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   Abstract: Introduction: The most basic aspect of modern engineering is the design of operators to act 
on physical systems in an optimal manner relative to a desired objective – for instance, designing a 
control policy to autonomously direct a system or designing a classifier to make decisions regarding 
the system. These kinds of problems appear in biomedical science, where physical models are created 
with the intention of using them to design tools for diagnosis, prognosis, and therapy.  
Methods: In the classical paradigm, our knowledge regarding the model is certain; however, in 
practice, especially with complex systems, our knowledge is uncertain and operators must be designed 
while taking this uncertainty into account. The related concepts of intrinsically Bayesian robust 
operators and optimal Bayesian operators treat operator design under uncertainty. An objective-based 
experimental design procedure is naturally related to operator design: We would like to perform an 
experiment that maximally reduces our uncertainty as it pertains to our objective.  
Results & Discussion: This paper provides a nonmathematical review of optimal Bayesian operators 
directed at biomedical scientists. It considers two applications important to genomics, structural 
intervention in gene regulatory networks and classification. 
Conclusion: The salient point regarding intrinsically Bayesian operators is that uncertainty is 
quantified relative to the scientific model, and the prior distribution is on the parameters of this model. 
Optimization has direct physical (biological) meaning. This is opposed to the common method of 
placing prior distributions on the parameters of the operator, in which case there is a scientific gap be-
tween operator design and the phenomena. 
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1. INTRODUCTION 

 Scientific knowledge is translated into practical knowledge 
by applying some operation to the scientific model in an effort 
to achieve the desired objective. The basic paradigm consists 
of four parts: (1) a scientific (mathematical) model describing 
the physical system, (2) a family of operators from which to 
choose, (3) a cost function measuring how well the objective 
is achieved, and (4) optimization to find an operator pos-
sessing minimum cost. In biomedical science, models are cre-
ated with the intention of using them for diagnosis, prognosis, 
and therapy. This review considers two genomic applications. 
In the first, the model is a gene regulatory network, the opera-
tor family consists of certain types of network interventions 
that in principle could be accomplished by drugs, the cost 
function is the probability of evolving into a pathological state, 
and the intervention that minimizes the cost is selected. In the 
second application, the model is a feature-label distribution, 
the operator family consists of classifiers to discriminate be-
tween two classes of objects, the cost function is the classifier 
error, and the classifier with minimum error is selected. 
 As stated, the classical paradigm assumes that the model of 
the physical system is assumed to be known with certainty; 
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however, often this assumption is not warranted, especially 
with complex systems, where there are many parameters to 
determine. If the model is a regulatory network, it may be 
that some of the regulations are unknown. This changes the 
optimization paradigm to one in which intervention optimi-
zation must consider both the objective and the state of 
knowledge regarding the network. This lack of certainty will 
be reflected in the loss of performance because we will not 
be able to optimize for the actual system, but instead will 
optimize so that the intervention works best on average rela-
tive to all possible systems that fit our knowledge. One 
might think of designing a drug that is to be applied to a 
population possessing different regulatory regimes rather 
than applying it to a smaller group consisting of a single reg-
ulatory regime. While the latter approach would be desirable, 
rarely is such an assumption practical.  
 In this work, we assume that the scientific model is uncer-
tain and belongs to an uncertainty class of possible models. The 
aim is to design an operator that is optimal relative to both the 
objective and the uncertainty class. For instance, in classifica-
tion, the scientific model is given by a feature-label distribution, 
which herein is considered to be uncertain. We desire a classifi-
er with a minimum average error over all possible feature-label 
distributions. It is critical to recognize that, whereas Bayesian 
methods are often applied with the uncertainty placed on the 
possible operators (say, classifiers), we place the uncertainty on 
the scientific knowledge, which is where it actually arises. 
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 It is useful to quantify our uncertainty, not in general, but 
relative to our intervention objective; that is, how much 
worse do we expect to do because we are applying a proce-
dure that is optimal on average rather than optimal to the 
specific case at hand. If it turns out that there is too much 
uncertainty for satisfactory performance, then we can lessen 
the uncertainty by designing and performing appropriate 
experiments. The issue then is to determine which experi-
ment (or experiments) is optimal: which experiment maxi-
mally reduces our uncertainty relative to the achievement of 
our objective? In the case of regulatory networks, we wish to 
choose an experiment that provides the regulatory 
knowledge that maximally reduces the pertinent uncertainty 
in our model. 
 As the title of the article states, this is a nonmathematical 
review. Hence, the actual mathematical form of many opera-
tions will not be specified explicitly and there might be some 
loss of rigor. In all cases, the relevant references are cited for 
the interested reader. Moreover, the methodologies discussed 
in this paper are part of an overall structure for designing 
optimal operators under model uncertainty, and one can also 
refer to [1] for mathematical details. 

