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Abstract

Language has been extensively investigated by functional neuroimaging studies. However, only a limited number of
structural neuroimaging studies have examined the relationship between language performance and brain structure
in healthy adults, and the number is even less in older adults. The present study sought to investigate correlations
between grey matter volumes and three standardized language tests in late life. The participants were 344 non-
demented, community-dwelling adults aged 70-90 years, who were drawn from the population-based Sydney
Memory and Ageing Study. The three language tests included the Controlled Oral Word Association Task (COWAT),
Category Fluency (CF), and Boston Naming Test (BNT). Correlation analyses between voxel-wise GM volumes and
language tests showed distinctive GM correlation patterns for each language test. The GM correlates were located in
the right frontal and left temporal lobes for COWAT, in the left frontal and temporal lobes for CF, and in bilateral
temporal lobes for BNT. Our findings largely corresponded to the neural substrates of language tasks revealed in
fMRI studies, and we also observed a less hemispheric asymmetry in the GM correlates of the language tests.
Furthermore, we divided the participants into two age groups (70-79 and 80-90 years old), and then examined the
correlations between structural laterality indices and language performance for each group. A trend toward significant
difference in the correlations was found between the two age groups, with stronger correlations in the group of 70-79
years old than those in the group of 80-90 years old. This difference might suggest a further decline of language
lateralization in different stages of late life.
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Introduction

The neural basis of language has been extensively studied,
showing that distinct brain regions play different roles in
language processing [1-7]. The temporal lobe functions as a
core storage site for phonemic and semantic information
[2,5,8,9]; the frontal lobe is involved in executive control and
articulatory planning [10-13]; and the parietal lobe is associated
with the integration of information regarding various attributes
of objects [14,15]. Functional magnetic resonance imaging
(fMRI) has been widely used in language studies, as it can
directly measure neural activity during language tasks.
However, the adaptation of standardized tests to fMRI designs
has been constrained. Standardized language tests,

specifically verbal fluency and naming tests, have been
commonly used by clinical psychologists to assess language
function of participants [16]. Both verbal fluency and naming
tests require overt speech production that can cause head
movements and increase image artefacts, making them
unsuitable for fMRI studies [17]. Different from fMRI studies,
structural MRI studies investigate the relationships between
brain structural measures and language performance, which
can provide insights regarding the neuroanatomical basis of
standardized language tests [18].

In contrast to abundant functional neuroimaging studies on
language, only a small number of structural neuroimaging
studies have examined the correlations between grey matter
(GM) measures and language performance in healthy adults
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[18-20]. In participants with a wide age range across young and
old adulthoods, language tests have been found to be
positively correlated with regional GM measurements. Previous
studies have shown that positive GM correlates of phonemic
fluency tests were located in the left frontal and temporal lobes
[19,20]; and the positive GM correlates of semantic fluency
tests were located in the left temporal lobe [19]. The results
from structural imaging studies are concordant with the findings
of functional neuroimaging studies, as the locations where the
GM volumes are positively correlated with language
performance are consistent with the brain regions that show
functional activations during comparable language tasks.

As ageing is accompanied with brain atrophy and cognitive
decline, the structure-language relationship in old adulthood
might be different from the relationship in young adulthood.
However, only a few studies have examined the correlations
between GM measures and language tests in older adults, and
their results are rather diverse. One study reported that naming
tests were positively correlated with GM volumes in the left
temporal lobe [21]. In another two studies, however, no positive
correlation was found between GM volumes and verbal fluency
and naming tests [22,23]. The inconsistent results may be due
to different sample compositions across studies. Several
studies have shown that language function remains stable until
late old age [24-26]. One recent study demonstrated a late
change in the structural cortical network associated with
language function [27]. In people of early old age, individual
variations on language performance and relevant brain
structures may be limited, which reduce the likelihood of a
relationship between the two variables [22,23]. The small
sample size of studies may also contribute to the inconsistency
of results [21,23]. Thus, a further study in a large sample of
elderly adults aged 70 and beyond is warranted to better
understand the structure-language relationship in late life.

