as well as 

well-known COPD-related genes, such as MIF and SOD2. 

We decided to validate some of these DEGs using qRT-PCR. 

Since no human COPD samples were available, we tried to 

validate the expression of these genes in two different 

mouse COPD models, elastase-induced COPD (El-COPD) 

and smoking-induced COPD (Sm-COPD) (see Methods). 

Genes were selected by referencing Supplementary Table S5 

and previous literature. For instance, the MIF gene was se-

lected because it contained an eQTL SNP, to which several 

TFBSs were mapped and linked to the DE-miRNA, and stud-

ies have implicated this gene in COPD (Russell et al., 2016; 

She et al., 2012). The mouse models represented models of 

emphysema (i.e., one of the key symptoms of COPD) rather 

than exact models of human COPD. Nevertheless, the ex-

pression of six of the seven selected genes was confirmed to 

be altered in these mouse models (Fig. 6). Mif and Fastk 
were specifically downregulated in EI-COPD, whereas 

Ndufa7, Stra13 and Fgg were specifically downregulated in 
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Sm-COPD. Interestingly, the expression of the Stx8 gene was 

downregulated in both models. 
 

DISCUSSION 
 

Here, we identified genes that were significantly altered by 

COPD using samples previously published by Kim et al. 

(2015a). We not only confirmed the previous finding, show-

ing the perturbation in the gene expression of inflammatory 

genes and mitochondrial genes, but also revealed a novel 

aspect regarding the changes in putative regulatory regions 

that might affect changes in COPD-DEG expression. 

A problem confronted by Kim et al. in their study (Kim et 

al., 2015) and by us in the present study was that all COPD 

samples were accompanied by lung cancers, either AC or SC. 

However, a substantial difference between the study by Kim 

et al. (2015) and our present study is the strategy used to 

identify DEGs; we attempted to remove the bias driven by 

lung cancers in patients with COPD by detecting COPD-

DEGs. Another difference was the recognition of an ‘inter-

mediate’ group named group ‘I’, i.e., patients who cannot be 

classified as COPD or non-COPD by gene expression patterns 

alone. We observed few differences in gene expression lev-

els between the ‘N’ and ‘I’ groups and between the ‘I’ and ‘C’ 

groups, and the FEV1/FVC ratio of group ‘I’ was scattered 

from low to high, indicating that COPD and non-COPD 

samples were likely intermingled within group ‘I’. In other 

words, the clinical diagnosis of patients in group ‘I’ as either 

COPD or normal might have been inaccurate, potentially 

leading to the identification of less reliable COPD-DEGs if 

group ‘I’ samples were included in the datasets. We postulate 

that the exclusion of samples from group ‘I’ and the collec-

tion of NC-DEGs helped us unambiguously identify reliable 

COPD-DEGs. In fact, the subsequent analyses performed 

after DEG identification, including the GO analysis and func-

tional interaction network analysis, confirmed the previous 

findings from COPD-driven transcriptome analyses, as the 

expression of inflammatory genes and apoptosis genes was 

upregulated, and the expression of oxidation-reduction 

genes was downregulated. A third difference exists with 

regard to our effort to integrate DEGs with various omics 

datasets to investigate a mechanistic question underlying the 

expression alteration occurring in COPD. The integration of 

multi-omics data, including GDA, eQTLs, and miRNAs, pro-

vided us an opportunity to link changes in upstream regula-

tory regions and changes in downstream gene expression, 

through which we identified some common pathways in-

volved in the development of COPD, regardless of co-

occurring cancer types. Additionally, different functional 

classes of genes were altered by different lung cancer back-

grounds or by the upregulation or downregulation of genes. 

Finally, we further validated alterations in the expression of 

some selected genes in the two mouse COPD model systems, 

in which Stx8 in particularly emerged. Interestingly, the 

downregulation of Stx8 in COPD was consistent not only 

with the finding in the human samples but also between the 

two mouse model systems (Figs. 6A and 6B), which provides 

the insight that some molecular etiologies may be shared 

between different species and even different environmental 

causes. Stx8 belongs to the ‘syntaxin’ family, i.e., gene 

groups of membrane proteins participating in exocytosis, a 

GO term in the molecular functional category of ‘chloride 

channel inhibitor activity’. This gene function related to chlo-

ride channel activity leads to the topic of cystic fibrosis, a 

well-known genetic disease caused by mutation of the chlo-

ride channel encoded by the CFTR gene. In future studies, it 

will be interesting to examine whether the downregulation 

of the Stx8 gene can be a direct cause of COPD and, if so, 

how that effect might occur at the level of molecular mech-

anisms. 

We think that our present study will contribute to under-

standing the molecular etiology of COPD coupled with lung 

cancers and to identifying diagnostic markers of COPD. 

 
Note: Supplementary information is available on the Mole-
cules and Cells website (www.molcells.org). 
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