
Top considerations for creating

bioinformatics software documentation
Mehran Karimzadeh and Michael M. Hoffman
Corresponding author. Michael Hoffman, Princess Margaret Cancer Centre, Toronto Medical Discovery Tower 11-311, 101 College St, Toronto, ON M5G 1L7,
Canada. E-mail: michael.hoffman@utoronto.ca

Abstract

Investing in documenting your bioinformatics software well can increase its impact and save your time. To maximize the
effectiveness of your documentation, we suggest following a few guidelines we propose here. We recommend providing
multiple avenues for users to use your research software, including a navigable HTML interface with a quick start, useful
help messages with detailed explanation and thorough examples for each feature of your software. By following these
guidelines, you can assure that your hard work maximally benefits yourself and others.

Key words: software; documentation; perspective

Introduction

You have written a new software package far superior to any
existing method. You submit a paper describing it to a presti-
gious journal, but it is rejected after Reviewer 3 complains they
cannot get it to work. Eventually, a less exacting journal pub-
lishes the paper, but you never get as many citations as
you expected. Meanwhile, there is not even a single day when
you are not inundated by emails asking very simple ques-
tions about using your software. Your years of work on
this method have not only failed to reap the dividends you
expected, but have become an active irritation. And you could
have avoided all of this by writing effective documentation in
the first place.

Academic bioinformatics curricula rarely train students in
documentation. Many bioinformatics software packages lack
sufficient documentation. Developers often prefer spending
their time elsewhere. In practice, this time is often borrowed,
and by ducking work to document their software now, devel-
opers accumulate ‘documentation debt’. Later, they must pay
off this debt, spending even more time answering user ques-
tions than they might have by creating good documentation in
the first place. Of course, when confronted with inadequate

documentation, some users will simply give up, reducing the
impact of the developer’s work.

To avoid this, we suggest several guidelines for improving
multiple aspects of your documentation (Table 1). These guide-
lines improve the usability of your software and reduce time
spent supporting users. Many of these guidelines apply both to
bioinformatics software and to bioinformatics databases. In this
perspective, we describe in detail the best practices of many
well-established bioinformatics tools (Table 2).

Guidelines for great documentation
Hierarchical documentation

Your documentation should consist in hierarchically grouped
and carefully sorted components. This allows users to effi-
ciently find the detail they need without overwhelming them
with a large span of top-level material. It limits the amount of
information shown to the user at one time, and it sorts the
most important materials at the top and less frequently used
details at the bottom.

The MEME Suite contains multiple programs for sequence
motif analysis. Its documentation begins with a flow chart that

Mehran Karimzadeh is a PhD student at the Department of Medical Biophysics, University of Toronto. His research focuses on the dynamics of transcrip-
tion factor behavior in cancer.
Michael Hoffman is a Scientist at the Princess Margaret Cancer Centre and Assistant Professor in the Departments of Medical Biophysics and Computer
Science, University of Toronto. He researches the application of machine learning techniques to epigenomic data.
Submitted: 22 July 2016; Received (in revised form): 16 November 2016

VC The Author 2017. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Briefings in Bioinformatics, 19(4), 2018, 693–699

doi: 10.1093/bib/bbw134
Advance Access Publication Date: 14 January 2017
Paper

693

Deleted Text: 1
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: 2
Deleted Text: 2.1
Deleted Text: .
http://www.oxfordjournals.org/

describes its modules and their relationship to each other (Figure
1B). Other top-level items provide information on installation,
databases that the programs rely on, and ways to get support. The
MEME Suite also has a top-level menu that groups programs by
function (Figure 1A). More commonly used modules appear first.
This grouping and ordering makes it easier for users to find the
module they need and to compare with related tools for their task.

