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Abstract
Histological differentiation is a major pathological criterion indicating the risk of tumor invasion and metastasis in patients with
hepatocellular carcinoma. The degree of tumor differentiation is controlled by a complex interacting network of associated
proteins. The principal aim of the present study is to identify the possible differentiation-related proteins which may be used for
early diagnosis and more effective therapies. We compared poorly differentiated and well-differentiated hepatocellular carcinoma
tissues by using 2-dimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectro-
metry. Among the 11 identified protein spots, 6 were found to be upregulated in poorly differentiated hepatocellular carcinoma
tissues and 5 were correspondingly downregulated. Immunohistochemistry was performed on 106 hepatocellular carcinoma
tissues to confirm the results of the proteomic analysis. By using bioinformatic tools GO and STRING, these proteins were found
to be related to catalytic activity, binding, and antioxidant activity. In particular, our data suggest that overexpression of
peroxiredoxin-2, annexin A2, and heat shock protein b-1 was correlated with tumor invasion, metastasis, and poor prognosis, and
therefore, these proteins may serve as potential diagnostic and therapeutic biomarkers.

Keywords
HCC, proteomics, differentiation, immunohistochemistry, bioinformation, biomarkers

1 Special Minimally Invasive Surgery, The First Clinical Medical College of Lanzhou University, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
2 Hepatopancreatobiliary Surgery Institute of Gansu Province, Clinical Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu, China
3 Biological Therapy and Regenerative Medicine Transformation Center of Gansu Province, Lanzhou, Gansu, China
4 Department of General Surgery, Petrochemical General Hospital of Lanzhou, Lanzhou, Gansu, China
5 Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
6 The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
7 The Second Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China

Corresponding Authors:

Wenbo Meng, MD, PhD, Special Minimally Invasive Surgery Department, The First Hospital of Lanzhou University, Hepatopancreatobiliary Surgery Institute of

Gansu Province, Clinical Medical College Cancer Center of Lanzhou University, Biological Therapy and Regenerative Medicine Transformation Center of Gansu

Province, Lanzhou, Gansu 730000, China.

Email: mengwb@lzu.edu.cn

Xun Li, MD, PhD, The Second Department of General Surgery, The First Hospital of Lanzhou University, Hepatopancreatobiliary Surgery Institute of Gansu

Province, Clinical Medical College Cancer Center of Lanzhou University, Biological Therapy and Regenerative Medicine Transformation Center of Gansu

Province, Lanzhou, Gansu 730000, China.

Email: drlixun@163.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License
(http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission
provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Technology in Cancer Research &
Treatment
2017, Vol. 16(6) 1092–1101
ª The Author(s) 2017
Reprints and permission:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/1533034617732426
journals.sagepub.com/home/tct

mailto:mengwb@lzu.edu.cn
mailto:drlixun@163.com
https://us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/1533034617732426
http://journals.sagepub.com/home/tct


Abbreviations
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ase o-1; HCC, hepatocellular carcinoma; HPT, haptoglobin; HSPB1, heat shock protein b-1; IEF, isoelectric focusing; MALDI-
TOF-MS, matrix-assisted laser desorption ionization time-of-flight mass spectrometry; MAPK, mitogen-activated protein kinase;
MAPKAPK2, mitogen-activated protein kinase-activated protein kinase 2; MMPs, matrix metalloproteinases; P53, tumor protein
p53; PRDX2, peroxiredoxin-2; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis; TF, serotransferrin; TGF,
transforming growth factor; VEGF, vascular endothelial growth factor; CHAPS, 3-(3-cholamidopropyl)dimethylammoniumpro-
pane sulfonate; 2DE-PAGE, polyacrylamide gel electrophoresis, two-dimensional; AFP, alpha-fetoprotein; HBV, hepatitis B virus;
HCV, hepatitis C virus; IPG, immobilized pH gradient; MOWSE, molecular weight search; CCKR, cholecystokinin A receptor;
RhoA, Ras homologous member A; Rac1, Ras-related C3 botulinum toxin substrates 1; Rho/ROCK, Rho-associated protein
kinase.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common

