
Indian Journal of Psychological Medicine | Volume 45 | Issue 1 | January 2023 5

Review Article

Palash Kumar Malo1, Binukumar Bhaskarapillai2  and Muralidharan Kesavan3

HOW TO CiTe THiS aRTiCle: Malo PK, Bhaskarapillai B and Kesavan M. Multivariate Bayesian Arm-Based Network Meta-Analysis of 
Pharmacological Interventions for the Treatment of Acute Bipolar Mania in Adults. Indian J Psychol Med. 2023;45(1):5–13.

aCCeSS THiS aRTiCle ONliNe
Website: journals.sagepub.com/home/szj

DOI:10.1177/02537176221114392

Submitted: 15 Mar. 2022
Accepted: 27 Jun. 2022
Published Online: 15 aug. 2022

Address for correspondence: Binukumar Bhaskarapillai, Dept. of Biostatistics, 
National Institute of Mental Health and NeuroSciences, Bengaluru, Karnataka 
560029, India. E-mail: binukumarb@gmail.com.

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative 
Commons Attribution- NonCommercial 4.0 License  (http://www.creativecommons.org/licenses/by-nc/4.0/) 
which permits non-Commercial use, reproduction and distribution of the work without further permission 
provided the original work is attributed as specified on the SAGE and Open Access pages (https://
us.sagepub.com/en-us/nam/open-access-at-sage).

Copyright © The Author(s) 2022

1Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India. 2Dept. of Biostatistics, National Institute of Mental Health and 
NeuroSciences, Bengaluru, Karnataka, India. 3Dept. of Psychiatry, National Institute of Mental Health and NeuroSciences, Bengaluru, Karnataka, India.

Multivariate bayesian arm-based Network 
Meta-analysis of Pharmacological 
interventions for the Treatment of acute 
bipolar Mania in adults

ABSTRACT
Background: In a network meta-analysis 
(NMA), multiple treatments can be 
compared simultaneously by aggregating 
pieces of evidence from direct as well as 
indirect treatment comparisons in different 
randomized controlled trials (RCTs). 
Conventional NMA are performed using a 
normal approximation approach and can 
be applied for arm-level binary outcome 
data as well. This study aimed to estimate 
the treatment effects within a Bayesian 
framework using a binomial likelihood for a 
multivariate NMA model. 

Methods: The dataset consists of 57 RCTs 
comparing the effect of ten pharmacological 
drugs and a placebo for acute bipolar mania 
in adults. The binary outcomes of interest 
were treatment response and all-cause 
dropouts measured three weeks from the 
baseline. Binomial distribution was adopted 
for the number of events and the probability 
of event occurrence modeled on the logit 

scale. Jeffrey’s Beta prior was considered 
for the heterogeneity and inconsistency 
of standard deviation (SD) parameters. 
Cholesky and spherical decomposition 
strategies were adopted for the between-
study variance–covariance matrix. Deviance 
information criterion (DIC) indices were 
computed to determine the model fit. All 
results pertaining to Markov chain Monte 
Carlo simulations and all analyses were 
carried out in WinBUGS software. 

Results: The estimated common 
heterogeneity SDs were similar, and the 
DIC values did not provide any evidence for 
superiority between the two decomposition 
strategies. The correlation (95% credible 
interval) between the outcomes was 
estimated as −0.31 (−0.71, −0.02) and −0.37 
(−0.73, −0.03) for the Cholesky and spherical 
decompositions, respectively. Gelman–Rubin 
convergence statistics were stable, and 
Monte Carlo errors for all the parameters 
were around 0.005. Overall, olanzapine, 
paliperidone, and quetiapine were both 

significantly more effective and acceptable 
than a placebo when both the study 
outcomes were considered simultaneously. 

Conclusions: The findings favoring 
olanzapine, paliperidone, and quetiapine 
possess an excellent concordance with the 
one adopted in clinical practice, and the 
Canadian Network for Mood and Anxiety 
Treatments and Royal Australian and New 
Zealand College of Psychiatrists guidelines 
recommend these as first-line drugs for 
treating bipolar disorder.

Keywords: Bayesian Network Meta-
Analysis, Arm-Based Analysis, Multivariate 
Network Meta-Analysis.

Randomized controlled trials 
(RCTs) compare new drugs with 
a placebo or a standard avail-

able drug but they lack the comparison 
against all other available interventions in 
the same study. Therefore, head-to-head 
comparisons are usually unavailable be-
tween all the competing interventions. 
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Network meta-analysis (NMA) is rec-
ommended in such instances allowing 
multiple pairwise comparisons across  
several interventions while combining 
direct and indirect comparisons simul-
taneously.1 Furthermore, an NMA pro-
vides summary estimates of relative 
treatment effects on various treatment 
comparisons. In addition, when there 
is a lack of direct evidence for treatment 
comparisons and undertaking a new RCT 
including all the competing treatments is  
infeasible, performing an NMA is cost- 
effective for clinical decision-making. 