Language has an interesting characteristic as its neural basis
often presents an asymmetric pattern, showing a left-
hemispheric dominance in the frontal and temporal lobes,
termed as language lateralization [28-30]. Most studies on
language lateralization employ fMRI to directly compare
bilateral neural activities related to a language task. However,
structural MRI studies also provide evidence to support
language lateralization. Structural-functional correlation
analysis has shown that the GM volumes that are positively
correlated with verbal fluency tests are mainly located in the left
frontal and temporal lobes [19,20]. Moreover, the variation in
language lateralization is found to be associated with the
degree of structural laterality [31-33]. Evidence also suggests
that higher degree of leftward asymmetry in language-related
regions is correlated with better language function [34-36]. In
older adults, however, the neural basis of language displays a
more symmetric pattern, located in the bilateral frontal and
temporal lobes [37-39]. Based on substantial evidence
provided by fMRI studies, a theory was proposed (the
HAROLD model) [40], suggesting that the reduction of
hemispheric asymmetry in older adults may reflect the plasticity
of the ageing brain to engage extra neural circuits to
compensate age-related neural inefficiency [40-42]. A recent
fMRI study examined language lateralization in different age

groups of healthy adults ranging from 5 to 67 years old, and the
results showed a trend of decreasing language lateralization
from 25 years old onwards [43]. However, few studies have
investigated how language lateralization might change in
different stages of late life.

The present study employed three standardized language
tests to evaluate the performance of older adults in verbal
fluency and naming ability. The performance on language tests
was correlated with GM volumes at the voxel-level across the
whole brain, which precludes a priori hypotheses for particular
brain regions. Our participants were epidemiologically recruited
from community-dwelling non-demented adults. With a big
sample size (n=344) and an old age range for the participants
(70-90 years), this study allows greater inter-individual
variations on language performance and GM volumes, which
may increase the likelihood of a relationship between the two
variables. We hypothesized that some regional GM correlates
of language tests might be located in the right hemisphere,
consistent with the reduction of hemispheric asymmetry in old
age. Moreover, we divided the whole sample into two age
groups (70-79 and 80-90 years old), calculated the correlations
between structural laterality indices and language tests for
each group, and then compared the correlations between the
two age groups. We aimed to explore whether the relationship
between structural laterality and language function differs in the
two age groups, which may indicate a change of language
lateralization in different stages of late life.

Methods

Subjects
The whole sample (n=344) was drawn from Wave 1 of the

Sydney Memory and Ageing Study (MAS). The MAS
participants (n=1037) were randomly recruited from
community-dwelling adults aged 70-90 years [44], with the
following exclusion rules: dementia based on DSM-IV criteria
[45]; adjusted Mini-Mental State Examination score (MMSE)
<24 [46,47]; developmental disability; history of psychosis;
multiple sclerosis; motor neuron disease; progressive
malignancy; or inadequate English to complete basic
assessment.

For the purposes of this study, additional exclusion criteria
were applied to the eligible MAS participants: no MRI scan data
(n=495); diagnosed with stroke (n=12), Parkinson's disease
(n=8), epilepsy (n=4), severe head injury (unconsciousness >
24 hrs, n=2), brain cancer (n=1), benign meningioma (n=2),
brain infection (n=6), transient global amnesia (n=3), or
depression (n=60); non-English speaking background (n=78);
incomplete data on language tests (n=10); extreme outliers of
the language tests scores (> 3 interquartile range below/above
1st/ 3rd quartile) (n=1); or poor MRI scan quality (including MR
artifacts, or errors in data saving or converting) (n=11). Of all
participants (n=340), 93.3% are right-handers (n=321), 3.2%
are left-handers (n=11), and 3.5% are ambidextrous individuals
(n=12).
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Ethics Statement
The study was approved by the ethics committee of the

University of New South Wales and written informed consent
was obtained from each participant.