cancers worldwide and the third common cause of cancer mor-

tality with nearly 746 000 deaths per year.1 Hepatocellular

carcinoma is highly prevalent in Asia, especially in China. The

incidence and mortality rates of HCC have increased substan-

tially over the last decades.2 Despite considerable improvement

in the treatment modalities, the overall prognosis for patients

with HCC is still poor. Radical resection for the early-stage

disease is considered the best treatment option for HCC, but

the overall survival is dismal, with the mean and median over-

all postsurgery survival being 38 and 29 months, respectively.3

The reported 5- and 10-year overall survival rates were 34.4%
and 10.5%, respectively, and the disease-free survival rates

were 23.3% and 7.8%, respectively.3,4 Patients with poorly

differentiated HCC are more likely to develop invasive and

metastatic diseases with much worse prognosis than those with

well-differentiated tumors.5 The molecular mechanisms dictat-

ing tumor differentiation in HCC are poorly understood.

In this study, we aimed to study the differential expression

of the proteome between well-differentiated and poorly differ-

entiated HCC tissues. By using 2-dimensional gel electrophor-

esis (2-DE) technique combined with matrix-assisted laser

desorption ionization time-of-flight mass spectrometry

(MALDI-TOF MS), we identified several differentially

expressed proteins that might prove useful for the diagnosis

and prognosis of patients with HCC.

Patients and Methods

Patients, Tissue Collection, and Preparation

Liver tissues were obtained from 20 patients (average age 51.2

+ 12.3 years) who underwent surgical liver resection for HCC

at the First Hospital of Lanzhou University. Informed written

consents were obtained from all patients and the study protocol

was approved by the ethics committee of the First Clinical

Medical College of Lanzhou University. The basic demo-

graphic data for all patients are listed in Table 1. None of the

patients in this study received any preoperative therapy.

Tumors were classified into poorly differentiated and well-

differentiated groups according to the Specification for Diag-

nosis and Treatment of Primary Liver Cancer.6 One hundred

milligram of each sample was homogenized in liquid nitrogen

and lysed in 0.5 mL lysis buffer (7 mol/L urea, 2 mol/L

thiourea, 4% 3-(3-cholamidopropyl)dimethylammoniumpro-

pane sulfonate (CHAPS), 65 mmol/L dithiothreitol, 0.2%
Bio-Lyte 3/10 ampholyte, and 40 mmol/L Tris–HCl, pH 7.2)

supplemented with 4% complete protease inhibitor cocktail

(EDTA-free). The samples were then sonicated on ice for 10

cycles, each consisting of 5-second sonication followed by a

10-second break. After centrifugation at 16 000 rpm for 60

minutes at 4�C, the precipitation was removed and the super-

natant retained for subsequent polyacrylamide gel electrophor-

esis, two-dimensional (2D-PAGE) analysis. Protein

concentration was measured by the Bradford assay7 (Tiangen,

Beijing, China).

2-Dimensional Gel Electrophoresis and Image Analysis

The above-prepared protein samples were analyzed by 2-DE,

and triplicate electrophoresis was performed for each pair of

protein samples (well-differentiated and poorly differentiated).

The 2-DE analysis of whole tissue lysates (100 mg) was con-

ducted with isoelectric focusing (IEF) and electrophoresis

units. Isoelectric focusing (the first dimension of 2-DE) was

conducted with Bio-Rad PROTEAN IEF Cell (Hercules, Cali-

fornia), according to the manufacturer’s instructions. Proteins

were focused for 30 minutes at 250 V, 30 minutes at 500 V, 2

hours at 1000 V, then a gradient was applied from 1000 to 10

000 V over a period of 5 hours, and focusing was continued at

10 000 V for 6.5 hours to give a total of 95 kVh on an IPGphor.

After IEF, pH gradient strips were equilibrated and the samples

were subjected to the second-dimensional separation by

sodium dodecyl sulfate polyacrylamide gel electrophoresis

(SDS-PAGE) in 1.0-mm-thick 10% polyacrylamide gels in a

Bio-Rad PROTEAN II xi Cell system run at a voltage of 80 V

per gel for the initial 30 minutes and 220 V for 8 hours there-

after. The second-dimensional SDS-PAGE was developed until

the bromophenol blue dye marker had reached the bottom of
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the gel. The gels were stained using silver nitrate and then

scanned with Bio-Rad VersaDoc 4000 imaging system. Auto-

matic image analysis was conducted using the PDQuest 8.0

software (Bio-Rad), followed by manual matching. Protein

spots with more than 2-fold change in density in a consistently

increased or decreased direction were considered to be differ-

entially expressed and were selected for further analysis.