For example, the ‘Manual’ section of the sidebar, groups the
programs into four categories—‘Motif Discovery’, ‘Motif
Enrichment’, ‘Motif Scanning’ and ‘Motif Comparison’ (Figure 1A).
The manual of each program within describes both the web and
command-line interfaces. As an illustrative sub-example, we will
examine further the manual for DREME, one of the MEME Suite’s
motif discovery tools. Its command-line documentation consists in
several components. ‘Usage’ describes the minimal parameters for
using the program. ‘Description’ includes a technical but abstract

explanation of DREME’s functionality. The manual comprehen-
sively defines ‘Input’ and ‘Output’ formats and describes options in
detail using a table (Figure 1C). This table groups the options in sev-
eral categories such as ‘Input/Output’, ‘Alphabet’, ‘General’, and
‘Miscellaneous’. For each option, this table describes the param-
eters, description and the default behavior in subsequent columns.
The MEME Suite concludes each program’s manual with a citation
to the peer-reviewed manuscript describing that program.

Bedtools [15] provides another example of well-documented
and widely used bioinformatics software. Bedtools has a table
of contents that directs users to the information they need
(Figure 2A). These contents consist in a hierarchy of information
structured and stored for optimal retrieval (Figure 2). Bedtools
notably uses informative figures and extensive examples to
clarify the functionality of different options (Figure 2C).

Tools for documentation

Several software packages automatically generate up-to-date docu-
mentation from a markup language in the source code and else-
where. These tools transform your code and markup into formats
such as Unix manual (‘man’) page, Hypertext Markup Language
(HTML) and Portable Document Format (PDF). Ideally you will create
all these formats, but we consider an HTML manual most essential.

Examples of documentation generators include Doxygen [23]
and Sphinx [24]. Sphinx has particular popularity in bioinfor-
matics owing to its use of the intuitive markup language
reStructuredText [25] and extensive formatting options. Some
tools generate documentation specifically for one programming
language, such as Javadoc [26] for Java, or Roxygen [27] for R.

The main disadvantage of automatically generated docu-
mentation is that you have less control of how to organize the
documentation effectively. Whether you used a documentation
generator or not, however, there are several advantages to an
HTML web site compared with a PDF document. Search engines
will more reliably index HTML web pages. In addition, users can
more easily navigate the structure of a web page, jumping dir-
ectly to the information they need.

Quick start

Design your manual with a ‘quick start’ that tells users exactly how
to get a result with a small number of explicit steps on a specified
test data set. If this data set is not included in your package, ensure
one can download the data set quickly. The user should be able to
follow your script exactly and get the same results you describe.
Ensure that these steps are executed quickly.

Table 1. A Taxonomy of research software documentation

Format Content Audience

Manuscript Conceptual and technical details of the method New users
Readme Basic instructions for installation and use of the software and

where to find more information
New users

Quick start Step-by-step instructions for installation and use of the
software on a provided test data set

New users

Reference manual Complete details of every configurable setting, input and output All users
FAQ Answers to commonly asked or anticipated questions All users
Searchable forum or

mailing list
News and discussion of details not otherwise provided in

the documentation or not apparent to users
All users

Built-in help Concise description of a software component and its parameters Experienced users
News Changes in behavior, bug fixes, new features and caveats Experienced users
Code comments Extensive details of implementation Power users

Table 2. Documentation formats provided by selected bioinformatics
software packages

Cites MS Rea QS Ref FAQ For Hel New Com

BLAST [1] 61,534 þ þ þ þ þ þ þ þ þ
MEGA [2] 28,153 þ � þ þ þ � þ þ �
PLINK [3] 10,935 þ þ þ þ þ þ þ þ þ
Swiss-PdbViewer [4] 9,470 þ � � þ � þ � þ �
SAMtools [5] 9,176 þ þ � þ þ þ þ þ þ
BWA [6] 8,963 þ þ � þ þ þ þ þ þ
EMBOSS [7] 4,898 þ þ � þ þ þ þ þ þ
Bowtie [8] 4,397 þ � þ þ þ þ þ þ þ
DESeq [9] 4,271 þ � � þ � � þ þ þ
Cufflinks [10] 4,166 þ þ þ þ � þ þ þ þ
GATK [11] 4,146 þ � þ þ þ þ þ þ þ
limma [12] 3,714 þ � þ þ � � þ � þ
edgeR [13] 3,671 þ � þ þ � � þ � þ
MACS [14] 2,824 þ þ � þ þ þ þ þ þ
Bedtools [15] 2,746 þ þ þ þ þ þ þ þ þ
Clustal Omega [16] 2,465 þ þ � � � � þ þ þ
Meme Suite [17] 1,889 þ þ þ þ þ þ þ þ þ
Trimmomatic [18] 1,449 þ � þ þ � � þ þ þ
STAR [19] 1,080 þ þ � þ � þ þ þ þ
Segway [20] 209 þ þ þ þ þ þ þ þ þ
Bioconductor [21] 157 þ þ þ þ þ þ þ þ þ
Picard Tools [22] NA � þ þ þ þ þ þ � þ