Neuropsychological Tests
In the present study, three standardized language tests were

administered to all participants by trained psychology
graduates. The three language tests were part of a
comprehensive battery of neuropsychological tests applied in
the Sydney Memory and Ageing study to assess cognitive
function of the participants. The Controlled Oral Word
Association Task (COWAT) was conducted by asking
participants to verbally generate as many words as possible
within 60 seconds, beginning with an assigned letter, in this
case the letters F, A, and S [48]. The Category Fluency test
(CF) required participants to verbally generate as many words
from a particular category as possible within 60 seconds, in this
study ‘animals’ [49]. The 30 item Boston Naming Test (BNT)
consists of 30 picture plates with drawn objects, and required
participants to verbally name them [50].

MRI Acquisition
Structural MRI scans of 184 participants were acquired using

a Philips 3T Intera Quasar scanner (Philips Medical Systems,
Best, The Netherlands). The remaining 160 participants were
scanned on a Philips 3T Achieva Quasar Dual scanner which
replaced the original one in 2007 for reasons outside of the
investigators’ control. Acquisition parameters for all T1-
weighted structural MRI scans were: TR=6.39 ms, TE=2.9 ms,
flip angle=8°, matrix size=256x256, FOV=256x256x190, and
slice thickness=1 mm with no gap between; yielding 1x1x1
mm3 isotropic voxels. No significant differences on GM, WM,
and cerebrospinal fluid volumes were found between the two
scanner groups. Moreover, no significant difference in the
distribution of two age groups (70-79 and 80-90 years old) was
found between the two scanner groups (p=0.24). Nevertheless,
a binary variable accounting for each of the scanners was
included in the statistical analysis as a covariate to minimize
potential scanner effects.

Image Processing
The procedure for processing T1-weighted MRI scans using

the approach of voxel-based morphometry (VBM) had been
described previously [51]. In brief, after visual inspection by
experienced radiologists the brain scans with structural
abnormalities such as brain tumour or severe image artifacts
were removed from the study. Secondly we used the hidden
Markov random field option in the unified segmentation of the
Statistical Parametric Mapping software (SPM5, Wellcome
Department of Imaging Neuroscience, London, UK; http://
www.fil.ion.ucl.ac.uk/spm) to segment T1 images into different
tissues with the most commonly used ICBM152 atlas as the
template. Next, the toolbox of Diffeomorphic Anatomical
Registration Through and Exponentiated Lie Algebra
(DARTEL) [52] in SPM5 was used to generate a series of
customized templates and flow fields of GM and white matter

(WM) from all T1 images. Each T1 image was then registered
to the customized templates to create the modulated warped
tissue class image. Then, spatial normalization of GM to the
Montreal Neurological Institute (MNI) space was achieved by
using an affine transformation to the ICBM152 template. Lastly,
the 12-mm full width at half maximum Gaussian kernel
smoothing was performed to generate the voxel-based GM
volumes for each subject for the subsequent statistical
analysis.

Statistical Analysis
Correlation analyses between voxel-wise GM volumes and

language performance were performed in the whole sample
(n=344). Using the SPM5 package, the GM volume for each
voxel was regressed on the raw score of each test after
controlling for age, sex, years of education, total intracranial
volume (TIV), scanner, cardiovascular risk score (CVR), and
handedness. The calculation of CVR was performed by the
MAS research group based on a regression model developed
by the researchers of The Framingham Stroke Study [53]. A
non-stationary correction toolbox was utilized to overcome the
non-stationarity problem in VBM [54,55]. Anatomical locations
of the peak voxels were labelled using the SPM Anatomy
Toolbox version 1.7 (http://www.fz-juelich.de/inm/inm-1/
spm_anatomy_toolbox) [56], and xjView 8 (http://
www.alivelearn.net/xjview/). For the voxel-wise GM correlation
analyses, the significance threshold in the whole sample was
set at a voxel-level inference of p<0.001 (uncorrected)
combined with a cluster-level inference of p<0.05 (FWE-
corrected).

A conjunction analysis was performed to locate the common
brain areas where GM volumes were positively correlated with
all three tests or any two tests in the whole sample, based on
the conjunction null method [57]. The positive GM correlates of
the three language tests that survived the significance
threshold were overlapped with each other, and the common
areas were extracted for illustration.