To account for the variation because of 
different sets of interventions or inconsis-
tency in the model, Jackson et al.2 adopted 
the arm-based analysis approach for the 
model introduced by White et al.3 under 
the Bayesian setting. This approach can 
be used to determine the average treat-
ment effects across all comparisons and 
designs. It also provides a valuable mod-
eling framework by allowing sensitivity 
analyses to be performed using only one 
sensitivity parameter, the inconsistency 
variance. Furthermore, Jackson et al.2 sug-
gested that their model should only be 
utilized in large networks with the pres-
ence of a small unexplainable quantity of 
inconsistency.

Bayesian hierarchical models for NMA 
were initially conceptualized under 
consistency assumptions,4–6 extending 
the concept first proposed by Higgins 
and Whitehead.7 Lu and Ades8 adopted  
the separation strategy9 for modeling 
the between-study variance–covariance 
matrix to specify prior distributions for 
correlations and standard deviations (SDs) 
separately. The authors used the spherical 
parameterization technique to generate 
a positive-definite correlation matrix.10 
Furthermore, NMA has been conceptual-
ized from multivariate meta-analysis, and 
its methodology is still in a developing 
stage, although a considerable amount of 
advances have been made and published 
in recent years.11,12 Even though some 
attempts have been made to extend the 
NMA methodology to multiple outcome 
settings,13–18 modeling of binary outcomes 
has been less explored.19 

Bipolar disorder is a recurring mental 
illness with significant morbidity and 
mortality and is the 16th leading cause 
of years lost to disability worldwide.20 
The World Mental Health Survey Initia-
tive reported a total lifetime prevalence  

estimate of 2.4% across bipolar I disorder, 
bipolar II disorder, and bipolar subtypes.21 
In the bipolar I category that affects about 
1% of the general population, acute mania 
is a condition of abnormally and per-
sistently elevated mood.22 Patients are 
usually treated with mood stabilizers and 
atypical antipsychotics.21,22 These phar-
macological interventions were shown to 
be individually effective than a placebo 
in a univariate model but a multivariate 
model has not been attempted. Cipriani 
et al.23 evaluated the effects of 13 antimanic 
drugs in 68 RCTs using the Bayesian uni-
variate model proposed by Lu and Ades.4,5 
The models were supposed to quantify 
inconsistency using continuous outcome 
data but were unable to locate it in the 
network. Currently, the arm-based analy-
sis approach, presented by Jackson et al.,2 
can be used whenever arm-level binary 
outcome data are available. In addition, 
the model worked specifically within the 
Bayesian framework. Hence, the present 
study aimed to estimate and compare 
the treatment effects using univariate and 
multivariate Bayesian NMA models for 
two dichotomous outcomes of pharma-
cological interventions for treating acute 
bipolar mania (ABM) in adults.

Data 
The present study used the dataset of the 
Cipriani et al. 23 that evaluated the effects 
of 13 antimanic drugs in 68 RCTs. As the 
current work used a multivariate model, 
3 drugs—asenapine, gabapentin, and 
topiramate—and their corresponding 11 
RCTs were excluded from the analysis, 
as both the study outcomes—treatment 
response and all-cause dropouts—were 
not reported for these 3 in the 11 RCTs. 
Therefore, the present study was restricted 
to 57 double-blinded RCTs comparing 
the effect of 10 pharmacological drugs or 
interventions and a placebo for treating 
ABM in adults. These drugs included 
mood stabilizers, antipsychotics, and 
antidepressants, which were compared 
against each other and with the placebo 
as monotherapy or add-on agents. 
Participants were aged 18 or older, of 
both sexes, and had a primary diagnosis 
of ABM. The ten pharmacological 
interventions included in the study were 
aripiprazole, haloperidol, quetiapine, 
ziprasidone, olanzapine, paliperidone, 
divalproex, carbamazepine, lithium, and 
lamotrigine. Aggregated data on the two 
outcome measures, namely treatment 

response and all-cause dropouts, were 
considered from all the included RCTs and 
defined as follows.

1.	 Treatment response: the number of 
patients who responded to treatment. 
Here, the response is defined as a ≥ 
50% reduction in manic symptoms on 
mania rating scales.

2.	 All-cause dropouts: the number of par-
ticipants who dropped out of the study 
for any reason before completion.

Both the study outcomes were measured-
from baseline to week 3.

Complete details of the dataset are pro-
vided in Table 1. In total, there were 13,188 
adult participants across 57 RCTs. Among 
them, 12 (21.1%) and 1 (1.8%) studies did 
not report response and the number 
of dropouts, respectively. Thirty-eight 
(66.7%) studies compared an active drug 
with a placebo.

Materials and Methods 
An arm-based analysis approach2 was 
adopted as data were available at the arm 
level for both dichotomous study out-
comes. The arm-based analysis facilitates 
using an exact likelihood for the data 
rather than its normal approximation. 
For binary data, a binomial distribution 
can be adopted for the number of events 
and the logit scale to model the proba-
bility of event occurrence.2 The models 
adopted for this study are described in 
the following sections.