2. OPTIMAL STRUCTURAL INTERVENTION IN 
GENE REGULATORY NETWORKS 

 We first treat optimal structural intervention in gene reg-
ulatory networks with the aim being to alter the regulatory 
structure in order to beneficially change the long-run behav-
ior of the system away from disease states. 

2.1. Gene Regulatory Network Model 

 A Gene Regulatory Network (GRN) is a mathematical 
model comprised of a set of entities called “genes” and a 
regulatory structure that governs their behavior over time. 
GRNs can be finely detailed, as with differential-equation 
models, or coarse-grained, with discrete expression levels 
transitioning over discrete time. Coarse models need not 
closely represent actual molecular structure; rather, their 
purpose is to model interaction at a high level in order to 
serve as a framework for studying the regulation and to pro-
vide rough models that can be used to develop strategies for 
controlling aberrant cell behavior, such as finding optimal 
drug treatments.  
 We consider Boolean networks, in which each gene can 
have logical values 1 or 0, corresponding to expressing or 
not expressing, respectively, and regulation is specified by 
logical operations among genes [2]. Thus, the functional 
relationships between genes can be specified by a truth table. 
While the Boolean model is very coarse, it does model the 
thinking of cancer biologists when they speak of a gene be-
ing on or off under different conditions. Moreover, although 
the original formulation is two-valued, 0 or 1, the concept 
applies to any number of discrete gene values. 
 A Boolean network is defined by k binary variables, x1, 
x2,…, xk, where the value xi of gene gi at time t + 1 is deter-
mined by the values of some regulator genes at time t via a 
Boolean function fi operating on the regulator genes. There 
are k such Boolean functions, one for each gene, and togeth-
er they determine the dynamic evolution of the system over 

time. The state of the network is defined by the vector x = 
(x1, x2,…, xk) of binary expression values. Given an initial 
state, a Boolean network will eventually reach a set of states, 
called an attractor cycle, through which it will cycle endless-
ly. Each initial state corresponds to a unique attractor cycle 
and the set of initial states leading to a specific attractor cy-
cle is known as the basin of attraction of the attractor cycle. 
 Randomness is introduced into a Boolean network via 
perturbations. For each gene, there is some small perturba-
tion probability that it will randomly switch values. This is 
practical because there is random variation in the amount of 
mRNA and protein produced. Perturbations allow a network 
to jump out of an attractor cycle and eventually transition to 
a new attractor. We utilize a Boolean network with perturba-
tion (BNp) for regulatory modeling. 