Furthermore, we divided the whole sample into two age
groups (aged 70-79 years, n=205; aged 80-90 years, n=139).
Based on the results from prior analysis in the whole sample,
brain regions where GM volumes were positively correlated
with a language test were determined as region-of-interests
(ROIs) for that test, and the boundaries of bilateral ROIs were
defined using the Automated Anatomical Labelling atlas (AAL)
[58]. The structural laterality index (sLI) for each ROI was
computed individually with the formula used by previous
studies, sLI = (Vleft - Vright)/(Vleft + Vright) [33]. The values of Vleft

and Vright were calculated as the sum of voxel-wise GM
volumes within bilateral ROIs. Then the correlation coefficient
(r) between sLI and language test was calculated for each age
group, after controlling for age, years of education, sex, TIV,
scanner, CVR, and handedness (IBM SPSS 20.0, New York).
Lastly, to compare the correlation coefficients between two age
groups, a Fisher’s z-transformation of the r values was
performed and the level of significance was determined [59].
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Results

The demographic characteristics of age, sex and years of
education, and the raw scores for each of the three language
tests in all participants as well as each age group are shown in
Table 1. Correlations between voxel-wise GM volumes and
three language test were all positive as no negative
correlations were found. The cluster of voxels, where GM
volumes were significantly positively correlated with language
performance in the whole sample, were superimposed on the
sagittal slices of the standard brain template (provided by the
MRIcro package http://www.mricro.com), as illustrated in
Figure 1-3 for each language test separately. Within the
suprathreshold clusters, the neuroanatomical locations of peak
voxels were summarized in Table 2 for each language test
individually.

The cluster of voxels where GM volumes were positively
correlated with COWAT were located in the left posterior
middle temporal gyrus, right precentral and inferior frontal gyri,
right hippocampus, right substantia nigra, and bilateral
cerebellum (Figure 1). The positive GM correlates of CF were
only located in the left hemisphere, including the hippocampus,
parahippocampal gyrus, temporal pole, orbitofrontal gyrus,
inferior frontal gyrus, insula, and cerebellum (Figure 2). The
positive GM correlates of BNT were located in largely
symmetrical positions of bilateral hemispheres, including the
bilateral hippocampi, parahippocampal gyri and temporal poles,
as well as the right fusiform gyrus (Figure 3).

The conjunction analysis revealed no common GM
correlates to all three language tests. However, there were
common GM correlates (893 voxels) to CF and BNT in the left
hippocampus and left parahippocampal gyrus (Figure S1A).
The common GM correlates to COWAT and CF (34 voxels)
were located in the left cerebellum (Figure S1B), and the
common GM correlates to COWAT and BNT (8 voxels) were
located in the right hippocampus (Figure S1C).

The correlations between structural laterality indices of ROIs
and language tests in two age groups were shown in Table 3.

Table 1. Demographic characteristics and
neuropsychological performance.

% or Mean (SD) Total (n=344)   
70-79 years
(n=205)   

80-90 years
(n=139)   p-value

Sex (% male) 45.6 47.3 43.2 0.45
Age 78.3 (4.8) 75.0 (2.4) 83.2 (2.7) <0.001
Education (year) 11.8 (3.6) 11.9 (3.6) 11.5 (3.7) 0.77
COWAT 37.8 (12.3) 39.0 (12.2) 36.1 (12.4) 0.06
CF 16.0 (4.4) 16.7 (4.5) 14.8 (3.8) <0.001
BNT 24.9 (3.4) 25.3 (3.2) 24.4 (3.6) 0.02

COWAT = Controlled Oral Word Association Task; CF = Category Fluency; BNT=
Boston Naming Test.
Ratio of males was compared between the two age groups using the chi-square
test. Age, years of education, and raw score on each of the three language tests
were compared between two age groups using a univariate general linear model.
doi: 10.1371/journal.pone.0080215.t001

