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Abstract

Nonsense-mediated mRNA decay (NMD) is a surveillance mecha-
nism that degrades mRNAs harboring premature termination
codons (PTCs). We have conducted a genome-wide RNAi screen in
Caenorhabditis elegans that resulted in the identification of five
novel NMD genes that are conserved throughout evolution. Two of
their human homologs, GNL2 (ngp-1) and SEC13 (npp-20), are also
required for NMD in human cells. We also show that the C. elegans
gene noah-2, which is present in Drosophila melanogaster but
absent in humans, is an NMD factor in fruit flies. Altogether, these
data identify novel NMD factors that are conserved throughout
evolution, highlighting the complexity of the NMD pathway and
suggesting that yet uncovered novel factors may act to regulate
this process.
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Introduction

The NMD pathway targets mRNAs harboring premature termination

codons (PTCs) for degradation, but also regulates the stability of a

wide array of endogenous transcripts [reviewed by 1–3]. Genetic

screens in the nematode Caenorhabditis elegans resulted in the iden-

tification of seven genes required for NMD, termed smg-1-7 (for

suppressor with morphological effect on genitalia). Likewise, a simi-

lar approach in Saccharomyces cerevisiae identified three NMD

genes, UPF1-3 (for up-frameshift), that are orthologs of C. elegans

smg-2, smg-3 and smg-4, respectively. Subsequently, orthologs for

all the smg genes were identified in several species including

insects, plants and mammals [reviewed by 4,5]. A genome-wide

RNAi screen in C. elegans identified two additional NMD factors that

are conserved throughout evolution and, unlike the core smg-1-7

genes, are essential for embryonic development [6]. Accordingly,

they were termed smgl-1 and smgl-2 (for smg-lethal-1 and 2, respec-

tively). Their human homologs, NBAS (for neuroblastoma amplified

sequence) and DHX34, act in concert with core NMD factors to co-

regulate a large number of endogenous RNA targets [7].

The ATP-dependent RNA helicase, UPF1/SMG2, is a central

NMD factor and undergoes cycles of phosphorylation and dephos-

phorylation that are essential for its activity. UPF1 is phosphory-

lated at multiple [S/T]Q motifs at its C- and N-terminus by the

SMG1 complex, which contains the protein kinase SMG1 and the

SMG8,9 subunits [3]. NMD is initiated by the assembly of the SURF

complex, comprising SMG1, UPF1 and the translation release

factors eRF1 and eRF3, in the vicinity of a PTC. Subsequently, an

interaction of this complex with an exon junction complex (EJC),

deposited downstream as a consequence of the splicing process,

leads to the formation of the decay-inducing complex (DECID) that

results in mRNA degradation [8]. The interaction of the SURF

complex with the EJC allows the binding of UPF2 to the N-terminal

domain of UPF1 resulting in a large conformational change that

activates the UPF1 helicase activity [9, 10]. UPF1 dephosphoryla-

tion is carried out at a later stage and requires the activity of

SMG5-7 together with protein phosphatase 2A (PP2A) [reviewed

by 11].

In order to establish whether there are more factors that could

regulate the NMD pathway within the context of a multicellular

organism, we carried out a genome-wide RNAi screen in

C. elegans that builds on the success of our previous effort [6], but

using a different RNAi library that included many previously

untested genes. We identified five novel NMD genes that are

highly conserved throughout evolution and demonstrate that they

participate in the NMD pathway in human cells and Drosophila

embryos.
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Results and Discussion

A genome-wide RNAi screen to identify new genes required for NMD

Our previous RNAi screen in C. elegans led to the identification of

smgl-1/NBAS and smgl-2/DHX34 that act in NMD in nematodes and

vertebrates [6,12]. We revisited this approach with the use of a

different RNAi library: the C. elegans ORF-RNAi library v.1.1 that

contains 11,511 clones targeting 55% of the nematode genome [13].

This library includes dsRNAs against 1,736 genes that were not

targeted previously [14]. As earlier, we used the C. elegans PTCxi

strain that expresses a GFP-based reporter harboring a PTC that is

integrated in the genome [6] (Fig 1). This PTCx reporter has reduced

GFP expression, since its transcript is subject to NMD-mediated

degradation. Thus, novel NMD genes were identified by the criterion

that their silencing by RNAi restores GFP expression. Accordingly,

we searched for the appearance of green worms, dead or alive,

following inactivation of individual genes by RNAi. As a negative

control, we fed PTCxi animals empty RNAi vector, which had no

effect on the level of GFP expression (Fig 2A, panel I), whereas inac-

tivation of the core NMD factor, SMG-2/UPF1, which induced strong

GFP expression, was used as a positive control (Fig 2A, panel II).