Univariate Network  
Meta-Analysis Model
Let there are n RCTs comparing T treat-
ments across all studies in an NMA. Let   rt

di 

be the number of events for treatment  t(I,j, 
..., T) in the ith study of design d, nt

di  be the 
total number of patients in the tth treat-
ment, and pt

di be the probability of event 
occurrence. Then, rt

di is distributed as

	 ,r B n pdi
t
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t
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, , ..., ;t I J T=

dig  is the trial-specific log odds of an 
event in the reference treatment arm A in 
the ith study of design d;

Atd is the trial-specific log-odds ratios 
of treatment t relative to treatment 
A 0AAd =_ i ;
BdiAt is the between-study heterogeneity 

reflecting study-by-treatment interac-
tion term B 0di

AA =_ i;
Wd
At is the variability between designs 

(inconsistency) reflecting design-by-
treatment interaction term W 0d

AA =_ i.
Assumptions of the model are as 

follows.

1.	 The study-specific arm-level parame-
ters in the reference treatment arm are 
treated as fixed effects.

2.	 The heterogeneity variance is the same 
for all treatment comparisons across 
all studies, treated as random effects 
and defined as ,MVNB 0di + Rb_ i

	 where , , ...B B Bdi di
AB

di
AC= l_ i  follows a 

multivariate normal distribution in 
(T–1) dimensions, and Rb is a square 
matrix with the diagonal elements as  

2xb and off-diagonal elements as /22xb
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3.	 The inconsistency variance is the same 
for all treatment comparisons across 
all designs, treated as random effects 
and defined as

	 ,MVNW 0d + R~_ i�

	 where ..., ,  W W Wd d
AB

d
AC= l_ i  and R

~
 

is a square matrix with the diagonal 
elements as 2x~ and off-diagonal ele-
ments as /22x~
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where MVN denotes the multivariate 
normal distribution.

This model is reduced to a consistency 
model (NMA-CM) when 02x =~ . For 
both the consistency model (NMA-CM) 
and the inconsistency model (NMA-IM), 
the basic parameters , , ... ,t I J TAtd =_ i 
are interpreted as the average relative 
treatment effects across all designs and 
studies.

In addition, the specification of the 
prior distribution plays an integral role 
in any Bayesian analysis. In the present 
study, normal (0, 1002) prior was used 
for the basic parameters d, and Jeffrey’s 
prior, Beta (0.5, 0.5), for the unknown 
SD components. The normal prior with 
large variance for the basic parameters  

represents a lack of information or 
knowledge for the treatment effects. A 
similar-shaped prior distribution was 
assumed for both the heterogeneity and 
inconsistency parameters. 

Jeffrey’s Beta Prior 
Distribution
If p.d.f. of Y is ( | )f y i  where no prior 
information on the parameter i exists, it 
is usual to consider Jeffrey’s prior, given 
by

	 f I /1 2
?i i_ _i i � (3)

where Ii is the expected Fisher’s infor-
mation matrix and is defined as
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Now, let us consider the binomial distri-
bution with parameters n and i, B (n, i),
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Thus, Jeffrey’s prior based on the bino-
mial likelihood is 
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which follows the Beta distribution of 
the first kind, Beta (0.5, 0.5). Hence, the 
Beta distribution is a conjugate before 
the binomial likelihood, leading to a 
Beta posterior distribution. However, 
the advantage of Jeffrey’s Beta prior over 
uniform prior is that it is invariant under 
reparameterization.25 In the present 
study, independent Beta (0.5, 0.5) prior 
distributions were used for the heteroge-
neity (x

b
) and inconsistency (x

~
) SDs.

Multivariate Network  
Meta-Analysis Model
Estimation of the between-study vari-
ance–covariance matrix R

b
 is important in 

a hierarchical multivariate model. As the 
present study intended to fit multivariate  

Table 1.

Treatment Details in 57 RCTs.
Treatments Response All-Cause Dropouts

n (%) r (%) n (%) r (%)

Placebo (Ref.) 34 (75.6) 3852 (32.4) 38 (67.9) 4154 (31.6)

Aripiprazole 7 (15.6) 1284 (10.8) 7 (12.5) 1284 (9.8)

Haloperidol 8 (17.8) 1000 (8.4) 13 (23.2) 1101 (8.4)

Quetiapine 7 (15.6) 832 (7) 7 (12.5) 832 (6.3)

Ziprasidone 5 (11.1) 1018 (8.6) 6 (10.7) 1033 (7.8)

Olanzapine 12 (26.7) 1446 (12.1) 14 (25) 1475 (11.2)

*Paliperidone 7 (15.6) 1215 (10.2) 9 (16.1) 1282 (9.7)

Divalproex 8 (17.8) 506 (4.3) 8 (14.3) 839 (6.4)

Carbamazepine 3 (6.7) 246 (2.1) 7 (12.5) 313 (2.4)

Lithium 8 (17.8) 490 (4.1) 13 (23.2) 674 (5.1)

Lamotrigine 1 (2.2) 15 (0.1) 3 (5.4) 174 (1.3)

TOTAL 45 11904 56 13161

“*” paliperidone is the main active metabolite of risperidone. Data for these two drugs were combined.
n: number of trials, r: number of participants.
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NMA-CM, R
b
 plays a vital role. Different 

strategies to specify prior distributions 
for R

b
 are discussed in the following sec-

tions.

Separation Strategies

The between-study variance–covariance 
matrix R

b
 can be decomposed in terms of 

SDs and correlations,9 allowing indepen-
dent prior distributions for each of them. 
The decomposition of R

b
 can be defined as

	 D R D  2
1

2
1R =b � (8)

where D 2
1 is a diagonal matrix with 

SDs as the diagonal elements, and R is 
the correlation matrix of order p × p. 
Furthermore, the Cholesky and spher-
ical decomposition methods are used 
to decompose the matrix R and are 
described in the following sections.