2.2. Structural Intervention in Gene Regulatory Net-
works 

 If every gene has a positive perturbation probability, then 
for any state x, the probability that the network is in state x, 
in the long run, is independent of the initial state. The collec-
tion of all such probabilities is called the steady-state distri-
bution. Assuming the existence of a steady-state distribution, 
structural intervention in a gene regulatory network involves 
a one-time change of the regulatory structure, the aim being 
to minimize the sum of the steady-state probabilities corre-
sponding to the undesirable states, which means minimizing 
the probability of being in an undesirable state [3]. 
 To illustrate structural intervention, we consider a mam-
malian cell cycle Boolean network with perturbation (p = 
0.01) based on a regulatory model proposed in [4]. We em-
ploy a structural intervention that models small interfering 
RNA (siRNA) interference in regulatory relationships: an 
intervention blocks the regulation between two genes in the 
network.  
 The cell cycle involves a sequence of events resulting in 
the duplication and division of the cell. It occurs in response to 
growth factors and under normal conditions, it is a tightly con-
trolled process. The model in [4] contains 10 genes: CycD, 
Rb, p27, E2F, CycE, CycA, Cdc20, Cdh1, UbcH10, and 
CycB, with genes numbered in this order. The cell cycle in 
mammals is controlled via extra-cellular stimuli. Positive 
stimuli activate Cyclin D (CycD) in the cell, thereby leading to 
cell division. CycD inactivates the Rb protein, which is a tu-
mor suppressor. When gene p27 and either CycE or CycA are 
active, the cell cycle stops, because Rb can be expressed even 
in the presence of cyclins. States in which the cell cycle con-
tinues even in the absence of stimuli are associated with can-
cerous phenotypes. For this reason, states with down-regulated 
CycD, Rb, and p27 (x1 = x2 = x3 = 0) are undesirable.  
 The regulatory model in Fig. (1) has blunt and normal 
arrows representing suppressive and activating regulations, 
respectively. Genes are assumed to be regulated according to 
the majority vote rule. At each time point, a gene takes the 
value 1 if the majority of its regulator genes are activating 
and the value 0 if the majority of the regulator genes are 
suppressive; otherwise, it remains unchanged. 
 A structural intervention removes an arrow from the reg-
ulatory graph because it blocks a regulation between two 
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genes. Using the optimization methods of Qian and 
Dougherty [3], it is determined that the structural interven-
tion that maximally lowers undesirable steady-state probabil-
ity blocks the regulatory action from gene CycE to p27 and 
reduces total undesirable steady-state probability from 
0.3401 to 0.2639 [5]. 
 

 
Fig. (1). Mammalian cell cycle network: normal arrows represent 
activations and blunt arrows represent suppressing effects. Given 
full knowledge of the network, the optimal intervention strategy is 
to block the regulation from CycE to p27 (shown in bold). Other 
regulations to be blocked according to the intrinsically Bayesian 
robust intervention strategies in the absence of full regulatory in-
formation are shown in black. 

 Note the four steps in the intervention paradigm: (1) 
model the cell cycle by a BNp; (2) an intervention operator 
blocks a single regulation between two genes; (3) the cost is 
the total steady-state probability of the undesirable states; 
and (4) an optimal intervention is found via the method of 
Qian and Dougherty [3]. Although we have not done so, one 
may wish to constrain the optimization procedure by avoid-
ing states known to be associated with carcinogenesis or 
states that do not typically occur in healthy cells [6]. 

3. OPERATOR DESIGN IN THE PRESENCE OF 
MODEL UNCERTAINTY 

 Whereas the preceding analysis assumes that the regula-
tory model is fully known, we now suppose that there is 
model uncertainty. In this case, the true model belongs to an 
uncertainty class of possible models. Each model in the un-
certainty class is associated with a parameter vector θ and 
the uncertainty class is denoted by Θ, which consists of all 

the parameter vectors. For a gene regulatory model, some 
regulations are unknown, so that Θ consists of all possible 
parameter vectors corresponding to the unknown regulations. 
Let C be a cost function and Ψ be a family of operators on 
the model whose performances are measured by the cost 
function. This means that for each operator ψ ∈ Ψ there is a 
cost Cθ(ψ) of applying ψ on the model θ.  
 For example, suppose Ψ consists of some number of 
drugs, meaning that each operator acts by applying a drug. 
Suppose the goal of the drug treatment is to reduce the ex-
pression of a particular gene g associated with metastasis in 
breast cancer and that the gene regulatory network being 
used is uncertain, so that there is an uncertainty class Θ of 
models. The cost function might be the steady-state probabil-
ity of g, that being the sum of all steady-state probabilities 
for which g is on. Then Cθ(ψ) is the steady-state probability 
of g when the drug ψ is applied to model θ. Since the full 
network model is unknown, one would like to choose a drug 
whose performance works well over the uncertainty class.  
 To be precise, an Intrinsically Bayesian Robust (IBR) 
operator is an operator ψIBR such that the expected value 
(average) over Θ of the cost Cθ(ψ) is minimized by ψIBR, the 
expected value being with respect to a prior probability dis-
tribution π(θ) over Θ [5, 7]. An IBR operator is robust in the 
sense that on average it performs well over the whole uncer-
tainty class. A prior probability distribution on the space of 
possible models quantifies our prior knowledge regarding 
the likelihood of the possible models being the true model. If 
there is no prior knowledge beyond the uncertainty class 
itself, then the prior distribution is taken to be uniform. 