Screening of the entire library resulted in the identification of five

RNAi clones that scored positive by increased GFP expression

(Fig 2A, panels III–VII). The clones identified in this screen are:

T19A6.2, Y77E11A.13, Y87G2A.4, C47B2.4 and F52B11.3 (Table 1).

Confirming that these newly identified C. elegans genes act as NMD

factors, quantitative RT–PCR analysis showed that downregulation

of each of these genes led to an increase in the GFP reporter mRNA

level, as was seen with depletion of smg-2 (Fig 2B).
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Figure 1. A genome-wide RNAi screen designed to identify novel NMD factors in C. elegans.
The PTCx NMD reporter consists of a fusion between GFP (in green) and LacZ (in blue) genes; a PTC is present downstream of the GFP coding region, making the transcript an
NMD substrate.
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Novel NMD genes in C. elegans

All of the newly identified genes, with the exception of noah-2, are

conserved throughout evolution and have clear orthologs in human,

mouse, zebrafish and yeast (Supplementary Figs S1 and S2). The

C. elegans gene ngp-1 (T19A6.2) corresponds to the human GNL2

gene and encodes a putative GTPase that comprises a GTP-binding

domain formed by five G-motifs, which is typical of the HSR1_MMR1

GTP-binding protein subfamily. It also contains a conserved N-

terminal domain (NGP1NT) (Supplementary Fig S1A). Its yeast

homolog, Nog2p, is involved in ribosomal biogenesis playing a role

in the processing of the pre-60S particles [15]. The npp-20 gene
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Figure 2. Newly identified NMD factors.

A RNAi was induced with an empty vector as a negative control (panel I), whereas a smg-2 clone (panel II) was used as a positive control. Panels i and ii show
brightfield images of the PTCxi strain treated with the negative and positive controls, respectively. Depletion of five genes (panels III to VII) resulted in increased GFP
expression. Panels iii to vii show brightfield images of the phenotypes of the affected worms. The scale bars correspond to 100 lm.

B Depletion of the novel NMD genes in C. elegans leads to upregulation of the PTCx NMD reporter mRNA, which was monitored by quantitative RT–PCR relative to the
expression of ama-1 reference gene. The values shown are the average fold-change (mean � SEM) from at least three independent experiments relative to empty
vector-depleted worms. Statistical analysis was performed using the Mann–Whitney U-test for non-parametric distributions. *P < 0.05.
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(Y77E11A.13) corresponds to human SEC13, which encodes a protein

that comprises six WD-40 domains (Supplementary Fig S1B) and is a

constituent of the endoplasmic reticulum and the nuclear pore

complex (NPC) [16]. The aex-6 gene (Y87G2A.4) is a member of the

Rab small GTPase superfamily. It has two homologs in humans,

RAB27A and RAB27B (Supplementary Fig S1C), with RAB27B func-

tioning in the trafficking of dense-core vesicles [17]. The pbs-2 gene

(C47B2.4) is a member of the proteasome B-type family and is a 20S

core beta subunit of the proteasome (Supplementary Fig S1D), with

two human homologs, PSMB7 and PSMB10 [18]. Finally, the noah-2

gene (F52B11.3) encodes a PAN and ZP domain-containing protein

that is required for embryonic and larval development, reproduction,

coordinated locomotion and molting (Supplementary Fig S1E) [19]. It

is related to the Drosophila extracellular matrix component nompA

(no-mechanoreceptor-potential A) [20]. There are no homologs of

noah-2 in vertebrates (Supplementary Fig S2).