Separation by Cholesky Decomposition

In the Cholesky decomposition, the 
correlation matrix R is symmetric and 
positive semidefinite and can be factored 
as

	 R U U= l � (9)

where U is an upper-triangular matrix 
of order  p × p. Diagonal elements of R 
are 1, and the off-diagonal elements must 
lie within the range [−1, 1]. Let the Chole-
sky factor ,  , ...,  ;  U i p i j1 2  ij #=_ i 
represents the /p p1 2+_ i  elements in 
matrix U. The prior distributions are 
now placed on Uij. Now, the correlation 
matrix R with p = 2 dimensions can be 
written in terms of ,  ;  U i i j1 2  ij #=_ i

.
.R U U

U U U

U U
 

 

  

11 1211
2

12
2

22
2

= =
+

l > H � (10)

As diagonal elements of R are 1, we have 
U11 = 1 . The plausible intervals for other 
Cholesky factors can be derived and 
written as follows9,24:

,  andU U U1 1 112 22 12
2! - = -7 A

where the uniform prior distribution 
is placed for U12 on this interval so that 
matrix R has correlations in the interval 
[−1, 1]. When the two study outcomes 
of the present study are negatively cor-
related, the uniform prior distribution 
on the Cholesky factor is taken with the 
interval [−1, 0].

Separation by Spherical Decomposition

A reparameterization of the Cholesky 
decomposition is the spherical decompo-
sition wherein sine and cosine functions 
are used for ,  , ... ,  ;  U i p i j1 2  ij #=_ i. 
As the products of sine and cosine func-
tions lie within the closed interval [−1, 1], 
it ensures R to be a positive semidefinite 
matrix,9 and also U U 1k k =l , whereUk rep-
resents the column k in matrix U. Let U11 
= 1 and for k = 2, 3, ..., p

cosU  k k1 2Q= _ i�

sin cosU  k k k2 2 3Q Q= _ _i i� (11)

...sin sin cosU  ,  k k k k kk1 2 3Q Q Q=- _ _ _i i i

...sin cos cosU  ,  k k k k kk2 3Q Q Q= _ _ _i i i�

where kmQ  represents the spherical factor 
and ,  ,0kmQ ! r_ i  for , ...,  m k2= . There-
fore, the 2 × 2 upper-triangular matrix 
U for spherical decomposition can be 
written as

	
cos
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U

1
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and the corresponding correlation 
matrix R is

	
.

cos
R U U

1
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> H� (13)

Assigning uniform prior distribution 
to the spherical factor ~ ,  U 0 21Q r_` ij 
results in an unstructured correlation 
matrix R with all elements of the matrix 
lying within the interval (−1, 1). When the 
two outcomes are negatively correlated, 
the uniform prior distribution on the 
spherical factor can be taken with an 

interval ,  2
r

rb l. Lastly, under the Bayes-

ian framework, the deviance information 
criterion (DIC) indices are computed for 
the NMA-CM and NMA-IM to determine 
the model fit.

Ranking of Treatments 
Under the Bayesian setting, to rank 
the treatments, at each iteration of the 
Markov chain Monte Carlo (MCMC), 
the largest (smallest) value of the basic 
parameters for the treatment response 
(all-cause dropouts) outcome is regarded 
as the most effective (acceptable). For the 

study outcome response (all-cause drop-
outs), if all basic parameters are of the 
positive (negative) sign, then the treat-
ment is most effective (acceptable) than 
the placebo. The probability that treat-
ments are most effective (acceptable) 
has been determined by the proportion 
of MCMC iterations in which they are 
the most effective (acceptable) and is 
treated as “probabilities of being the 
best treatment”.2 The treatments can 
then be ranked based on their probabil-
ities. 

In the analysis, 16,00,000 MCMC 
iterations were included and thinning 
of 100 to reduce the autocorrelation in 
the sample. To ensure convergence, a 
6,00,000 burn-in period was used, which 
was tested by running three chains with 
different starting values and using the 
Gelman–Rubin convergence statistic. 
Therefore, all estimates were based on 
30,00,000 iterations, and the choice of 
these many iterations was to minimize 
the Monte Carlo (MC) error. Finally, the 
treatments were ranked based on their 
probabilities obtained through MCMC 
simulations.2 All analyses were carried 
out in WinBUGS 1.4.3 software.

Results 
Network plots were generated for both 
the study outcomes, i.e., treatment 
response [Figure 1(a)] and all-cause-
dropouts [Figure 1(b)], to see the 
connectedness of the treatments.

In a network plot, the node represents 
the treatments, and the size of the nodes 
reflects the total number of participants 
for that particular treatment across all the 
trials included in the analysis. The edge 
of the line connecting the two nodes rep-
resents a pairwise treatment comparison. 
Furthermore, the thickness of the edge 
represents the total number of trials in 
which the pairs of treatments have been 
compared. It is evident that the nodes are 
more well connected for all-cause drop-
outs than the treatment response. 