3.1. IBR Structural Intervention in Gene Regulatory 
Networks 

 We now consider intrinsically Bayesian robust structural 
intervention for the mammalian cell cycle network. Assume 
that there are D pairs of genes for which the existence of a 
regulatory relationship is known but the type of relationship, 
activating or suppressing, is unknown. The uncertainty class 
consists of 2D possible networks, where each vector θ ∈ Θ 
corresponds to a specific assignment of regulation types to 
the D uncertain edges. We assume a uniform prior distribu-
tion, meaning that we have no knowledge concerning model 
likelihood and all uncertain parameter vectors have prior 
probability 1/2D. As before, a structural intervention blocks 
the regulatory action between a pair of genes in the network, 
and the cost function is the total undesirable steady-state 
probability; however, now the optimization involves averag-
ing the cost of each possible structural intervention (using 
the analytic methods provided in [3]) over the 2D possible 
networks, and selecting the intervention with the minimal 
average.  
 Simulations in [5] incrementally increase the number of 
edges with unknown regulation from D = 1 to D = 10. In 
each case, 50 uncertain networks are created by randomly 
selecting uncertain edges while keeping the regulatory in-
formation for the remaining edges. Grouping the models 
with 1 to 5 uncertain edges, 54.0% of the time the IBR struc-
tural intervention is the actual optimal intervention, which 
blocks the regulation from CycE to p27. This reduces the 
total undesirable steady-state probability to 0.2639. The se-
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cond most selected IBR intervention (41.6% of the time) 
blocks the regulation from CycE to Rb and reduces the total 
undesirable steady-state probability to 0.2643.  
 One must keep in mind that the IBR intervention works 
best on average over the uncertainty class and may perform 
poorly on the actual network. In this simulation, blocking 
regulation between CycB and p27 is selected 2.0% of the 
time and only reduces the undesirable steady-state probabil-
ity to 0.3244.  
 With 6 to 10 uncertain edges, blocking CycE to p27 or 
blocking CycE to Rb accounts for 88.8% of the IBR interven-
tions, as opposed to 95.6% of the IBR interventions for 1 to 5 
uncertain edges. This change reflects greater uncertainty.  