Cites, number of citations on 29 August 2016 (Google Scholar); MS, peer-re-

viewed manuscript; Rea, readme; QS, quick start; Ref, reference manual; FAQ,

frequently asked questions; For, forum or mailing list; Hel, built-in help; New,

news; Com, code comments.

Karimzadeh and Hoffman694 |

Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201D;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: 2.2
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: due
Deleted Text: to
Deleted Text: 2.3
Deleted Text: &hx201C;
Deleted Text: &hx201D;

For example, Segway [20] includes a quick start guide with
four subsections covering installation and configuration,
acquiring data, running Segway and results. Segway includes
the data set for testing the software in its own repository.

Graphical interfaces

Software with a graphical interface, such as web applications, also
requires more graphical documentation. Describing how to interact
with a graphical interface in text can prove laborious, and a well-
annotated picture can be worth a hundred words. As an example,
Swiss-PdbViewer [4] is graphical software that models protein
structure. Its documentation makes ample use of screenshots and
visuals that depict elements of the Swiss-PdbViewer interface,
such as icons. These visuals help users to quickly understand how
to complete tasks, and to interpret the software’s output.

Installation

Describe how to install your software and all of its dependencies,
in detail. At a minimum, provide exact instructions for the most
recent versions of Debian, Red Hat Enterprise Linux, macOS and
Windows—or the subset of those systems that you support. It is
laborious to support multiple versions of an operating system, but

that does not excuse avoiding these instructions for at least one
version. Indicate a known working version of all of the dependen-
cies, as well. Many scientists use computing clusters or network
computers where they lack root privileges. When possible, your
instructions should cover root and non-root installation.

Ensure you test installation on a new, unconfigured environ-
ment. A continuous integration service (see below) provides a
great means for accomplishing this. If you use non-standard
build tools or your software has complex dependencies, docu-
ment the installation thoroughly and extensively. Sometimes it
is easier for you to make installation easier for users. If your in-
stallation instructions seem complex, consider ways to make it
easier, perhaps by contributing your software to a package re-
pository such as Debian Med [28], Homebrew [29] or the
Comprehensive R Archive Network [30].

PLINK [3] provides a good example of bioinformatics soft-
ware supporting all major operating systems, with detailed in-
structions for each platform.

Readme and news

Provide a readme file at the top level of your source code with
basic information about installation and use of your software,

Figure 1. Multilevel hierarchy in the MEME Suite documentation. The MEME Suite provides a variety of tools for motif enrichment analysis. (A) The ‘Manual’ tab in the sidebar

organizes individual tools into broad categories. Each tool then has a link to its own detailed reference manual. (B) The web site’s main page describes application of different

tools in a flow chart, providing the context of how they work together. (C) A section of the DREME tool’s reference manual, showing further hierarchy and comprehensive detail.

A four-column table describes details of each option in the DREME program. Each row describes a single option, and these options are categorized into broader option groups.

Bioinformatics software documentation | 695

Deleted Text: ,
Deleted Text: 2.4
Deleted Text: 2.5
Deleted Text: ,
Deleted Text: very
Deleted Text: ,
Deleted Text: (CRAN)
Deleted Text: 2.6

and details on where users can find more information. The
readme should show up to users visiting your source code re-
pository and will provide the first impression for many. The
readme should also include the software’s license.

Also, provide a news section dedicated to the changes in
each release of the software. Discuss bug fixes, caveats, new
features and changes in behavior of the software in detail. Users
will often upgrade after several new versions, and want a place
to find the details of all that has changed since their last install.
Include the news as another file in the top level of your source
code and link to it from the readme.