Figure 1.  Grey matter correlates of COWAT.  Brain regions where voxel-based GM volumes are positively correlated with
COWAT in 344 participants aged 70-90 years, are superimposed on the sagittal slices of the brain template. The slices are at 5 mm
intervals between and including -80 mm and 75 mm. The colour bar represents the t score ranging from 0 to 5.5; and yellow
indicates a higher t score than red.
doi: 10.1371/journal.pone.0080215.g001
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We found a significantly positive correlation between CF and
sLI of the inferior frontal gyrus (r=0.142, p=0.047) and an
almost significant correlation between COWAT and sLI of the
precentral gyrus (r=0.126, p=0.079) in the group of 70-79 years
old, but both were not significant in the 80-90 year old group.
Furthermore, Fisher's z test revealed a trend toward significant
difference between the two age groups in the correlation
between COWAT and sLI of the precentral gyrus (z=1.83,
p=0.067), and the correlation between CF and sLI of the
inferior frontal gyrus (z=1.65, p=0.099). After adjusted by
Bonferroni correction for multiple comparisons, however, the
differences between two age groups in the correlations
between structural laterality indices of ROIs and language tests
were not significant. The boundaries of bilateral ROIs were
illustrated in Figure S2. Descriptive statistics of sLI for two age
groups were presented in Table S1.

In addition, we divided the whole sample into two groups
according to the two scanners, and then performed correlation
analysis between voxel-wise GM volumes and language tests
for each scanner group. We found similar patterns in the GM
correlates of language tests between the two scanner groups

(see Figure S3). Furthermore, we performed correlation
analyses between structural laterality indices and language
tests for each scanner group. The correlation coefficients were
not significantly different between the two groups.

Discussion

Our study demonstrated that three language tests were all
positively correlated with GM volumes in the frontal, temporal
and parietal lobes in the non-demented elderly adults. Our
results also displayed distinct GM correlation patterns for each
language test. Although all three tests involve word retrieval
and articulation, they differ in the strategies applied in word
searching, selection and inhibition processes. Both verbal
fluency tests, COWAT and CF, measure the efficiency of word
generation, but differ in how the output is induced by either
phonemic or semantic cues. The confrontational naming test,
BNT, does not require automatic word generation, but
evaluates the naming ability induced by visual stimulus. The
GM correlation patterns of three language tests were discussed

Figure 2.  Grey matter correlates of CF.  Brain regions where voxel-based GM volumes are positively correlated with CF in 344
participants aged 70-90 years, superimposed on the sagittal slices of the brain template. The slices are at 4 mm intervals between
and including -48 mm and -20 mm. The colour bar represents the t score ranging from 0 to 5.5; and yellow indicates a higher t score
than red.
doi: 10.1371/journal.pone.0080215.g002

Figure 3.  Grey matter correlates of BNT.  Brain regions where voxel-based GM volumes are positively correlated with BNT in 344
participants aged 70-90 years, superimposed on the sagittal slices of the brain template. The slices are at 4 mm intervals between
and including -48 mm and 44 mm. The colour bar represents the t score ranging from 0 to 5.5; and yellow indicates a higher t score
than red.
doi: 10.1371/journal.pone.0080215.g003
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individually, and the common and specific features were
identified.

Grey Matter Correlates of COWAT
As a classical phonemic fluency test, GM correlates of

COWAT were mainly located in the frontal, temporal and
subcortical areas in the non-demented adults aged 70-90
years. The relationship between COWAT and the frontal GM
volumes, in particular the precentral and inferior frontal gyri,
has been consistently demonstrated in functional neuroimaging
studies, which suggest the frontal regions are involved in
executive control and search strategies [60-62]. Our results
were also consistent with previous structural MRI studies,
which showed the patients with frontal lobe lesions performed
poorly on phonemic fluency tests [63], Moreover, we found that
COWAT was positively correlated with the left posterior middle

Table 2. Anatomical region and coordinates of peak voxels
within the suprathreshold clusters correlated with three
language tests in 344 participants aged 70-90 years.