The newly identified NMD genes are required for proper
development in C. elegans

Depletion of all these novel genes resulted in developmental defects,

in contrast to smg-2 depletion that did not compromise development

(Fig 2A, compare panels ii with iii–vii). Thus, these novel NMD

factors are different from core smg-1-7 genes and display similar

behavior to smgl-1, 2 that are essential for viability [6]. In

C. elegans, ngp-1 is an essential gene. Its knockdown led to a vari-

able larval arrest, where the majority of the affected worms were

arrested at L1–L2 stages, compared to control worms that invariably

reached adulthood within the time limit of the experiment (Fig 2A,

panels i and iii, respectively). Those worms that escaped early arrest

failed to reach adulthood and produced no embryos. Depletion of

npp-20 resulted in worms arrested at L2–L3 larval stages. The

majority of the worms were very fragile and died by bursting

(Fig 2A, panel iv). By contrast, depletion of aex-6 resulted in a mild

but highly consistent phenotype with worms able to progress

through the developmental stages normally; however, adult worms

were constipated, as previously reported [21], and also exhibited an

egg-laying defect and reduced brood size (Fig 2A, panel v). Deple-

tion of pbs-2 resulted in very sick and pale larvae that were arrested

around L2 stage, displaying a swollen intestine in the majority of

the affected worms (Fig 2A, panel vi). Finally, depletion of noah-2

led to an early larval arrest at L2–L3 stages and subsequent larval

lethality (Fig 2A, panel vii).

Drosophila nompA gene is required for NMD

There is no ortholog of noah-2 in mammalian genomes; nonethe-

less, the gene is clearly present in Drosophila melanogaster

(Supplementary Fig S2), suggesting that it most likely emerged at

some point during the early evolution of the Ecdyzozoa before the

split between arthropods and nematodes. We assessed its potential

role in NMD in Drosophila embryos by means of a previously

described NMD fluorescent GFP reporter [22,23]. Unlike the previ-

ously characterized Drosophila NMD genes upf1, upf2 and upf3

that are ubiquitously expressed [22,24], expression of nompA in

Drosophila embryos is confined to type I sense organs of the

peripheral nervous system (PNS) [20]. Thus, we used the UAS/

Gal4 system [25] to drive expression of a nompA RNAi construct

within the PNS using a NompA-Gal4 line [26]. We found that

nompA knockdown within its expression domain in the embryonic

PNS led to a significant upregulation of the NMD reporter (Fig 3C,

F and G), which was comparable to the effect observed following

UPF1 depletion (Fig 3B, E and G), as compared to no RNAi treat-

ment (Fig 3A, B and D), which showed no expression of the

reporter. This demonstrates that the Drosophila ortholog of noah-2

behaves as a tissue-specific NMD factor in fruit fly embryos.

GNL2 and SEC13 act in the NMD pathway in human cells

Next, we investigated a potential role for the human homologs of the

factors identified in this screen in NMD in human cells. HeLa cells

stably expressing an integrated human b-globin (HBB) gene, either in

a wild-type version or carrying an NMD-inducing mutation (NS39)

[27], were individually depleted of each of these genes. The level of

depletion of these factors is shown in Supplementary Fig S3C. As

expected, depletion of the human homologs of the novel NMD factors

did not significantly affect the levels of the wild-type b-globin mRNA

(Fig 4A). By contrast, depletion of UPF2 (positive control) or of GNL2

and SEC13, but not of RAB27A-B (depleted individually or in combi-

nation), resulted in a significantly increased level of the b-globin

Table 1. List of novel putative NMD factors identified in this study.

Clone ID
Gene name
(C. elegans)

Predicted function in
C. elegans

C. elegans
phenotype

Gene name
(H. sapiens)

T19A6.2 ngp-1 Nuclear/nucleolar GTP-binding protein family Embryonic lethal
Larval arrest
Maternal sterile

GNL2

Y77E11A.13 npp-20 Nuclear pore complex protein Embryonic lethal
Larval arrest

SEC13

Y87G2A.4 aex-6 Rab protein involved in trafficking of vesicles Aboc expulsion missing
Constipated

RAB27A
RAB27B

C47B2.4 pbs-2 Proteasome p subunit Embryonic lethal
Larval arrest

PSMB7
PSMB10

F52B11.3 noah-2 PAN and ZP domain-containing protein Embryonic lethal
Larval arrest

Not conserved
Conserved in
Drosophila (nompA)
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NMD reporter (NS39) mRNA when compared to mock-depleted cells

(Fig 4B). Whereas individual depletion of PSMB10 clearly showed no

effect on the levels of the NMD reporter, knockdown of PSMB7 (either

individually or in combination with PSMB10) led to an upregulation

of both the wild-type and NMD reporters, making it difficult to

conclude whether PSMB7 had a specific role in NMD (Supplementary

Fig S3A and B). Altogether, these experiments show that GNL2 and

SEC13 have a clear effect in the NMD response in human cells,

whereas it still remains possible that the remaining tested genes may

have an NMD effect that is substrate or tissue specific.