File formats

If you must create a new file format (and please do not, if you
can avoid it), make sure to specify it in detail. Burying specifica-
tion details in your code make operation with future software
by others frustrating. A detailed specification, however, makes
it easier to use your software in a larger pipeline, and reduces
the chance you will have to debug interoperability problems
later. The MEME Suite [17] and PLINK [31] both exemplify de-
tailed description of input and output formats.

Communication with users

Users may need to contact you if they cannot find the answers
they need in the documentation. Set up a mailing list to allow
users to send questions and feedback. Archive the mailing list
where search engines can find it. People who encounter an error
will report the message, allowing others to easily find the

solution. Mailing lists facilitate an open development process,
which may lead to users developing and submitting new fea-
tures for your software. Some bioinformatics software packages,
such as GATK [11], also host a forum which serves a similar pur-
pose in making answers available to all. Forums, however, per-
form more poorly than mailing lists in getting others to
contribute. New submissions to mailing lists are pushed to all
list members, including those who registered to ask their own
questions or learn about software updates. In forums, however,
users must actively check the forum to see new questions.
Often only the developers have the motivation to do this.

Issue trackers provide a great way to communicate about
specific potential bugs or requests. GitHub [32] and Bitbucket
[33] provide a free service for issue tracking, along with a reposi-
tory for your code and documentation.

Adding a comment section to your documentation, web page
encourages users to contribute helpful feedback. So does Read the
Docs [34], which makes it easy for users to submit a pull request
correcting the documentation. If you receive repeated inquiries on
one aspect of your software, this is evidence for insufficient docu-
mentation. Take this as a sign to revise the documentation.

MISO [35], ggplot2 [36] and Bedtools [15] provide detailed
documentation in HTML format, have a public GitHub reposi-
tory to track issues, and also have a mailing list for other com-
munications with users.

Frequently asked questions

Prepare a frequently asked questions (FAQ) document to answer
common questions you expect or have received. Many users

Figure 2. Hierarchy, extensive examples and visual diagrams in the Bedtools documentation. (A) The Bedtools documentation uses a well-organized hierarchy to pro-

vide appropriate entry points for new or experienced users. (B) Bedtools breaks its documentation into an individual page for every sub-command, describing every

parameter of every module in detail and documenting changes in different versions. (C) A visual diagram demonstrates the effects of various options. (D) Bedtools

demonstrates examples for every option.

Karimzadeh and Hoffman696 |

Deleted Text: ,
Deleted Text: a
Deleted Text: 2.7
Deleted Text: n
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: 2.8
Deleted Text: &hx2019;
Deleted Text: ,
Deleted Text: ,
Deleted Text: 2.9
Deleted Text: (FAQ)
Deleted Text: to,

find the FAQ format more compelling than a reference manual,
and it is easier to link to an answer to a common question from
a mailing list. PLINK has an FAQ that covers a variety of difficul-
ties one may encounter before starting to use the software. It
also includes questions that are related to unexpected outputs,
and comparison with other packages.

Troubleshooting

Your software should provide meaningful warning and error
messages when it receives unexpected input. Include a chapter
in your documentation to thoroughly explain error and warning
messages and how to resolve them. When the users search the
Internet for the text of these errors and warnings, they will find
answers immediately.

Technical choices and software documentation
Programming environment

Using programming environments and languages that require
difficult installation and configuration reduces the usability of
your program, and they also require more complex documenta-
tion. For example, to run MATLAB programs without an expen-
sive license, user must install a specific version of the MATLAB
Compiler Runtime (MCR). Documenting all the things that can
go wrong in installing an old version of MCR provides quite a
challenge. This explains partially why few widely used bioinfor-
matics tools rely on MATLAB.

Default parameters

Many users rely on your default parameters, so choose them
carefully. Configuration options left to potentially inexpert
users provide no substitute for sensible defaults. Document the

rationale for selecting any default parameter. This will help
users understand when they should change it.

Citation

Provide a citation to your own manuscript with a link to an
open-access version. This makes it easier for users to find a de-
scription of your methodology and cite your work.

Writing code

At some point, the documentation will not answer every ques-
tion. At this point, someone must examine the source code and

make it easy for that someone else to figure things out without
help. That someone, invariably, will end up being yourself
sometimes.