4. OPTIMAL EXPERIMENTAL DESIGN 

 Based on a cost function, an IBR an operator is optimal 
over an uncertainty class relative to a prior distribution re-
flecting our scientific knowledge; however, it will not likely 
be optimal relative to the true model. This loss of perfor-
mance is the cost of uncertainty. To quantify this cost, for 
each model θ in the uncertainty class, let ψθ be an optimal 
operator for the model θ. Owing to the optimality of the IBR 
operator over the uncertainty class, on average it performs 
better than ψθ, meaning that the expected cost of ψIBR over 
the uncertainty class is less than or equal to the expected cost 
of ψθ. However, there is a loss of performance relative to 
applying ψIBR on the model θ because, since ψθ is optimal 
for model θ, Cθ(ψθ) ≤ Cθ(ψIBR). 
 For any θ, the Objective Cost of Uncertainty (OCU) is 
the cost differential between an IBR operator and an optimal 
operator for θ applied on θ: OCU(θ) = Cθ(ψIBR) - Cθ(ψθ). We 
would like to compute the objective cost of uncertainty for 
the true model, but we do not know the true model. Our 
knowledge only concerns the uncertainty class. Hence, we 
compute the Mean Objective Cost of Uncertainty, 
MOCU(Θ), which is the expected value of OCU(θ), that is, 
the average cost of applying an IBR operator. MOCU pro-
vides an objective-based quantification of uncertainty [5]. 
 The more knowledge we have regarding the scientific 
model, the tighter will be the prior distribution around the 
true value of θ. If there is a set of experiments that can sup-
ply information relating to the unknown parameters, which 
should be performed first? A classical approach is to choose 
an experiment that minimizes the entropy of the prior distri-
bution [8]. As opposed to entropy, MOCU quantifies the 
uncertainty in our knowledge with respect to our objective, 
which is what matters, rather than a general reduction in un-
certainty. For instance, it may be that determining a certain 
unknown gene regulation provides the greatest reduction in 
entropy (overall uncertainty), but the regulation has little or 
no effect on the disease.  
 Hence, we choose an experiment that yields the mini-
mum expected (remaining) MOCU given the experiment [9]. 
For each possible experiment, compute MOCU for every 
possible outcome of the experiment, average these MOCU 
values, and then take the minimum of these averages over all 
possible experiments. This can be done sequentially, either 
greedily by repeating the procedure after the preceding ex-
periment has determined a regulation, and continuing until 

some stopping criterion has been reached [9], or via dynamic 
programming [10]. In either case, the result is objective-
based optimal experimental design. 
 To illustrate the greedy sequential experimental design, 
we randomly generate BNps, each containing six genes with 
each gene having three regulators, and perturbation probabil-
ity p = 0.001 [9]. Simulations are performed with 50 differ-
ent sets of k regulations, k = 5, being randomly selected from 
the network and their regulatory information assumed to be 
unknown. An uncertain parameter equals 1 for an activating 
relation and 0 for a suppressive relation. With k uncertain 
relations, the uncertainty class contains 2k networks. Exper-
imental design selects the parameter to determine. States 
with gene 1 activated are assumed to be undesirable. 1000 
synthetic BNps are generated. 
 A practical issue in evaluating experimental design using 
synthetic networks is controllability. Unlike real networks, 
which are controllable to a certain extent, many randomly 
generated networks may not be controllable. Hence, regard-
less of the intervention, the shift in the steady-state distribu-
tion may be negligible. For such networks, the difference 
between optimal and suboptimal experiments may be insig-
nificant. Thus, to examine the practical impact of experi-
mental design, we must take controllability into account. We 
require that the percentage decrease of total steady-state 
mass in undesirable states after optimal structural interven-
tion exceeds 40%.  
 Fig. (2) provides a performance comparison based on a 
sequence of experiments. It shows the average cost of robust 
intervention after performing the sequence of experiments 
determined by the design strategy and the average cost after 
performing randomly selected experiments. This kind of 
Sequential-design curve is typical. One gets large gain with 
the early experiments, which is precisely the goal of sequential 
experimental design. If experiments are costly, one need only 
perform a small number of experiments. Note that the curves 
meet when all unknown parameters have been determined. 
 

 
Fig. (2). Performance comparison based on a sequence of experi-
ments. The average cost of robust intervention after performing the 
sequence of experiments predicted by the experimental design 
strategy and the average cost after performing randomly selected 
experiments. 
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5. CLASSIFICATION 