The MALDI-TOF-MS Analysis and Database Searches

Protein spots of interest were cut out manually from the gel and

put into siliconized microcentrifuge tubes. In-gel digestion,

MALDI-TOF-MS, and database searching were performed by

a commercial company (Shanghai Boyuan Biological Technol-

ogy Co Ltd, Shanghai, China). The protein spots were analyzed

with an ABI 4800 plus MALDI-TOF/TOF mass spectrometer

(AB SCIEX, Les Ulis, France) after in-gel digestion. Peptide

mass mapping was carried out using the Mascot V2.1 search

engine (Matrix Science, London, United Kingdom) against the

NCBI protein databases with a GPS Explorer software, V3.6

(Applied Biosystems, Waltham, Massachusetts). Proteins were

successfully identified (Figure 1).

Immunohistochemistry

To confirm the identified proteins, immunohistochemical

staining was performed on 106 formalin-fixed, paraffin-

embedded tissue samples from patients with HCC who under-

went surgical liver resection at the First Hospital of Lanzhou

University from June 2014 to May 2016. None of these patients

received chemotherapy or radiation therapy before surgical

liver resection. Paraffin-embedded tissues were cut into 4-mm

sections using the CSA II system (DAKO, Glostrup, Denmark).

For antigen retrieval, the sections were autoclaved in 10 mM

citrate buffers (pH 6.0) at 120�C for 10 minutes. Rabbit anti-

ANXA2 (Cat. No: YT0236), anti-HSPB1 (Cat. No: YM3356),

anti-peroxiredoxin-2 (PRDX2; Cat. No: YT1706), and anti-

calreticulin (CALR; Cat. No: YT0620)—all obtained from

ImmunoWay Biotechnology Company (Plano, Texas)—were

diluted at 1:300. Staining was assessed by 2 independent

observers who were blinded to clinical data. Staining evalua-

tion was based on the dominant differentiation area of the

tumor tissues if varying degrees of differentiation are present

in the entire tumor tissues. Five fields were randomly selected

at high magnification (200�), and at least 1000 cells were

counted. Positive staining is defined as yellow or yellowish

brown granules being present within cell. The staining intensity

was semi-quantitatively scored as follows: 0, no stain (color-

less); 1, yellow stain; 2, brown stain; and 3, dark brown. Based

on the percentage of positive staining, the extent of positivity

was semi-quantitatively scored as follows: 0, less than 5% of

cells are positively stained; 1, 6% to 25% of cells are positively

stained; 2, 25% to 50% of cells are positively stained; 3, 51% to

75% of cells are positively stained; and 4, >75% cells are

positively stained. The final positivity score was calculated

as staining intensity � staining extent, with 0 being negative,

1 to 3 being weakly positive, 4 to 7 being positive, and 8 to 12

being strongly positive.

Bioinformatics Analysis

The bioinformatics analysis of the expression pattern was per-

formed using the GENECARDS (http://www.genecards.org/),

Table 1. Patients’ Clinical Data.

Patient

Code Gender Age

Differentiation

Status

Barcelona

Staging

AFP

Value

Child-Pugh

Classification Resection Mode

Hepatitis B virus

(HBV)

Hepatitis C virus

(HCV)