Put a premium on making your code easily intelligible to
others. Use descriptive variable and function names following
the standard format for your environment. PEP 8 [37] supplies a
format for Python, and Google style guides [38] provide them for
other programming languages. Many text editors can check
code style automatically.

Comments provide an important avenue to increase code
accessibility. Use a template to begin the header of your code
with a comment including your name, email address and date
of creation. At the top of each source code file, provide a brief
description of its function. Concisely annotate your code with
block or inline comments whenever it does anything not under-
stood with trivial effort. If you use a documentation generator,

use specially formatted comments to annotate functions with
structured information.

Continuous integration of quick start and tests

Your quick start effectively provides a simple script on a small
test data set. Not only does this familiarize users with features
of your software, but it also ensures that the software is in-
stalled properly and functions as expected.

You or other contributors can also use this script as a quick
test to ensure that changes do not break any part of the soft-
ware, or your instructions. You should therefore include the
major options of your software in this script.

Consistent version control with Git or Mercurial helps you
and collaborators track the development of the project and con-
tribute easily. Using tools for coverage or mutation test of your
code and continuous integration services such as drone.io [39],
which supports both GitHub and Bitbucket, help you identify
potential problems with your program faster.

Discussion

While many bioinformatics software packages have satisfactory
documentation, insufficient documentation makes others un-
usable by the community. Well-documented software is also an
important aspect of reproducible analysis [40, 41]. Several previ-
ous reviews include checklists for bioinformatics software en-
gineering that include software documentation [42–44]. Despite
this, many bioinformatics software developers do not prioritize
the creation of documentation. Nguyen-Hoan et al. [45] per-
formed a survey asking 60 scientific software developers about
their development practices. While 51 of 60 participants used
inline code comments, fewer supplied the other documentation
formats such as installation instructions (42 of 60) or user man-
uals (30 of 60) suggested here. Clearly, there is a long way to go
in educating bioinformatics software developers on the best
practices of effective documentation.

Although documentation is often mentioned as an import-
ant element of bioinformatics software engineering, little pri-
mary research specifically focuses on bioinformatics
documentation. One can find primary research, however, on
the effects of software documentation more generally. Junji
et al. [46] reviewed the literature on software documentation re-
search, and quantified how often documentation was shown to
improve various aspects of software engineering.
Documentation is shown to have a positive influence on soft-
ware maintenance (29 articles), software development (16 art-
icles), code comprehension (14 articles) and software design
comprehension (10 articles). One study shows that initial docu-
mentation improves software quality even if the documenta-
tion is rarely maintained [47].

Additionally, three independent studies [48–50] indicate that
documentation also improves usage. Forward [48] asks software
developers about the effectiveness of different attributes of soft-
ware documentation, and finds that content, maintenance,
availability and example usage are the most important attri-
butes. De Souza et al. [49] conduct two surveys, once asking the
opinion of maintainers on types of documentation, and once
the type of documentation they actually use. They found that
source code readability, in-line comments, data model and re-
quirement description are among the important documentation
artifacts in both surveys. Dzidek et al. [50] quantitatively as-
sessed the costs and benefits of Unified Modeling Language [51]
documentation in a controlled experiment. They found a

Bioinformatics software documentation | 697

Deleted Text: which
Deleted Text: 2.10
Deleted Text: 3
Deleted Text: 3.1
Deleted Text: 3.2
Deleted Text: 3.3
Deleted Text: 3.4
Deleted Text: .
Deleted Text: ,
Deleted Text: -
Deleted Text: 3.5
Deleted Text: 4
Deleted Text: how
Deleted Text: /
Deleted Text: /
Deleted Text: /
Deleted Text: ,
Deleted Text: ,
Deleted Text: using
Deleted Text: s
Deleted Text: ,
Deleted Text: (UML)

significant increase in correctness of future changes to soft-
ware, as well as a significant improvement in software design.