 In pattern classification, features are calculated on ob-
jects from two different populations and, based on a feature 
vector, a classifier predicts which population an object be-
longs to. For cancer medicine, classification can be between 
different kinds of cancer, stages of tumor development, or 
prognoses. For instance, gene expressions are measured for k 
genes and based on the measurements it is decided which 
drug should be administered. Classification has been a staple 
of bioinformatics since the inception of high-throughput ex-
pression measurements [11]. A feature vector belongs to one 
of two classes, and the model consists of feature-label pairs 
(X, Y), where X = (X1, X2,…, Xk) and Y = 0 or Y = 1. A bina-
ry classifier ψ is a function on the set of feature vectors: 
ψ(X) = 0 or ψ(X) = 1. 
 For classification, the model consists of two class-
conditional distributions f (x|0) and f (x|1), which are the 
probability distributions governing the behavior of feature 
vectors in class 0 and class 1, respectively. The model also 
requires the probability c0 that a randomly selected object 
comes from class 0, which automatically gives the probabil-
ity c1 that it comes from class 1, since c1 + c0 = 1. Taken 
together, f (x|0), f (x|1), and c0 provide the feature-label dis-
tribution f (x, y) governing the feature-label vectors.  
 The error of classifier ψ is the probability of erroneous 
classification, ε[ψ] = P(ψ(X) ≠ Y), which can be found from 
the feature-label distribution. An optimal classifier from the 
collection of all classifiers is one having a minimal error. It 
is called a Bayes classifier and we denote it by ψBay. Assum-
ing c0 = c1 = ½ for simplicity, a Bayes classifier is defined by 
ψBay(x) = 1 if f (x|0) ≤ f (x|1), and ψBay(x) = 0 if f (x|0) >  
f (x|1). The error of a Bayes classifier is known as the Bayes 
error and is denoted by εBay. While there may be many 
Bayes classifiers for a feature-label distribution, the Bayes 
error is unique. 
 Considering features and labels as physical measure-
ments, the feature-label distribution represents knowledge of 
the variables X1, X2,…, Xk, Y. Given a feature-label distribu-
tion, one can in principle find a Bayes classifier and the 
Bayes error; however, for important models, only in rare 
cases have these been analytically derived from the feature-
label distribution, but they can be approximated by numeri-
cal methods.  

5.1. Optimal Bayesian Classification 

 Model uncertainty arises when full knowledge of the 
feature-label distribution is lacking. Knowledge must come 
from existing scientific knowledge regarding the features 
and labels or be estimated from data. Since accurate estima-
tion of distributions requires a huge amount of data, the 
amount increasing rapidly with dimension and distributional 
complexity, full knowledge of the feature-label distribution 
is rare. With model uncertainty, there is an uncertainty class 
Θ of parameter vectors corresponding to feature-label distri-
butions. In this setting, an Intrinsically Bayesian Robust 
(IBR) classifier minimizes the expected error across the un-
certainty class.  
 This minimization is analogous to the minimization for 
determining an IBR structural intervention in a gene regula-

tory network except that, whereas for structural intervention 
in the mammalian cell cycle network one can compute a fi-
nite number of operator costs (undesirable steady-state prob-
abilities) and take the least, for IBR classification there may 
be an infinite number of classifiers to consider.  

 This problem is solved by using effective class-
conditional distributions for the uncertainty class [12]. These 
are the expected values, relative to the prior distribution, 
of the individual class-conditional distributions over the 
uncertainty class. The class-0 and class-1 effective class-
conditional densities fΘ(x|0) and fΘ(x|1) are the expected val-
ues at point x of the class-conditional density values for clas-
ses 0 and 1, respectively. If we do not constrain the classifi-
ers from which we are allowed to choose, then an IBR classi-
fier is found in exactly the same manner as a Bayes classifi-
er, except that the effective class-conditional densities are 
used: again assuming c0 = c1 = ½, ψIBR(x) = 1 if fΘ(x|0) ≤ 
fΘ(x|1), and ψIBR(x) = 0 if fΘ(x|0) > fΘ(x|1). An IBR classifier 
is a Bayes classifier for the feature-label distribution deter-
mined by the effective class-conditional densities.  

 In addition to a prior distribution coming from existing 
knowledge, if one has a sample data set S, then a posterior 
distribution π*(S) = π(θ|S), the prior distribution conditioned 
on the sample, can be constructed. All preceding definitions 
and propositions go through with the posterior in place of the 
prior, and with the optimal IBR classifier being known as the 
Optimal Bayesian Classifier (OBC). An OBC is an IBR clas-
sifier relative to the posterior distribution, and an IBR classi-
fier is an OBC relative to a null sample. Thus, in some sense, 
they represent equivalent formulations.  