1 Female 72 P A2 >1000 A Hepatolobectomy Positive Negative

2 Female 57 P A1 160.5 A Hepatolobectomy Positive Negative

3 Male 45 P B >1210 A Hepatolobectomy Positive Negative

4 Female 39 P A1 1.4 A Hepatolobectomy Positive Negative

5 Male 36 P C >1210 B Hepatolobectomy Positive Negative

6 Female 49 P A1 1.4 A Hepatolobectomy Positive Negative

7 Female 59 P A1 8.1 A Hepatolobectomy Positive Negative

8 Male 62 P A2 210.0 A Hepatolobectomy Positive Negative

9 Male 45 P A1 10.5 A Hepatolobectomy Positive Negative

10 Male 54 P A1 8.4 A Hepatolobectomy Positive Negative

11 Female 38 W A1 5.5 A Hepatolobectomy Positive Negative

12 Female 47 W A2 216.0 A Hepatolobectomy Positive Negative

13 Female 65 W A1 197.0 A Hepatolobectomy Positive Negative

14 Male 69 W A1 2.3 A Hepatolobectomy Positive Negative

15 Male 42 W B 711.0 A Hepatolobectomy Positive Negative

16 Male 53 W A1 46.0 A Hepatolobectomy Positive Negative

17 Male 71 W A1 4.2 A Hepatolobectomy Positive Negative

18 Female 59 W A1 1.1 A Hepatolobectomy Positive Negative

19 Female 66 W A2 201.0 A Hepatolobectomy Positive Negative

20 Male 68 W A1 4.4 A Hepatolobectomy Positive Negative

Abbreviations: AFP, alpha-fetoprotein; P, poorly differentiated hepatocellular carcinoma; W, well-differentiated hepatocellular carcinoma.
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GO (http://geneontology.org/), and KEGG (http://www.kegg.jp/

kegg/). Protein network for disease regulated proteins was also

constructed using the STRING software (http://string-db.org/).

The underlying database informs on known and predicted pro-

tein–protein interaction, and the constructed networks are based

on active prediction methods of neighborhood, gene fusion, co-

occurrence, co-expression, databases, and textmining.

Statistical Analysis

All experiments were repeated at least 3 times. Data from immu-

nohistochemical staining were from a single experiment that was

quantitatively similar to the replicate experiments. Statistical

significance was determined using unpaired Student t-test.

A P value of less than .05 is considered statistically significant.

Results

Profiling of Differentially Expressed Proteins in
HCC by 2-DE

A 2-DE using nonlinear immobilized pH gradient (IPG) rang-

ing from pH 3 to 10 was performed to separate the proteins

extracted from well- and poorly differentiated HCC tissues.

Approximately 650 to 700 protein spots were detected and

184 differentially expressed proteins were identified

between the well- and poorly differentiated HCC tissues

by 2-DE (Figure 2), in which 40 proteins showed >2-fold

disparity in expression levels. The up- and downregulated

protein spots exhibiting 4-fold difference in signal intensity

(P < .05, t test, 95% confidence intervals) were excised from

the gel.

Protein Identification by MALDI-TOF-MS

Eleven protein spots were identified, among which 6 were

upregulated and 5 downregulated in poorly differentiated

HCC tissues. Corresponding amino acid residue numbers are

indicated on peaks that were matched to the identified protein

based on a query of the database NCBInr. The upregulated

proteins include glutathione-S-transferase o-1 (GSTO1),

PRDX2, annexin A2 (ANXA2), heat shock protein b-1

(HSPB1), haptoglobin (HPT), and enoyl-CoA-hydratase

mitochondrial (ECHM). The downregulated proteins include

fructose-bisphosphate aldolase A (ALDOA), CALR, fibrino-

gen b chain (FGB), serotransferrin (TF), and hemoglobin sub-

unit b. The identification information data including

isoelectric point (pI), molecular weight, accession number,

and molecular weight search (MOWSE) score are summar-

ized in Table 2.

The ANXA2, HSPB1, PRDX2, and CALR were validated

by the immunohistochemical staining (Figure 3). The expres-

sion of ANXA2, HSPB1, and PRDX2 was closely correlated

with the tumor differentiation status, which was decreased

from poorly differentiated tumor to well-differentiated tumor

(Figure 3C-H). The expression of CALR had an opposite

pattern, which was increased from poorly differentiated tumor

to well-differentiated tumor (Figure 3I-J). In addition,

ANXA2 was mainly localized on the cytomembrane of HCC

cells (Figure 3C and D). By the independent samples t test, the

differential expression of all 4 proteins was statistically sig-

nificant (P < .01; Figure 4).