Test Cluster-level  Voxel-level  

 p (FWE)   size (n) MNI coordinates   
T
value   

Anatomical location
(BA)

    X Y Z   

COWAT 0.002 466  -52 -38 -4 4.47
L posterior middle
temporal gyrus (21)

 0.008 221  -20 -40 -38 4.46 L cerebellum
 0.035 275  60 -2 20 4.07 R precentral gyrus (6)

    56 14 24 3.88
R inferior frontal gyrus
(44)

 0.008 257  30 -22 -10 3.28 R hippocampus
    32 -20 -12 3.27 R substantia nigra
 0.027 177  20 -42 -38 4.27 R cerebellum
CF <0.001 3357  -32 -26 -10 5.14 L hippocampus
    -50 18 -12 4.38 L temporal pole (38)
    -42 0 2 3.67 L insula

    -38 24 -20 3.60
L orbitofrontal gyrus
(47)

    -42 6 8 3.83
L inferior frontal gyrus
(44)

 <0.001 847  -28 -62 -38 3.95 L cerebellum

BNT 0.001 1198  -24 4 -26 4.14
L parahippocampal
gyrus (28)

    -34 6 -26 3.59 L temporal pole (38)
    -26 -10 -24 3.56 L hippocampus
 0.002 998  36 8 -28 4.38 R temporal pole (38)

    34 -20 -20 4.03
R parahippocampal
gyrus (28)

    38 -16 -26 3.27 R fusiform gyrus (20)

The voxel-wise GM volumes were regressed on the three language test scores
after controlling for age, years of education, sex, scanner, total intracranial volume
(TIV), cardiovascular risk score, and handedness in the whole sample. The
significance level was set at a voxel-level p<0.001 (uncorrected) combined with
cluster-level p<0.05 (FWE-corrected) for the whole sample.
doi: 10.1371/journal.pone.0080215.t002

temporal GM volumes. Prior studies have shown that this brain
area, along with the inferior frontal gyrus, is involved in
executive control of demanding language tasks [13,64-66]. A
positive correlation between the substantia nigra and COWAT
was also observed in this study, consistent with the
involvement of this region in planning and execution of
articulatory movement that is heavily engaged in this phonemic
fluency test [67,68]. We noted that the frontal GM correlates of
COWAT was only located in the right hemisphere, instead of a
left-hemispheric dominance that is often found in healthy
younger adults [28]. This observation might reflect the
reduction of hemispheric asymmetry in late life, consistent with
the findings of prior fMRI studies on the neural substrates of
language tasks in older adults [69].

Grey Matter Correlates of CF
Our results showed that this semantic fluency test was

correlated with GM volumes in the left hemisphere, including
the frontal and temporal lobes, as well as the hippocampus,
insula and cerebellum. Similar to COWAT, CF had the GM
correlates in the frontal lobe, which may also indicate the
involvement of this region in executive control and search
strategies that are essential to both verbal fluency tests [60-62].
However, the extent and exact locations of the frontal GM
correlates of two verbal fluency tests were different, with a
bigger cluster of voxels in the precentral and inferior frontal
gyrus for COWAT, and a smaller cluster of voxels in the
orbitofrontal and inferior frontal gyrus for CF. This difference is

Table 3. Correlations between structural laterality indices of
ROIs and language tests in two age groups.

  Young  Old  Difference

  r p-value r p-value  z
p-
value

COWAT PRE 0.126 0.079  -0.078 0.379  1.83 0.067
 IFG 0.102 0.154  0.094 0.289  0.07 0.94
  MTG 0.025 0.732  0.030 0.738  -0.04 0.968
CF IFG 0.142 0.047*  -0.042 0.639  1.65 0.099
 TP 0.114 0.111  0.019 0.832  0.85 0.395
 HIPP 0.027 0.707  0.164 0.064  -1.23 0.219
BNT TP 0.080 0.262  -0.025 0.777  0.94 0.347
 HIPP -0.015 0.829  -0.012 0.896  -0.03 0.976
 FG -0.021 0.772  -0.013 0.883  -0.07 0.944