Effective documentation of bioinformatics software and adopt-
ing standard code style has specific importance in academia.
Much academic software is developed by trainees who soon move
on to other employment. These trainees have often had little train-
ing in software engineering, which would include the necessity of
sufficient documentation [52]. Without good documentation, it be-
comes difficult to continue developing or using the software. This
results in premature abandonment of the software and a waste of
the investment in the project. For this reason, documentation can
be even more important in academia than in industry, but much
academic software remains under-documented.

Peer review of a bioinformatics software paper rarely
assesses the software documentation directly. If the reviewers
cannot figure out to run the software, however, this may result
in rejection of the manuscript. The developer should ensure
that described uses of their software remain reproducible. Long
after the paper is accepted, published software remains part of
developers’ résumés and can affect their reputations.

When you lack the time to apply every guideline we propose,
you should at least have the following minimum documentation:

1. GitHub or Bitbucket page with code and issue tracker.
2. Readme that covers installation, quick start, input formats

and output formats.
3. Reference manual with detailed description of every user-

configurable parameter.

The Software Sustainability Institute’s online sustainability
evaluation [53] assesses how sustainable and reusable your
software is. Many parts of this evaluation focus on adequate
documentation. After following our other guidelines, we add-
itionally recommend this evaluation for further detailed sugges-
tions on creating great documentation.

Key Points

• Great bioinformatics software documentation provides
detailed instructions for installation, usage and all
available options.

• It begins with a quick start guide with walk-through
examples.

• Details of software capabilities are navigable through
a hierarchical interface.

• Users can request further assistance through a searchable
forum.

Acknowledgments

We thank Aaron R. Quinlan and Timothy L. Bailey for giving
us permission to use parts of their software documentation
in figures, and their feedback on this manuscript. We also
thank those who responded to Reddit [54] and Twitter posts
[55, 56] about best practices for and examples of great bio-
informatics software documentation.

Funding

The Canadian Cancer Society (703827 to M.M.H.), the
Ontario Institute for Cancer Research (OICR), the Natural
Sciences and Engineering Research Council of Canada

(RGPIN-2015-03948 to M.M.H.), the Ontario Ministry of
Research, Innovation and Science (ER-15-11-223 to M.M.H.),
the University of Toronto McLaughlin Centre (MC-2015-16 to
M.M.H.) and the Princess Margaret Cancer Foundation.

References
1. Altschul SF, Gish W, Miller W, et al. Basic local alignment

search tool. J Mol Biol 1990;215:403–10.
2. Kumar S, Nei M, Dudley J, et al. MEGA: a biologist-centric soft-

ware for evolutionary analysis of DNA and protein se-
quences. Brief Bioinformatics 2008;9:299–306.

3. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for
whole-genome association and population-based linkage
analyses. Am J Hum Genet 2007;81:559–75.

4. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-
PdbViewer: an environment for comparative protein model-
ing. Electrophoresis 1997;18:2714–23.

5. Li H, Handsaker B, Wysoker A, et al. The sequence alignment/
map format and SAMtools. Bioinformatics 2009;25:2078–9.

6. Li H, Durbin R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.

7. Rice P, Longden I, Bleasby A. EMBOSS: the European molecu-
lar biology open software suite. Trends Genet 2000;16:276–7.

8. Langmead B, Salzberg SL. Fast gapped-read alignment with
Bowtie 2. Nat Methods 2012;9:357–9.

9. Anders S, Huber W. Differential expression analysis for se-
quence count data. Genome Biol 2010;11:R106.

10.Trapnell C, Williams BA, Pertea G, et al. Transcript assembly
and quantification by RNA-Seq reveals unannotated tran-
scripts and isoform switching during cell differentiation. Nat
Biotechnol 2010;28:511–5.

11.McKenna A, Hanna M, Banks E, et al. The Genome Analysis
Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res 2010;20:
1297–303.

12.Smyth GK. limma: Linear models for microarray data. In R
Gentleman, VJ Carey, W Huber, et al. (eds). Bioinformatics and
Computational Biology Solutions Using R and Bioconductor.
Springer, New York, NY, 2005, 397–420.

13.Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor
package for differential expression analysis of digital gene
expression data. Bioinformatics 2010;26:139–40.

14.Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of ChIP-
Seq (MACS). Genome Biol 2008;9:R137.