Bioinformatics Analysis

According to the GO (http://geneontology.org/) classification

system, the biological roles of the differentially expressed pro-

teins were categorized into 16 different categories (Figure 5A).

By molecular functional analysis, ECHM, PRDX2, and

GSTO1 were shown to be involved in catalytic activity

(36%), FGB and CALR in binding (29%), TF in transporter

activity (7%), ALDOA in enzyme regulator activity (7%),

PRDX2 in antioxidant activity (7%), and GSTO1 in structural

molecule activity (7%; Figure 5B). By biological process anal-

ysis, the largest proportion of differentially expressed proteins

including CALR, GSTO1, ANXA2, HSPB1, and ECHM was in

metabolic process (28.6%; Figure 5C). By pathway analysis,

HSPB1 was shown to be involved in many signaling pathways

such as vascular endothelial growth factor (VEGF) (P00056),

Figure 1. The result of the MALDI-TOF MS analysis of spots cut

from the 2-DE gels confirms the protein was ANXA2. A, Mascot

histogram of scores; B, protein amino acid sequence, the red parts

indicate matching sequence; C, MALDI-TOF-MS of some peptides

(MS/MS) maps. ANXA2 indicates annexin A2; 2-DE, two-

dimensional gel electrophoresis; MALDI-TOF MS, matrix-assisted

laser desorption ionization time-of-flight mass spectrometry.
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p38 mitogen-activated protein kinase (MAPK; P05918), angio-

genesis (P00005), and cholecystokinin A receptor (CCKR)

(P06959). FGB was shown to be involved in plasminogen-

activating cascade (P00050) and blood coagulation (P00011)

and ALDOA in fructose galactose metabolism (P02744) and

glycolysis (P00024; Figure 5D).

Analysis by active interaction sources from textmining,

experiments, databases, co-expression, neighborhood, gene

fusion, and co-occurrence by STRING indicated that ANXA2,

PRDX2, and HSPB1 interacted with multiple proteins such as

matrix metalloproteinase-2 (MMP2), MMP9, tumor protein

p53 (P53), MAPK14, mitogen-activated protein kinase-

activated protein kinase 2 (MAPKAPK2), and plasminogen

activator. All of the proteins were shown to be involved in cell

proliferation, invasion, metastasis, and the development of

malignant tumors (Figure 6).

Discussion

Histological differentiation is an important factor affecting the

prognosis of malignant tumors. Poorly differentiated HCC tis-

sues tend to have stronger ability to invade the neighboring

tissues and migrate to distant organs.8 In this study, we identi-

fied 11 proteins that showed the most significantly differential

expression between the well- and poorly differentiated HCC

tissues. Six proteins were found to be upregulated in poorly

differentiated HCC tissues. Glutathione-S-transferase o-1,

HPT, and ECHM were reported in many types of cancers such

as cancers of lung, breast, head and neck, bladder, and colon,9-

13 but their expression status in liver cancer has been rarely

reported. In contrast, ANXA2, PRDX2, and HSPB1 have been

well studied in HCC, and their biological functions have been

shown to be directly or indirectly implicated in the malignant

behavior of HCC cells.

Figure 2. Representative 2-D gel images of HCC tissues depicting identified protein spots that are differentially expressed between the poorly

and well-differentiated tissues. 2D indicates 2-dimensional; HCC, hepatocellular carcinoma; P, poorly differentiated HCC group; W, well-

differentiated HCC group.

Table 2. Proteins Identified by MALDI-TOF-MS.a

Protein Name Gene Name

Accession

No.

Calculated

PI

Nominal

Mass (Mr)