Univariate Network  
Meta-Analysis

Response

In NMA-CM, the estimated posterior 
mean (95% CrI) of x

b
 was 0.29 (0.16, 0.43). 

Aripiprazole, haloperidol, quetiapine,  
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olanzapine, paliperidone, divalproex, 
carbamazepine, and lithium were signifi-
cantly more effective than the placebo, 
whereas ziprasidone and lamotrigine were 
not. Furthermore, carbamazepine has the 
highest probability (0.41) to be treated as the 
best, followed by paliperidone (0.19) and 
haloperidol (0.13). Similarly, in NMA-IM, 
the estimated posterior means (95% CrI) 
of x

b
 and x

~
 were 0.28 (0.15, 0.43) and 0.07 

(0.00, 0.25), respectively. The treatments 
that were significantly more effective 
than the placebo in NMA-CM were 
also significant in NMA-IM. However,  
carbamazepine remained the best (0.40) 
treatment in NMA-IM as well, followed 
by paliperidone (0.20) and haloperidol 
(0.13). The DIC values of both the NMA 
models indicated that the models were 
equally good (Table 2).

All-Cause Dropouts

In NMA-CM, the estimated posterior 
mean (95% CrI) of x

b 
was 0.40 (0.27, 

0.54). Quetiapine, olanzapine, and 
paliperidone were significantly more 
acceptable than the placebo, whereas 
aripiprazole, haloperidol ziprasidone, 
divalproex, carbamazepine, and lithium 
were not. Lamotrigine was neither 
acceptable nor significant. Furthermore, 
paliperidone has the highest probability 
(0.28) to be considered the best, followed 

by olanzapine (0.26) and quetiapine 
(0.22). Similarly, in NMA-IM, the esti-
mated posterior means (95% CrI) of x

b
 

and x
~

 were 0.39 (0.25, 0.54) and 0.09 
(0.00, 0.32), respectively. The treatments 
that were significantly more acceptable 
than the placebo in NMA-CM were so 
in NMA-IM also. However, lamotrigine 
remained to be unacceptable and insig-
nificant. Interestingly, both olanzapine 
(0.26) and paliperidone (0.26) have the 
highest probability to be treated as the 
best in NMA-IM, followed by quetiapine 
(0.23). The DIC values of both the NMA 
models indicated that the models were 
equally good (Table 3).

Multivariate Network  
Meta-Analysis
The between-study (heterogeneity) 
variance–covariance matrix R

b
 was 

decomposed into the SD ( )D 2
1  and 

correlation (R) matrices to allow inde-
pendent prior distribution for each of 
them. The correlation matrix was further 
decomposed using Cholesky and spheri-
cal decomposition strategies.

Cholesky Decomposition

The estimated posterior means (95% CrI) 
of x

b 
for response and all-cause dropouts 

were 0.28 (0.14, 0.40) and 0.37 (0.26, 0.49), 

respectively. The correlation between the 
outcomes was estimated as −0.31 (−0.71, 
−0.02). Moreover, olanzapine, paliperi-
done, and quetiapine were significantly 
more effective and acceptable than the 
placebo, whereas aripiprazole, halo-
peridol, ziprasidone, divalproex, and 
carbamazepine were not. Furthermore, 
both lithium and lamotrigine failed to be 
effective and acceptable (Table 4).

Spherical Decomposition

The estimated posterior means (95% CrI) 
of x

b 
for response and all-cause dropouts 

were 0.26 (0.14, 0.40) and 0.35 (0.14, 0.48), 
respectively. The correlation between 
the outcomes was estimated as −0.37 
(−0.73, −0.03). Moreover, olanzapine, 
paliperidone, and quetiapine remained 
to be significantly more effective and 
acceptable than the placebo, whereas 
aripiprazole, haloperidol, ziprasidone, 
divalproex, and carbamazepine were not. 
Furthermore, both lithium and lamotrig-
ine failed to be effective and acceptable. 
In addition, the DIC model fit index 
values for Cholesky (667.69) and spheri-
cal (667.28) decompositions were close to 
each other, indicating both decomposi-
tion strategies as equally good (Table 4). 
Moreover, Table 1 indicated that there 
was only one study for lamotrigine that 
reported treatment response and three 

figure 1.

Network Plots for the Outcomes. Response (a) and All-Cause Dropouts (b).

a b



Indian Journal of Psychological Medicine | Volume 45 | Issue 1 | January 202310

Malo et al.

table 2.

Univariate Bayesian Network Meta-Analysis Models for the Outcome Response.

