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Abstract Lipid nanoparticle (LNP) is commonly used to deliver mRNA vaccines. Currently, LNP opti-

mization primarily relies on screening ionizable lipids by traditional experiments which consumes inten-

sive cost and time. Current study attempts to apply computational methods to accelerate the LNP

development for mRNA vaccines. Firstly, 325 data samples of mRNA vaccine LNP formulations with

IgG titer were collected. The machine learning algorithm, lightGBM, was used to build a prediction

model with good performance (R2 > 0.87). More importantly, the critical substructures of ionizable lipids

in LNPs were identified by the algorithm, which well agreed with published results. The animal exper-

imental results showed that LNP using DLin-MC3-DMA (MC3) as ionizable lipid with an N/P ratio at

6:1 induced higher efficiency in mice than LNP with SM-102, which was consistent with the model pre-

diction. Molecular dynamic modeling further investigated the molecular mechanism of LNPs used in the

experiment. The result showed that the lipid molecules aggregated to form LNPs, and mRNA molecules

twined around the LNPs. In summary, the machine learning predictive model for LNP-based mRNA vac-

cines was first developed, validated by experiments, and further integrated with molecular modeling. The

prediction model can be used for virtual screening of LNP formulations in the future.
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Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction
The global pandemic of coronavirus disease 2019 (COVID-19)
has caused nearly 220 million confirmed cases and more than four
million deaths worldwide, according to the updated record by the
World Health Organization (WHO). To suppress the prevalence of
COVID-19, many pharmaceutical industries in multiple countries
have developed vaccines with an unprecedented speed and are
promoting their usage globally1. The BNT162b2 from BioNTech
and Pfizer and mRNA-1273 from Moderna were the first two
vaccines approved by the US Food and Drug Administration
(FDA) in November 2020 with the development period of less
than one year2,3 and impressively high preventing efficacy, 95%
for BNT162b24 and 94.1% for mRNA-12735. Rapid development,
high efficacy, and risk-free of insertional mutagenesis or infection
induced by vaccine6,7 show a promising prospect for this vaccine
platform. mRNA takes effect by first being delivered into cells and
then translated to immunogenic antigens. There are many aspects
that mRNA sequence can be engineered to influence its efficacy8,9,
such as self-amplifying10,11, choice of untranslated region12,13,
modification of nucleoside14,15, codon optimization16,17, and
combination of encoded antigens18,19. Besides, administration
routes also affect the immune effect8,20. However, a successful
mRNA vaccine further requires a proper delivery system, such as
the lipid nanoparticle (LNP). Both vaccines against COVID-19
adopt LNP as the delivery system.

LNP-based mRNA vaccines usually consist of four types of
lipids, cholesterol, distearoylphosphatidylcholine (DSPC), poly-
ethylene glycol (PEG) -lipid, and ionizable lipid. Cholesterol
adjusts the flexibility and fusogenicity of lipids during mixing,
facilitating the LNP formation21. DSPC, the helper lipid, is related
to LNP structure22,23, interfacial tension24, and helps mRNA
release25. PEG-lipid influences the LNP stability24, size26 of LNP,
and further impacts the potency27. The ionizable lipid, due to its
cationic head group, should be the most critical ingredient. It
dominates the binding to mRNA, interacting with the endosomal
membrane and mRNA release28,29. Besides, a desired ionizable
lipid should also show high biodegradability to ameliorate the
adverse effect induced by lipid accumulation30. Traditionally,
ionizable lipids are screened by synthesizing numerous lipids and
testing their in vivo efficacy31,32. However, current experimental
screening needs a large amount of cost, time, and materials.

Machine learning (ML) is a branch of artificial intelligence,
which is the science of enabling computers to learn knowledge
without being explicitly programmed33. After succeeding in areas
such as machine translation and computer vision34, ML has been
increasingly applied by pharmaceutical companies in recent years35.
ML can explore the existing dataset and determine the relationship
between the input and output parameters, wherein the former could
present the formulation information and experimental conditions
while the latter may indicate the formulation behaviors of interest.
This approach is helpful in formulation prediction. Previous studies
have successfully applied ML to predict the drug delivery systems,
such as nanocrystals36, solid dispersion37, cyclodextrin complex38,
and self-emulsifying drug delivery systems (SEDDS)39. In the case
of SEDDS, the trainedMLmodel predicted themolar composition of
oils, surfactants, and cosurfactant where they can form self-emulsion,
based on their physicochemical properties input, which helped to
choose proper excipients for SEDDS formulation.