To rule out indirect effects of GNL2 and SEC13, we first inves-

tigated whether these factors have a general role in mRNA transla-

tion, which would impact on NMD. This is unlikely, since the

very nature of the RNAi screen in C. elegans requires that the

NMD reporter is indeed translated. In agreement, knockdown of

GNL2 or SEC13 did not result in a general inhibition of

translation, as measured by metabolic labeling of HeLa cells

(Supplementary Fig S3E and F). Next, we examined the half-life of

the wild-type or NMD-sensitive NS39 b-globin reporter mRNAs

upon depletion of GNL2 and SEC13. The stability of wild-type

b-globin mRNA was unaffected by GNL2 or SEC13 depletion

(Fig 4C). By contrast, depletion of GNL2 or SEC13 led to a marked

stabilization of a PTC-containing b-globin mRNA, confirming that

both GNL2 and SEC13 act in the NMD pathway (Fig 4D). Further-

more, depletion of GNL2 or SEC13 in HeLa cells led to a marked

upregulation of three endogenous transcripts that were previously

reported to be sensitive to NMD regulation [7, 28] (Fig 4E). In

agreement, knockdown of GNL2 or SEC13 also resulted in an

increased half-life of one of those NMD substrates (ARHGEF18)

mRNA (Supplementary Fig S3D). As further proof of the role of

the novel factors identified in this screen in the NMD pathway,

we probed for the interaction of GNL2 with the core NMD factor

UPF1. We immunopurified Flag-tagged UPF1 expressed at physio-

logical levels from transiently transfected HEK 293T cells that also

co-expressed T7-tagged GNL2 in the presence of RNase A. We

used transiently expressed Flag-empty vector (F-EV) co-expressed

with T7-tagged GNL2, as a negative control. We observed that

UPF1 specifically co-immunoprecipitated with T7-tagged GNL2 in

an RNA-independent manner (Supplementary Fig S4). Future stud-

ies will aim to test the interaction of GNL2 and SEC13 with

components of the NMD machinery.

GNL2 and SEC13 participate in an autoregulatory feedback loop

Transcripts encoding NMD factors are sensitive to depletion of

different NMD factors as part of a negative feedback regulatory loop

that acts to tightly control NMD homeostasis [29,30]. We investi-

gated whether depletion of GNL2 or SEC13 would have an impact

on the levels of transcripts encoding NMD factors in human cells.

Interestingly, we found that depletion of GNL2 in HeLa cells resulted

in a significant upregulation of the levels of SMG5 mRNA, as well as

increased mRNA levels for UPF1, UPF2 and SMG1 (Fig 4F). Simi-

larly, SEC13 depletion resulted in a significant upregulation in the

levels of mRNAs encoding UPF1 and UPF2, and to a lesser extent of

SMG5 mRNA (Fig 4F). Thus, the novel NMD factors, GNL2 and

SEC13, participate in a negative regulatory feedback loop controlling

the expression of NMD factor mRNAs.

Conclusions

Even though the NMD pathway is a highly conserved process,

several mechanisms have evolved to define a PTC across different

species [3]. Whereas in mammalian cells, NMD is linked to
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Figure 3. Drosophila nompA is required for NMD in Drosophila embryos.

A–C Embryos expressing a GFP-NMD sensor (green) under the control of nompA regulatory sequences show signal in support cells linked to the embryonic peripheral
nervous system (PNS) [labeled by 22C10 signal (magenta)]. DAPI signal is shown in blue. Expression of UAS-RNAi constructs against Upf1 (B) or nompA (C) genes
using a nompA-Gal4 driver leads to upregulation of the GFP-NMD sensor when compared to wild-type (no RNAi) (A), revealing a reduction in NMD activity in the
knockdown conditions. Scale bars represent 100 lm.

D–F Higher magnification (40×) of the areas marked by a rectangle in (A–C) further illustrates the upregulation of the GFP-NMD sensor in Upf1- (E) and NompA-
depleted cells (F). Optical fields include embryonic abdominal segments A4–A5. Scale bars represent 10 lm.