Treatments
NMA-CM NMA-IM

Posterior Mean (SD) 95% CrI P (best) Posterior Mean (SD) 95% CrI P (best)
Placebo (reference) – – 0.00 – – 0.00
Aripiprazole 0.69 (0.14)  (0.42, 0.97) 0.03 0.70 (0.15)  (0.40, 1.00) 0.04
Haloperidol 0.81 (0.14)  (0.53, 1.09) 0.13 0.81 (0.15)  (0.52, 1.11) 0.13
Quetiapine 0.70 (0.15)  (0.41, 0.99) 0.04 0.70 (0.16)  (0.40, 1.01) 0.04
Ziprasidone 0.32 (0.17)  (−0.01, 0.66) 0.00 0.32 (0.19)  (−0.04, 0.70) 0.00
Olanzapine 0.74 (0.13)  (0.49, 1.00) 0.05 0.75 (0.14)  (0.48, 1.01) 0.05
Paliperidone 0.75 (0.14)  (0.48, 1.04) 0.19 0.76 (0.15)  (0.46, 1.05) 0.19
Divalproex 0.68 (0.17)  (0.35, 1.01) 0.04 0.67 (0.17)  (0.33, 1.02) 0.04
Carbamazepine 0.90 (0.32)  (0.26, 1.50) 0.41 0.89 (0.32)  (0.23, 1.51) 0.40
Lithium 0.59 (0.18)  (0.23, 0.96) 0.08 0.59 (0.19)  (0.23, 0.97) 0.08
Lamotrigine 0.30 (0.84)  (−1.36, 1.94) 0.02 0.30 (0.85)  (−1.37, 1.95) 0.02

x
b
t 0.29 (0.07)          (0.16, 0.43) 0.28 (0.07)          (0.15, 0.43)

x
~
t – – 0.07 (0.07)          (0.00, 0.25)

DIC 671.46 672.37

Estimates are in log scale, P (best): probability that each treatment is best, CrI: credible interval, SD: posterior standard deviation, xb
t : estimated heterogeneity standard  

deviation, x~
t : estimated inconsistency standard deviation, DIC: deviance information criteria, NMA-CM: network meta-analysis consistency model, NMA-IM: network  

meta-analysis inconsistency model.

table 3.

Univariate Bayesian Network Meta-Analysis Models for the Outcome of All-Cause Dropouts.

Treatments
NMA-CM NMA-IM

Posterior Mean (SD) 95% CrI P (best) Posterior Mean (SD) 95% CrI P (best)

Placebo (reference) – – 0.00 – – 0.00

Aripiprazole −0.27 (0.17)  (−0.61, 0.07) 0.03 −0.28 (0.18) (−0.64, 0.09) 0.04

Haloperidol −0.16 (0.18)  (−0.50, 0.19) 0.00 −0.16 (0.18) (−0.52, 0.20) 0.00

Quetiapine −0.46 (0.19)  (−0.83, −0.09) 0.22 −0.47 (0.19) (−0.85, −0.09) 0.23

Ziprasidone −0.10 (0.21)  (−0.51, 0.30) 0.01 −0.12 (0.22) (−0.57, 0.31) 0.02

Olanzapine −0.50 (0.15)  (−0.80, −0.20) 0.26 −0.50 (0.16) (−0.82, −0.18) 0.26

Paliperidone −0.50 (0.17)  (−0.83, −0.16) 0.28 −0.49 (0.18) (−0.84, −0.13) 0.26

Divalproex −0.30 (0.19)  (−0.68, 0.08) 0.06 −0.31 (0.20) (−0.71, 0.09) 0.06

Carbamazepine −0.25 (0.31)  (−0.85, 0.35) 0.12 −0.26 (0.31) (−0.87, 0.36) 0.12

Lithium −0.05 (0.18)  (−0.40, 0.32) 0.01 −0.05 (0.19) (−0.42, 0.32) 0.01

Lamotrigine 0.15 (0.32)  (−0.48, 0.78) 0.00 0.14 (0.33) (−0.52, 0.80) 0.00

x
b
t 0.40 (0.07) (0.27, 0.54) 0.39 (0.07)      (0.25, 0.54)

x
~
t – – 0.09 (0.09)      (0.00, 0.32)

DIC 791.82 792.10

Estimates are in log scale; P (best): probability that each treatment is best, CrI: credible interval, SD: posterior standard deviation, xb
t : Estimated heterogeneity standard  

deviation, x~
t : estimated inconsistency standard deviation, DIC: deviance information criteria, NMA-CM: network meta-analysis consistency model, NMA-IM: network  

meta-analysis inconsistency model. 

that reported all-cause dropouts. The 
posterior SD of lamotrigine was higher 
than the posterior mean in the univariate 
NMA model for the treatment response 
and the multivariate NMA model that 
considered both the outcome variables 
in the single model. The presence of only 

one study on lamotrigine might have led 
to a large posterior SD.

The Gelman–Rubin convergence statis-
tics were stable for the prior distribution 
used, and all the MC errors were around 
0.005. According to the trace plots, the 
stationary distributions were detected 

by the three chains as they drifted over 
the same region of the parameter space. 
However, the autocorrelation declined 
rapidly from lag 0 to lag 20; this sug-
gested that each sample in the chain 
was slightly correlated with the preced-
ing draws, signaling no autocorrelation 
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and indicating no need for alarm. All 
these plots suggested that the samples 
are random and approximately inde-
pendent. Kernel density plots were 
symmetric for the parameter estimate, 
implying that the chains converged to the 
same distribution. Overall, olanzapine,  
paliperidone, and quetiapine were both 
significantly more effective and accept-
able than placebo when both the study 
outcomes were analyzed simultaneously.