The correlation coefficient (r) between structural laterality index of each ROI and
each language test was calculated for each age group, using partial correlation
model and controlling for age, years of education, sex, TIV, scanner, CVR, and
handedness. Then the correlation coefficients were compared between the two
age groups, using a Fisher’s z-transformation of the r values and the level of
significance was determined.
Abbreviation for ROIs: PRE = precentral gyrus; IFG = inferior frontal gyrus
(including opercular part and triangular part); MTG = middle temporal gyrus; TP =
superior temporal pole; HIPP = combined hippocampus and parahippocampal
gyrus; FG = fusiform gyrus.
*. p<0.05
doi: 10.1371/journal.pone.0080215.t003
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coherent with previous studies, which suggests that phonemic
fluency tasks have greater executive demands and require
more frontal activation than semantic fluency tasks, and the
frontal neural basis is located in more dorsal positions than that
of semantic fluency tasks [70-72]. Our study also showed that
the positive GM correlates of CF were located in the temporal
and hippocampal regions. Although the involvement of the
hippocampus and its neighbouring areas in episodic memory
has been well-established [73-75], their roles in semantic
processes is still a topic of debate [76-79]. In a recent fMRI
study Ryan and colleagues found the hippocampal activation
during performing both semantic and episodic retrieval tasks in
healthy adults [80]. Previous studies also showed that the
patients with the temporal atrophy such as Alzheimer’s disease
often had semantic impairments [81,82]. Our findings provide
further support for the roles of the hippocampus and its
adjacent brain regions in the retrieval of semantic knowledge.
This study also showed that the insula was correlated with CF.
A previous study revealed that the left insula atrophy was
correlated with verbal generation difficulty in healthy
participants across 19-88 years [83]. Our findings are
consistent with the role of the insula in articulation planning
[84-86].

Grey Matter Correlates of BNT
The present study showed a symmetrical pattern in the GM

correlates of BNT, which were located in the bilateral
hippocampi, parahippocampal gyri and temporal poles. In
contrast to the two verbal fluency tests, BNT had no significant
GM correlates in the frontal lobe. Evidence from lesion studies
revealed that patients suffering from frontal lobe damage
showed no deficit in naming ability, but severe impairment in
verbal fluency [87,88]. The evidence may suggest that the
naming test has a relatively small demand on executive
function and attention, different from verbal fluency tests [89].
As shown in the conjunction analysis, BNT and CF were both
correlated with GM volumes in the left hippocampus and left
parahippocampal gyrus, consistent with the involvement of
these regions in semantic retrieval [80], an essential cognitive
component for both tests [90]. The temporal pole was also
found to be correlated with BNT in this study, which is possibly
concordant with the role of this region as a hub area to
converge different sources of information about an object, in
order to assist semantic retrieval for the naming task [91-93].
The correlation of BNT with the fusiform gyrus may indicate the
involvement of this region in processing visual information
regarding an object, as revealed in previous studies [28,94].
Moreover, we found that three language tests all had GM
correlates in the cerebellum. Although only a few studies
investigated the role of cerebellum in language, they have
shown that the cerebellum has a contribution to speech
production and verbal working memory [84,95,96], which are
important components for the three language tests.

Language Lateralization in Late Life
Our study showed that positive GM correlates of language

tests were located in the right frontal lobe for COWAT and the
bilateral temporal lobes for BNT. This finding indicated a less

leftward GM correlation pattern for language tests, consistent
with the reduction of hemispheric asymmetry in older adults as
observed in previous fMRI studies [37-39]. The trend of
changing language lateralization with age has been
demonstrated by a recent fMRI study, which shows the left-
hemispheric dominance increasing with age between 5-20
years, reaching a plateau at 20-25 years, and then slowly
declining afterwards [43]. Different from fMRI studies that
directly compare bilateral neural activities related to a language
task, structural MRI studies have used structural laterality to
investigate language lateralization. Evidence has shown that
language lateralization is associated with structural laterality;
moreover, the degree of leftward structural asymmetry is
positively correlated with language performance, consistent
with the notion of language lateralization [31,34-36]. Using
structural asymmetry indices that were computed with regional
GM volumes, we explored the relationship between structural
asymmetry indices and language performance in two age
groups (70-79 and 80-90 years old). We noted that the
difference between two groups was approaching significance
(p<0.1), with stronger correlations between leftward asymmetry
of the frontal regions and two language tests (CF and COWAT)
in the younger group than those in the older group. The results,
together with our findings of less leftward patterns in voxel-wise
GM correlations of language tests, suggest a further declining
of language lateralization in different stages of late life.