 The posterior distribution incorporates all of our 
knowledge, prior knowledge plus data. Under rather general 
conditions, an OBC is a consistent classification rule, mean-
ing that the OBC converges to a Bayes classifier for the true 
feature-label distribution [13]. This, however, is not the main 
advantage of the OBC; rather, owing to the use of prior 
knowledge, it can provide good classification with small 
samples. The small-sample problem has bedeviled genomic 
classification since the early days of expression-based classi-
fication [14]. 

 Digressing for a moment, we note that classification is 
typically studied under the assumption of random sampling, 
meaning that random sample points are collected inde-
pendently and each is identically distributed with the true 
feature-label distribution. This is not always true in practice. 
Moreover, nonrandom sampling can be beneficial for classi-
fier design [15]. In the case of the OBC, optimal sampling 
has been considered under different scenarios [1, 16].  
 An OBC (IBR classifier) provides the best performance 
on average over the uncertainty class but is usually not opti-
mal for any specific feature-label distribution, for which a 
Bayes classifier is optimal. We define the objective cost of 
uncertainty in the same manner as before, but with the cost 
function being the classification error: For any θ, the OCU is 
the difference between the classification error of the IBR 
classifier and the Bayes classifier for θ relative to θ. We use 
MOCU as a measure of uncertainty and consider optimal 
MOCU-based experimental design. 
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 In a similar vein, while the OBC is optimal on average 
across the posterior distribution, it need not outperform some 
other classifier for any particular feature-label distribution in 
the uncertainty class. If the prior distribution is concentrated 
in the vicinity of the true feature-label distribution, then 
OBC performance tends to be close to the performance of 
the Bayes classifier, and therefore, it will rarely be outper-
formed by some other classifier. In fact, under very general 
conditions (satisfied by both discrete and Gaussian models), 
as the sample size increases to infinity, the OBC will con-
verge to the Bayes classifier for the true feature-label distri-
bution [13]. But one must be prudent when selecting a prior 
distribution. If it is tight and concentrated away from the true 
feature-label distribution, then the results can be poor for 
small samples. Performance comparison relative to various 
kinds of prior assumptions is considered in [13]. Correct 
knowledge helps; incorrect knowledge hurts. Prior construc-
tion is important, and we consider it in the next section.  
 We illustrate IBR classification using a two-dimensional 
Gaussian model, meaning that the class-conditional distribu-
tions are two-dimensional Gaussian distributions, and, on 
account of uncertainty, the unknown parameters of the mod-
els are governed by prior distributions. We refer the interest-
ed reader to [13] for details. For any particular state, the 
Bayes classifier is quadratic. We also consider a plug-in 
classifier, which is the Bayes classifier assuming the ex-
pected value of each parameter. This classifier is linear. The 
average true errors are 0.2078 for the plug-in and 0.2007 for 
the IBR. The classifiers are depicted in Fig. (3), in which the 
level curves for the class-conditional distributions corre-
sponding to the expected parameters are shown in gray 
dashed lines. Note that, whereas for any particular feature-
label distribution in the uncertainty class, the Bayes classifier 
is quadratic, the IBR classifier is not quadratic. Its shape 
depends not only on the individual Gaussian models in the 
uncertainty class but also on the prior distribution. 
 

 
Fig. (3). IBR and Plug-in Classifiers for a Gaussian model with two 
features. 

 In [12, 13], Gaussian and discrete models are considered 
for which the OBC can be solved analytically. This is not 
generally the case. Markov-chain-Monte-Carlo (MCMC) OBC 

methods were introduced in [17, 18] for RNA-Seq applica-
tion, and are usually used in real-world settings where 
Gaussian models are not appropriate. Other applications in-
clude liquid chromatography-mass spectrometry data [19], 
selection reaction monitoring data [20], and classification 
based on dynamical measurements of single-gene expression 
measurements [21]. The OBC has been adapted to settings in 
which there are missing values [22]. This is important in 
real-world applications, in particular, in genomic classifica-
tion, where the missing-value problem has been evident from 
the outset [23]. 