Discussion
The present study compared 11 treat-
ments, including 10 pharmacological 
drugs and a placebo, across 57 RCTs for 
treating ABM in adults. This study was 
restricted to two dichotomous outcomes, 
i.e., treatment response and all-cause 
dropouts, measured at three weeks from 
the baseline. Moreover, the current work 
is an extension of Cipriani et al.’s study23 

and the decision on the most effective 
pharmacological drug among the list of 
ten drugs in the present study was not 
only based on the univariate model but 
also supported by the results of the mul-
tivariate NMA model. Moreover, Cipriani 
et al. 23 used a contrast-based analysis 
approach, whereas we have framed the 

analysis under an arm-based approach. 
In addition, the Bayesian analysis in the 
present study allowed binomial likeli-
hood in the model and also added the 
benefit of accounting uncertainty in the 
variance components while interpreting 
average treatment effects, which was not 
taken into account by Cipriani et al.23

The two dichotomous outcomes were 
first analyzed independently using the 
univariate arm-based analysis within 
the Bayesian approach with Jeffrey’s 
Beta prior. Aripiprazole, haloperidol, 
quetiapine, olanzapine, paliperidone, 
divalproex, carbamazepine, and lithium 
were found to be significantly more 
effective than the placebo. On the other 
hand, for all-cause dropouts, queti-
apine, olanzapine, and paliperidone 
were significantly more acceptable 
than the placebo. The results remained 
unchanged across the NMA models. 
Furthermore, for the outcome response, 
carbamazepine was found to have the 
largest probability to be the best across 
the NMA models; however, Cipriani 
et al.23 showed haloperidol as the most 
efficacious drug. On the other hand, for 
all-cause dropouts, the ranking between 
olanzapine and paliperidone fluctuated 

between the NMA models. In terms of 
ranking between these two drugs, the 
most preferred drug remains undecided. 
Moreover, almost similar DIC values 
found in the study suggest that both the 
NMA models are equally good for both 
outcomes. 

In practice, whenever multiple out-
comes have been reported, it is more 
common to perform an independent 
meta-analysis for each outcome. In any 
study, multiple outcomes are recorded 
from the same subjects and are usually 
correlated. Ignoring it and performing 
a univariate meta-analysis for each cor-
related outcome may introduce bias and 
loss of precision.28 They can be taken 
together in a multivariate model to 
explain the correlation between different 
outcomes at within- and between-study 
levels. As outcomes are recorded from 
each subject, there will be a correlation 
at the within-study level. Between-study 
correlation may exist because the true 
effects across studies depend on each 
other when measured in different situ-
ations. The application of multivariate 
meta-analysis is rare because of its com-
plexity and lack of understanding. Riley 
et al.28 highlighted the benefits of the 

table 4.

Multivariate Bayesian Network Meta-Analysis Consistency Model Under Cholesky and Spherical 
Decompositions.

 
 
 

Cholesky Decomposition Spherical Decomposition

Response All-Cause Dropouts Response All-Cause Dropouts

Posterior Mean 
(SD)

95% CrI Posterior Mean 
(SD)

95% CrI Posterior 
Mean (SD)

95% CrI Posterior 
Mean (SD)

95% CrI

Placebo (reference) – – – – – – – –

Olanzapine 0.78 (0.20) (0.24, 1.02) −0.56 (0.13) (−0.82, −0.3) 0.80 (0.14) (0.37, 0.92) −0.51 (0.16) (−0.83, −0.20)

Paliperidone 0.76 (0.14) (0.49, 1.05) −0.49 (0.16) (−0.82, −0.19) 0.76 (0.21) (0.34, 1.17) −0.62 (0.15) (−0.91, −0.32)

Quetiapine 0.69 (0.15) (0.42, 0.99) −0.45 (0.18) (−0.80, −0.09) 0.67 (0.12) (0.45, 0.92) −0.51 (0.20) (−0.90, −0.13)

Divalproex 0.69 (0.17) (0.36, 1.02) −0.31 (0.18) (−0.67, 0.05) 0.78 (0.20) (0.39, 1.17) −0.23 (0.13) (−0.49, 0.03)

Aripiprazole 0.69 (0.14) (0.42, 0.97) −0.27 (0.17) (−0.60, 0.06) 0.56 (0.12) (0.31, 0.80) −0.15 (0.17) (−0.48, 0.17)

Carbamazepine 0.92 (0.32) (0.26, 1.51) −0.31 (0.28) (−0.87, 0.25) 0.94 (0.21) (0.73, 1.56) −0.34 (0.19) (−0.71, 0.04)

Haloperidol 0.82 (0.14) (0.54, 1.11) −0.16 (0.16) (−0.48, 0.14) 0.82 (0.20) (0.43, 1.20) −0.32 (0.19) (−0.70, 0.06)

Ziprasidone 0.31 (0.17) (−0.01, 0.67) −0.09 (0.20) (−0.49, 0.29) 0.39 (0.17) (0.06, 0.71) −0.08 (0.22) (−0.50, 0.34)

Lithium 0.56 (0.12) (0.54, 1.02) 0.05 (0.15) (−0.25, 0.36) 0.58 (0.26) (0.33, 1.35) 0.02 (0.20) (−0.49, 0.30)

Lamotrigine 0.65 (0.85) (−1.35, 1.97) 0.20 (0.30) (−0.40, 0.79) 0.30 (0.87) (−1.37, 2.04) 0.22 (0.23) (−0.22, 0.67)

x
b
t 0.28 (0.14, 0.40) 0.37 (0.26, 0.49) 0.26 (0.14, 0.40) 0.35 (0.14, 0.48)

tt −0.31 (−0.71, −0.02) −0.37 (−0.73, −0.03)