15.Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 2010;26:841–2.

16.Sievers F, Wilm A, Dineen AD, et al. Fast, scalable generation
of high-quality protein multiple sequence alignments using
Clustal Omega. Mol Syst Biol 2011;7:539.

17.Bailey TL, Boden M, Buske FA, et al. MEME Suite: tools for motif
discovery and searching. Nucleic Acids Res 2009;37:W202–8.

18.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer
for Illumina sequence data. Bioinformatics 2014;30:2114–20.

19.Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast univer-
sal RNA-seq aligner. Bioinformatics 2013;29:15–21.

20.Hoffman MM, Buske OJ, Wang J, et al. Unsupervised pattern
discovery in human chromatin structure through genomic
segmentation. Nat Methods 2012;9:473–6.

21.Huber W, Carey VJ, Gentleman R, et al. Orchestrating high-
throughput genomic analysis with Bioconductor. Nat Methods
2015;12:115–21.

22.Picard: a set of command line tools (in Java) for manipulating
high-throughput sequencing (HTS) data and formats such as

Karimzadeh and Hoffman698 |

Deleted Text: very
Deleted Text: their
Deleted Text: ,
Deleted Text: <bold>Summary</bold>

SAM/BAM/CRAM and VCF. http://broadinstitute.github.io/pic
ard/ (31 August 2016, date last accessed).

23.Doxygen: Generate documentation from source code. http://
www.stack.nl/dimitri/doxygen (6 July 2016, date last accessed).

24.Sphinx: Python documentation generator. http://www.
sphinx-doc.org/en/stable/ (6 July 2016, date last accessed).

25.ReStructuredText. http://docutils.sourceforge.net/rst.html
(21 July 2016, date last accessed).

26. Javadoc—the Java API documentation generator. http://docs.
oracle.com/javase/7/docs/technotes/tools/windows/javadoc.
html (6 July 2016, date last accessed).

27.Roxygen: literate programming in R. http://roxygen.org/ (6
July 2016, date last accessed).

28.Debian Med. https://www.debian.org/devel/debian-med/ (21
July 2016, date last accessed).

29.Homebrew—the missing package manager for OS X. http://
brew.sh/ (6 July 2016, date last accessed).

30.Comprehensive R Archive Network. https://cran.r-project.
org/ (21 July 2016, date last accessed).

31.PLINK: Whole genome association analysis toolset. http://
pngu.mgh.harvard.edu/purcell/plink/ (8 July 2016, date last
accessed).

32.GitHub. https://github.com/ (22 July 2016, date last accessed).
33.Bitbucket. https://bitbucket.org/ (22 July 2016, date last

accessed).
34.Read the Docs. https://www.readthedocs.org (21 July 2016,

date last accessed).
35.Katz Y, Wang ET, Airoldi EM, et al. Analysis and design of RNA

sequencing experiments for identifying isoform regulation.
Nat Methods 2010;7:1009–15.

36.Wickham H. ggplot2: Elegant Graphics for Data Analysis. New
York: Springer, 2009.

37.Van Rossum G, Warsaw B, Coghlan N. PEP 8 – Style guide for
Python code. https://www.python.org/dev/peps/pep-0008/
(21 July 2016, date last accessed).

38.Google style guides. https://github.com/google/styleguide (21
July 2016, date last accessed).

39.Drone: don’t let bugs invade your code. https://drone.io/ (29
July 2016, date last accessed).

40.Sandve GK, Nekrutenko A, Taylor J, et al. Ten simple rules for
reproducible computational research. PLoS Comput. Biol
2013;9:e1003285.

41.Piccolo SR, Frampton MB. Tools and techniques for computa-
tional reproducibility. GigaScience 2016;5:30.

42.Hastings J, Haug K, Steinbeck C. Ten recommendations for
software engineering in research. GigaScience 2014;3:1–4.

43.Artaza H, Chue Hong N, Corpas M, et al. Top 10 metrics for life
science software good practices. F1000Res 2016;5:2000.

44.Seemann T. Ten recommendations for creating usable bio-
informatics command line software. GigaScience 2013;2:1–3.