6. PRIOR CONSTRUCTION 

 In any Bayesian methodology, prior construction is a 
critical issue. In 1968, E.T. Jaynes remarked, “Bayesian 
methods, for all their advantages, will not be entirely satis-
factory until we face the problem of finding the prior proba-
bility squarely.” [24]. Twelve years later, he added, “There 
must exist a general formal theory of determination of priors 
by logical analysis of prior information – and that to develop 
it is today the top priority research problem of Bayesian the-
ory.” [25] For optimal operator design, this is an engineering 
problem, and it must be faced in the context of scientific 
knowledge and the transformation of that knowledge into 
prior distributions.  
 Historically, prior construction has tended to utilize gen-
eral methodologies not targeting any specific type of prior 
information. Subsequent to the introduction of Jeffreys’ non-
informative prior [26], objective-based methods were subse-
quently proposed, an early one being [27]. There appeared a 
series of information-theoretic approaches, including maxi-
mal data information priors [28]. 
 The more a prior is constrained by scientific knowledge, 
the more confident one can be that the prior distribution is 
concentrated around the correct model; however, as noted 
previously, one must be prudent, since concentrating the 
prior away from the true model can result in very poor re-
sults. With optimal Bayesian classification in the context of 
phenotype classification, knowledge concerning genetic sig-
naling pathways has been integrated into prior construction 
[29, 30]. In [17, 18], a hierarchical Poisson prior is employed 
that models cellular mRNA concentrations using a log-
normal distribution and then models the sequencing as sam-
pling the RNA concentrations through a Poisson process. A 
general procedure for prior construction in [31] uses a con-
strained information-based optimization, in which the con-
straints incorporate existing scientific knowledge augmented 
by slackness variables. The constraints tighten the prior dis-
tribution in accordance with prior knowledge, while at the 
same time avoiding inadvertent over restriction of the prior. 
 While we have concentrated our discussion on the classi-
cal situation in which sample data are collected from the true 
feature-label distribution, let us note that researchers are cur-
rently interested in augmenting limited data from the true 
system with more plentiful data from related systems. This is 
called transfer learning [32]. For instance, one may have 
limited data for human cancer but have a great deal of data 
for related animal cancer. A key issue with transfer learning 
is transferability, which refers to the relationship between the 
two data types. Transferability has been addressed by gener-
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alizing the OBC framework to a joint prior distribution gov-
erning two feature-label distributions, with their relationship 
encoded into the joint statistics of the prior [33]. 

CONCLUDING REMARKS 

 Perhaps the most fundamental point regarding IBR op-
erator design is that uncertainty is quantified relative to the 
scientific model, meaning that the prior distribution is on the 
physical parameters. This is opposed to the common method 
of placing prior distributions on the parameters of the opera-
tor. For instance, although we did not cover optimal Bayesi-
an regression [34] in this paper, if we compare optimal 
Bayesian regression to existing Bayesian linear regression 
models [35-39], in the latter, the connection of the regression 
functions and prior assumptions with the underlying physical 
systems is vague. As noted in [34], there is a scientific gap in 
constructing operator models and making prior assumptions 
on the operator models. The actual uncertainty in the opera-
tor is derived from the uncertainty in the physical system via 
the optimization procedure that produces an optimal opera-
tor. 
 Let us close by noting that this kind of optimization has a 
long history in engineering. In control theory, where the 
problem is to apply inputs to a physical system over time in 
some optimal manner, it was recognized in the 1960s that 
knowledge might be limited so that the system is uncertain, 
and a Bayesian approach can be taken to design the optimal 
controller [40-42]. Full optimization was well beyond the 
computational capacity of the time, and computation remains 
problematic [43]. In signal processing, the issue arose in the 
1970s and was treated via minimax optimization: find the 
filter that has the best worst-case performance over the un-
certainty class [44-46]. Optimal signal processing given an 
uncertain signal model was subsequently treated suboptimal-
ly in a Bayesian framework [47] and later from an IBR per-
spective [7, 48]. Most recently, it has been applied to cluster-
ing [49].  
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