DIC 667.69 667.28

Estimates are in log scale, CrI: credible interval, SD: posterior standard deviation, xb
t : estimated heterogeneity standard deviation, tt : estimated correlation between the two 

study outcomes, DIC: deviance information criteria.
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inclusion of correlations in a model for 
the bivariate random-effects meta-analy-
sis (REMA) over two separate univariate 
REMAs. Moreover, if missing at random 
is noticed for an outcome in some 
studies, the “borrowing of strength” will 
permit the bivariate REMA to produce 
noticeably smaller standard errors of the 
individual pooled estimates as compared 
with the univariate REMAs.29 Utilization 
of correlation is referred to as “borrowing 
of strength,” which gives an advantage of 
using multivariate models over a univari-
ate model. Riley et al.29 used a simulation 
study to show that when some data are 
missing at random, the multivariate 
approach is likely to produce consider-
ably lower standard errors and mean 
square errors of the pooled estimates 
than the univariate model, even when 
the study outcomes have moderate cor-
relations. The authors also argued that 
given complete data, meta-analysts 
should not expect any gain in statistical 
efficiency over the univariate model; con-
sequently, the standard error and mean 
square error of the pooled estimates are 
marginally smaller in the multivariate 
than in the univariate approach. 

Furthermore, in addition to the results 
of the univariate approach, the results 
of the multivariate approach indicated 
that olanzapine, paliperidone, and que-
tiapine were significantly more effective 
and acceptable than the placebo when 
both the study outcomes were consid-
ered simultaneously in the multivariate 
NMA-CM. The estimated common het-
erogeneity SDs were similar between 
the two decomposition strategies. 
Noticeably, DIC values did not provide 
concrete evidence for preference 
between the decomposition strategies. 
Similar results were also obtained by 
Wei and Higgins,24 who adopted both 
the decomposition strategies for acute 
stroke data framed under multivariate 
meta-analysis for four study outcomes 
and obtained almost identical estimated 
variance and DIC values. The authors 
used uniform (0, 2) prior distribution for 
the heterogeneity SD. A few studies had 
adopted the spherical decomposition 
framed under NMA with multiple out-
comes on smoking cessation data8 and 
prevention of poisoning injuries data.19 
To our knowledge, this is the first study 
to use both Cholesky and spherical 
decompositions in a multivariate NMA 

arm-based analysis strategy for binary 
outcomes. Also, the approach used in 
this paper does not require correlation 
to be known between the outcome vari-
ables. On the other hand, multivariate 
NMA-IM is yet to be developed; hence, 
only multivariate NMA-CM was investi-
gated. This research points the way for 
further development of NMA-IM in a 
multivariate scenario. 

Furthermore, the choice of the prior 
distribution for the heterogeneity and 
inconsistency SDs plays an integral role 
in a Bayesian NMA. The present study 
used Jeffrey’s Beta prior for the unknown 
SD toward statistical heterogeneity and 
inconsistency. However, the advantages 
of Jeffrey’s Beta prior over the uniform 
prior include the following: (a) it is rep-
arameterization invariant25 and (b) Beta 
distribution is a conjugate prior for the 
binomial likelihood that leads to a Beta 
posterior distribution.

Limitations
Apart from the strengths mentioned 
above, the current study possesses 
certain limitations worth acknowledg-
ing. First, the data used in this study 
were from 2011,23 and new relevant 
RCTs completed after 2011 might have 
been missed. Consequently, it may be 
possible that some second-generation 
pharmacological drugs21 for the treat-
ment of ABM in adults were overlooked. 
Lastly, the treatments for ABM data 
were assessed based on how patients 
responded to the treatments and dis-
continuation for any reason before the 
end of the study. It would have been 
more informative to consider adverse 
events. 

Future Directions

The present study used aggregated data, 
and it would be interesting for future 
research to focus on using both aggre-
gated data as well as individual patient 
data. The present work’s scope was con-
fined to estimating the treatment effects 
and the unknown variance components in 
a multivariate NMA model. In addition, it 
will be interesting to explore the proper-
ties of NMA methodology under various 
artificially generated and controlled mod-
eling conditions through coverage, bias, 
and interval width estimates.

Conclusion
The present study highlighted the 
advantages of the multivariate NMA 
model over its univariate counterparts. 
It concluded that the three effective 
and acceptable pharmacological drugs 
identified can help clinicians in treating 
adults with ABM. These findings should 
be taken into account when developing 
clinical practice guidelines. Moreover, 
our findings have an excellent concor-
dance with the one adopted in clinical 
practice. Olanzapine and quetiapine are 
the most commonly prescribed drugs 
for mania, and so is risperidone, 21,23,26,30 
of which paliperidone is a metabolite. 
All the major guidelines for bipolar dis-
order, including the Canadian Network 
for Mood and Anxiety Treatments guide-
lines21 and the Royal Australian and New 
Zealand College of Psychiatrists guide-
lines,26,30 recommend these drugs as the 
first choice for bipolar disorder.
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