Mascot

Score

Expression in Poorly

Differentiated Tissues

Fructose-bisphosphate aldolase A ALDOA_HUMAN P04075 8.3 39 851 324 Decreased

Calreticulin CALR_HUMAN P27797 4.29 48 112 63 Decreased

Fibrinogen b chain FIBB_HUMAN P02675 8.54 56 577 36 Decreased

Serotransferrin TRFE_HUMAN P02787 6.81 79 294 309 Decreased

Hemoglobin subunit b HBB_HUMAN P68871 6.75 15 988 394 Decreased

Glutathione-S-transferase o-1 GSTO1_HUMAN P78417 6.23 27 548 117 Increased

Peroxiredoxin-2 PRDX2_HUMAN P32119 5.66 21 878 373 Increased

Annexin A2 ANXA2_HUMAN P07355 7.57 38 808 440 Increased

Heat shock protein b-1 HSPB1_HUMAN P04792 5.98 22 826 135 Increased

Haptoglobin HPT_HUMAN P00738 6.13 45 861 464 Increased

Enoyl-CoA-hydratase mitochondrial ECHM_HUMAN P30084 8.34 31 823 449 Increased

Abbreviation: MALDI-TOF-MS, matrix-assisted laser desorption ionization time-of-flight mass spectrometry
aValidation of the differentially expressed proteins by immunohistochemical staining.
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Figure 3. H&E staining demonstrating the well-differentiated HCC (A) and poorly differentiated HCC (B). Immunohistochemistry for ANXA2

in poorly differentiated HCC (C), ANXA2 in well-differentiated HCC (D), PRDX2 in poorly differentiated HCC (E), PRDX2 in well-

differentiated HCC (F). Heat shock protein b-1 in poorly differentiated HCC (G), HSPB1 in well-differentiated HCC (H), CALR in poorly

differentiated HCC (I), and CALR in well-differentiated HCC (J). ANXA2, annexin A2; CALR, calreticulin; HCC, hepatocellular carcinoma;

HSPB1, heat shock protein b-1; PRDX2, peroxiredoxin-2.
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ANXA2 belongs to ANXA protein family with membrane-

bound and Ca2þ-mediated capacities.14 It is expressed in most

eukaryotic cells.15 ANXA2 may form single, heterodimer, and

heterologous tetramers and plays a critical role in the invasion,

metastasis, and angiogenesis of solid tumors.16 ANXA2 has

been reported overexpressed in differentiation status of many

cancers, and as such dysregulation of ANXA2 has been

reported to be involved in the development and metastasis of

these cancers.17 In Ras homologous member A (RhoA) and

Ras-related C3 botulinum toxin substrates 1 (Rac1) signaling

pathway, the phosphorylated ANXA2 together with Rho-asso-

ciated protein kinase (Rho/ROCK)-mediated actin restructur-

ing and cell adhesion promotes amoeboid movement and

mesenchymal movement of HCC cell.18 The ANXA2 binds

to protein ligand P11 to form heterogeneous tetramers on the

outside of the cell membrane and interacted with tissue

Figure 4. The semi-quantitative analysis of the expression levels of 4 proteins in poorly differentiated (P) and well-differentiated (W) HCC

tissues as determined by immunohistochemical staining was performed by t test. HCC indicates hepatocellular carcinoma.

Figure 5. Pie chart depicting the identified proteins characterized by GO category. Proteins were classified in terms of their roles in protein class

(A), molecular function (B), biological process (C) and pathway (D).
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plasminogen activator. The heterogeneous tetramers enhance

the fibrinolytic enzyme on tumor angiogenesis and tissue

reconstruction.19-21 Heterogeneous tetramers also activate

MMPs, which facilitate the degradation of the extracellular

matrix (ECM) and therefore promote tumor invasion and

metastasis.22 Previous research has shown that the overexpres-

sion of ANXA2 is correlated with poor prognosis in many types

of cancer, such as gastric carcinoma,23,24 colorectal cancer,25,26

esophageal squamous cell carcinoma,27,28 renal cell carci-

noma,29,30 lung cancer,31 and multiple myeloma.32 ANXA2

is an effective method for evaluating the extent of angiogenesis

and for distinguishing HCC from nonneoplastic liver tissue, but

the role of ANXA2 in neovascularization is not completely

understood.33 As demonstrated by immunohistochemical stain-

ing, ANXA2 protein is mostly located on the cell membrane.

Overexpression of ANXA2 was present in poorly differentiated

HCCs (P < .01). Although the source of ANXA2 in poorly

differentiated HCC is not clear, the fact that ANXA2 is over-

expressed in poorly differentiated HCC tissues indicates its role

in mediating the invasion and metastasis of HCC.