45.Nguyen-Hoan L, Flint S, Sankaranarayana R. A survey of sci-
entific software development. In: Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement. New York: Association for
Computing Machinery.

46. Junji Z, Garousi-Yusifolu V, Sun B, et al. Cost, benefits and
quality of software development documentation: a system-
atic mapping. J Syst Softw 2015;99:175–98.

47.Forward A, Lethbridge TC. Software engineering documenta-
tion priorities: an industrial study, 2002. http://www.site.uot
tawa.ca/tcl/gradtheses/aforward/papers/aforwardcas
con2002sub.pdf (19 September 2016, date last accessed).

48.Forward A. Software documentation—building and main-
taining artifacts of communication. Master’s thesis,
University of Ottawa, Ottawa, ON, Canada.

49.de Souza SB, Anquetil N, de Oliveira KM. A study of the docu-
mentation essential to software maintenance. In:
Proceedings of the 23rd Annual International Conference on
Design of Communication: Documenting & Designing for
Pervasive Information. New York: Association for Computing
Machinery.

50.Dzidek WJ, Arisholm E, Briand LC. A realistic empirical evalu-
ation of the costs and benefits of UML in software mainten-
ance. IEEE Trans Softw Eng 2008;34:407–32.

51.Booch G, Rumbaugh J, Jacobson I. The Unified Modeling
Language User Guide. Reading, MA: Addison-Wesley
Professional, 2005.

52.Dudley JT, Butte AJ. A quick guide for developing effective bio-
informatics programming skills. PLoS Comput Biol
2009;5:e1000589.

53.Software Sustainability Institute. Online sustainability evalu-
ation. http://www.software.ac.uk/online-sustainability-evalu
ation (21 July 2016, date last accessed).

54.Calves B. Reddit post on “What documenation do you expect
to accompany bioinformatics programs”. https://www.reddit.
com/r/bioinformatics/comments/3x9nfu/what_documenta
tion_do_you_expect_to_accompany/ (7 July 2016, date last
accessed).

55.Hoffman MM. Twitter post on “What bioinformatics software
has great documentation?”, 2016a. https://twitter.com/
michaelhoffman/status/737365309867319296 (7 July 2016,
date last accessed).

56.Hoffman MM. Twitter post on “What do you find helpful in
docs?”, 2016b. https://twitter.com/michaelhoffman/status/
722118783947640833 (7 July 2016, date last accessed).

Bioinformatics software documentation | 699

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
http://www.stack.nl/dimitri/doxygen
http://www.stack.nl/dimitri/doxygen
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://docutils.sourceforge.net/rst.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://roxygen.org/
https://www.debian.org/devel/debian-med/
http://brew.sh/
http://brew.sh/
https://cran.r-project.org/
https://cran.r-project.org/
http://pngu.mgh.harvard.edu/purcell/plink/
http://pngu.mgh.harvard.edu/purcell/plink/
https://github.com/
https://bitbucket.org/
https://www.readthedocs.org
https://www.python.org/dev/peps/pep-0008/
https://github.com/google/styleguide
https://drone.io/
http://www.site.uottawa.ca/tcl/gradtheses/aforward/papers/aforwardcascon2002sub.pdf
http://www.site.uottawa.ca/tcl/gradtheses/aforward/papers/aforwardcascon2002sub.pdf
http://www.site.uottawa.ca/tcl/gradtheses/aforward/papers/aforwardcascon2002sub.pdf
http://www.software.ac.uk/online-sustainability-evaluation
http://www.software.ac.uk/online-sustainability-evaluation
https://www.reddit.com/r/bioinformatics/comments/3x9nfu/what_documentation_do_you_expect_to_accompany/
https://www.reddit.com/r/bioinformatics/comments/3x9nfu/what_documentation_do_you_expect_to_accompany/
https://www.reddit.com/r/bioinformatics/comments/3x9nfu/what_documentation_do_you_expect_to_accompany/
https://twitter.com/michaelhoffman/status/737365309867319296
https://twitter.com/michaelhoffman/status/737365309867319296
https://twitter.com/michaelhoffman/status/722118783947640833
https://twitter.com/michaelhoffman/status/722118783947640833

	bbw134-TF1