G Quantification of GFP signal in cells marked by an arrow in panels (D–F) shows a significant upregulation of NMD sensor expression upon downregulation of Upf1
(dark gray) and NompA (black) compared to wild-type (no RNAi) (light gray). Results represent the average of five biological replicates (mean � SEM). Pair-wise
comparisons were performed using a one-tailed t-test (non-parametric) between treatments and wild-type. ***P < 0.001.
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pre-mRNA splicing, exon boundaries are not used to define PTCs in

other organisms, including S. cerevisiae [31], S. pombe [32,33],

Drosophila [34] and C. elegans [6].

RNAi screens have been widely used in C. elegans to identify

genes involved in many different cellular pathways, and we had

used this approach in the past to identify novel NMD factors [6].

Here, we revisited this approach with the use of a different RNAi

library that includes dsRNAs against 1,736 genes that were not

targeted in our previous screen and have identified five novel

NMD genes that are required for proper development in nema-

todes. Due to the high degree of evolutionary conservation, we

could analyze the role of these newly identified NMD factors in

mammalian cells and we chose HeLa cells as our experimental

system. The only exception was the noah-2 gene that does not

have a human counterpart. For this, we studied its functional

homolog in Drosophila and found that it acts in the NMD pathway

in insects. Importantly, we show that two human homologs, GNL2

(ngp-1) and SEC13 (npp-20), are also required for NMD in human

cells. Only recently, we uncovered the mechanism by which the

RNA helicase DHX34, which was identified in our first RNAi

screen, promotes mRNP remodeling and triggers the conversion

from the SURF complex to the DECID complex resulting in NMD

activation [35]. Further studies will help to delineate the mecha-

nism by which SEC13 and GNL2 activate NMD in human cells, as

well as their involvement in the described alternative NMD

branches [36–38]. In summary, our work has led to the identifica-

tion of novel NMD factors in nematodes, flies and mammals,

revealing that the machinery underlying NMD is more complex

than previously thought.

Materials and Methods

Genome-wide RNAi screen

The NMD reporter is based on the GFP::lacZ vector pDP96.04 and is

driven by the ubiquitous sec-23 promoter [6]. The PTCxi transgenic

strain carrying this GFP-based NMD reporter integrated in the

genome was described previously [6]. PTCxi transgenic worms were

grown on standard NGM plates seeded with OP50 E. coli bacteria at

20°C. The RNAi library used for the screen was created in the labo-

ratory of Marc Vidal and is commercially available [13]. RNAi was

performed in liquid format by feeding synchronized population of

PTCxi L1 larvae with bacterial clones expressing dsRNA correspond-

ing to individual genes in 96-well plates [6]. Worms were then

scored for the appearance of GFP expression, indicating that the

depleted protein is required for NMD in C. elegans.

Fly stocks

We used the following fly stocks all obtained from the Bloomington

Stock Center (Indiana, USA): w1118; P{GMR29A10-GAL4}attP2, y1 w*;

P{UAS-mCD8::GFP.L}LL5 (BM 5137), y1 v1; P{TRiP.JF02919}attP2

and y1 v1; P{TRiP.GL01485}attP2. Animals were reared at 25°C on

cornmeal, molasses and yeast medium.

For more detailed Materials and Methods see the Supplementary

Information.

Supplementary information for this article is available online:

http://embor.embopress.org
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performed using the Mann–Whitney U-test for non-parametric distributions. *P < 0.05. The level of depletion of NMD factors is shown in Supplementary Fig S3C.

C, D Analysis of the half-life of b-globin reporters. Samples were collected at the indicated time points, and the mRNA levels of the HBB reporters were monitored by
qRT–PCR and normalized to POLR2J and ACTB reference genes. The values shown are the average fold-change (mean � SEM) from three independent experiments
relative to the first time point.

E Depletion of GNL2 and SEC13 leads to a significant upregulation in the mRNA levels of endogenous NMD substrates. Samples were analyzed as described in (A, B)
*P < 0.05; ***P < 0.01, ***P < 0.001.

F GNL2 and SEC13 contribute to the negative NMD feedback loop, regulating the levels of transcripts encoding NMD factors. RT–qPCR analysis of total cellular RNA
from HeLa cells depleted of GNL2 (in green) and SEC13 (in purple) is shown. The graph shows distribution of relative fold-change from eight independent
experiments relative to mock-depleted cells (control). Statistical analysis was performed using Student’s t-test. *P < 0.05.
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