HSPB1 is an important member of the HSP family.34 Its

main function is to protect cells from stress injuries, but it is

also involved in cell differentiation and invasion,35 signal

transduction,36 and apoptosis.37 In VEGF signaling pathway,

HSPB1 indirectly activates prion protein identification, causing

intracellular accumulation of actin and alterations of cell mor-

phology, thereby contributes to cell movement.38 Heat shock

protein b-1 has also been found to increase the activity of

MMP2 and MMP9, leading to degradation of ECM and

increased potential for invasion and metastasis of malignant

cells.39 Previous research has shown that silencing of HSPB1

significantly reduced the migration of invasive SK-Hep-1 cells,

besides poorly differentiated HCCs tended to express more

HSPB1 than well-differentiated HCCs.40 HSPB1 together with

its partners is suggested to contribute to tumor growth and

progression in HCC by activating multiple signaling pathways

responsible for the HCC proliferation and other malignant

features.41 In our study, immunohistochemical staining has

revealed a significant overexpression of HSPB1 in poorly

differentiated HCCs. Hence, HSPB1 may likely serve as a

biomarker for early detection and therapeutic targets for HCC.

More studies in animal model and large cohort of patients with

HCC are warranted to confirm this aspect.

Peroxiredoxin-2 is involved in the regulation of redox

generation, cell division, and differentiation.42 It can enhance

the cytotoxic activity of NK cells.43 However, the role of

PRDX2 on regulating tumor growth and development has not

yet been clearly defined, and even in the same cancer, con-

flicting results have been published. It was reported that

PRDX2 could scavenge reactive oxygen species such as

hydrogen peroxide and promote tumor cell apoptosis.44 In

colorectal cancer, PRDX2 could promote cancer growth by

stimulating vascular genesis and protecting cancer cells from

oxidative stress–induced cell death.45,46 However, overex-

pression of PRDX2 was also found to inhibit transforming

growth factor (TGF) b1–induced epithelial–mesenchymal

transition and migration of colonic epithelial cells.47 In HCC,

the role of PRDX2 is inconclusive. In our current study, over-

expression of PRDX2 in HCC was mainly observed in poorly

differentiated cancer tissues.

The downregulated protein CALR is a multifunctional pro-

tein mostly residing in endoplasmic reticulum (ER), where it

functions as a molecular chaperone and a regulator for Ca2þ

homeostasis.48,49 Furthermore, non-ER CALR is also involved

in the regulation of many biological functions such as gene

expression, transcriptional regulation, RNA stability, immune

response, cell proliferation, migration, adhesion, and

apoptosis.50 More evidences indicate that CALR has great

impacts for the development of different cancers and the effect

of CALR on tumor formation and progression may depend on

cell types and clinical stages.51-53 In addition, CALR is required

for TGF-b-stimulated ECM production.54 In HCC cells, CALR

can inhibit their growth, invasion, and cell cycle progression by

downregulating CALR.50 In our study, overexpression of CALR

was mostly observed in the well-differentiated HCC tissue.

Network analysis and literature mining revealed that the

identified proteins were functionally linked to certain signal

pathways that are known to be frequently activated in HCC

and many other malignant tumors.55,56 By bioinformatics anal-

ysis, we propose that ANXA2, PRDX2, and HSPB1 may inter-

act with MMP2 and MMP9 to enhance tumor cell invasion, and

they may interact with P53, MAPK14, and MAPKAPK2 to

accelerate tumor cell proliferation. They may interact with

VEGF and p38 MAPK to promote the development of malig-

nant tumors. Overexpression of ANXA2, PRDX2, and HSPB1

may indicate a poor differentiation of HCC tumors and a poor

prognosis of patients with HCC.

Conclusion

Six proteins were found to be significantly upregulated in

poorly differentiated HCC tissues, among them overexpression

Figure 6. The simulated functional network of proteins that were

differentially displayed in STRING database.
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of ANXA2, PRDX2, and HSPB1 was significantly associated

with invasion and metastasis and is closely correlated with the

degree of histological differentiation. These proteins may play

an important role in the development of HCC and may serve as

potential diagnostic and therapeutic biomarkers for this cancer.
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