Our study is subject to several limitations. Firstly, as the
ageing brain often undergoes regional structural changes, such
as GM atrophy and WM disruption, the reliability of brain
registration and segmentation could be affected in processing
brain images of the elderly adults [97]. However, we used an
advanced DARTEL method, which has shown a better
registration effect compared to other methods [98], to improve
the accuracy of image processing. Secondly, the change of
scanner in the middle of the study is a potential limitation
though the two scanners were made by the same manufacturer
and used the same parameter settings. The validation tests
showed that the two scanner groups had similar
neuroanatomical correlation patterns with language tests, and
the correlations between structural laterality indices and
language tests did not show any significantly difference
between the two scanner groups. Moreover, the inclusion of
scanner type as a covariate could minimize the likelihood of its
influence on the relationship between voxel-wise GM volumes
and language tests.

In conclusion, our study demonstrated distinctively positive
correlation patterns between voxel-wise GM volumes and three
standardized language tests (COWAT, CF and BNT) in a large
sample of non-demented, community-dwelling adults aged
70-90 years. Our results showed that COWAT was mainly
correlated with the right frontal and left temporal GM volumes,
CF with the left frontal and left temporal GM volumes, and BNT
with bilateral temporal GM volumes. The neuroanatomical
locations of these GM correlates were largely consistent with
the findings of fMRI studies on neural substrates of language
tasks, and they also indicated a reduction of hemispheric
asymmetry as shown in the pattern of GM correlates of
language tests. In addition, we found a trend toward significant

GM Correlates of Language Tests in Late Life

PLOS ONE | www.plosone.org 7 November 2013 | Volume 8 | Issue 11 | e80215



difference in the correlations between structural laterality index
and language tests between two age groups (70-79 and 80-90
years old), with stronger correlations in the younger age group
than those in the older age group. This difference may suggest
a further decline of language lateralization with age in late life.

Supporting Information

Figure S1.  Common GM correlates of language tests. The
conjunction analysis showed the common voxels where GM
volumes are positively correlated with different language tests
in 344 participants aged 70-90 years. These common GM
correlates in colour red were superimposed on the sagittal
slices of the brain template. A) common GM correlates to CF
and BNT; B) common GM correlates to COWAT and CF; C)
common GM correlates to COWAT and BNT.
(TIF)

Figure S2.  Bilateral ROIs for each language test. Based on
the locations where voxel-wise volumes were positively
correlated with three language tests in the whole sample,
region-of-interests (ROIs) for each language test were
determined. The boundary of each ROI was delineated using
the Automated Anatomical Labelling atlas (AAL), and
demonstrated by superimposing on the sagittal slices of the
brain template. The slices were at 4 mm intervals between and
including -80 mm and 76 mm. A) bilateral ROIs of COWAT; B)
bilateral ROIs of CF; C) bilateral ROIs of BNT.
(TIF)

Figure S3.  Grey matter correlates of three language tests
in two scanner groups. Brain regions where voxel-based GM

volumes were positively correlated with three language tests in
two scanner groups were superimposed on the 3D brain
templates. The figures shown in the 1st column were for the
group of Scanner 1, while the figures in the 2nd column were for
the group of Scanner 2. The figures for each language test
were demonstrated in three rows. A) Grey matter correlates of
COWAT; B) Grey matter correlates of CF; C) Grey matter
correlates of BNT.
(TIF)

Table S1.  Descriptive statistics of structural laterality
indices (sLI) of region-of-interests (ROIs) in two age
groups.
(DOCX)
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