Molecular dynamic (MD) simulation is another computational
tool that can visualize and investigate the interaction among
ingredient molecules and the environment from a physicochemical
view. MD method has become a helpful tool for pharmaceutical
scientists to obtain a mechanistic understanding of formulation
behaviors40,41. Previous studies applied the MD method to
investigate topics such as the aggregation of polymeresiRNA
complex42 and the dissolution of solid dispersion37. In the case
of the polymeresiRNA complex, the aggregation was simulated to
be driven by the interaction between cationic groups on polymers
and the negative backbone of siRNA. This aggregation stabilized
the siRNA in the aqueous solution, reflected by the less altering
major groove width of siRNA. Besides, the MD result also
revealed the saturation molar ratio of polymers to siRNA. It
resulted from mutually counteracting forces of electrostatic effect
and steric crowding, which were influenced by siRNA length,
cationic charge sites, and the shape of polymers.

This work aimed to build an ML model to predict LNP for-
mulations for mRNA vaccines against viruses. Data from publica-
tions were collected of build the model. A typical such study43,44

includes the information of mRNA sequence synthesis, LNP
preparation, treatment of subjects, and detection of the time course
of binding IgG titer. The binding IgG titer is a surrogate of antibody
concentration produced by the immune system after stimulation of
antigen encoded by mRNA injected. The IgG titer is influenced by
many factors dependent or independent of LNP formulation, as
mentioned. Therefore, all information was needed to train an ML
model, and the influence of LNP, mainly the ionizable structures, on
IgG titer could be specifically untangled by the algorithm. Thus, the
ML model was able to predict the LNP formulation. The prediction
result was further validated by an in vivo experiment. Then, the MD
simulation was used to investigate the interaction between mRNA
molecules and lipid components in the microscope. This developed
model will benefit the development of mRNA vaccines.

2. Materials and methods

2.1. ML modeling methods

2.1.1. Data collecting and cleaning
The data collecting and cleaning method are shown in Fig. 1. First,
keywords of ‘mRNA’, ‘vaccine’, ‘virus’ were used to retrieve
literature from Web of Science and Scopus. After the initial
screen, 65 studies using lipid-based formulation were maintained.

After analyzing the first extracted data from 22 studies, the
data intended for ML work were simplified, considering the
numerical balance between input and predicted parameters.
Thus, the eventual dataset only contained mRNAs encoding a
single antigen45e50 and LNPs comprising DSPC, cholesterol,
1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol
(PEG-DMG), and various ionizable lipids51,30,47,52 (Fig. 1B).
The included experiments all lasted for no longer than one year,
with no more than two doses of vaccination and without virus
challenge test.

The input parameters or features include antigen protein type,
self-amplifying10,11, cap type, pseudouridine modification14,
codon optimization16, the molar ratio between nitrogen on the
ionizable lipid to phosphate on RNA (N/P ratio), structure of
ionizable lipid, ionizable lipid fraction, DSPC fraction, PEGelipid
fraction, cholesterol fraction, subject type, population or strain,
injection route, log10 dose, the second vaccination time, and IgG
titer test time. Parameterization of ionizable lipid structure can be
seen in the next section. Whether or not the mRNA sequences
functioning as self-amplifying, containing pseudouridine, and
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undergoing codon optimization were assigned ‘1’ or ‘0’. The
antigen protein type, cap type, subject type (human, primate,
mice, etc.), population or strain (adult or elderly human, C57BL/6
or BALB/c mice, etc.), and injection route were deemed as multi-
categorical variables. The other parameters were numerical
variables.

The output or predicted parameter was decided to be the
binding IgG titer because this index reflected antibody concen-
tration induced by vaccines, and the related data was the richest.
Binding IgG titer is usually tested by enzyme-linked immuno-
sorbent assay (ELISA), and it is the dilution-fold of tested serum-
containing antibodies that can still neutralize the antigen-coated at
the bottom of a 96-well plate. A high titer means the serum still
can neutralize the virus even if it has been diluted to a high-fold.
The collected IgG titers only contained the assays with coated
antigens corresponding to mRNAs used in vaccines. For studies
against influenza30,44,53, hemagglutination inhibition (HAI) titer is
also often tested. Hemagglutination happens when red blood cells
contact the influenza virus, and the addition of tested serum
containing antibodies neutralizing the influenza virus would
inhibit hemagglutination. Thus, HAI titer, similar to IgG titer, also
reflects the antibodies’ concentration. Analysis of our data found a
linear relationship (Supporting Information Fig. S1) between two
titers [log10(IgG titer) Z 1.0286 � log10(HAI titer) þ 1.4103,
R2 Z 0.7986, when HAI titer �1]. Thus, IgG titers transformed
from HAI tests were also included if only HAI titers were
Figure 1 Data collecting and cleaning process for machine learning (M

dataset contained lipid nanoparticle (LNP) with seven kinds of ionizable lip

N, and Q30, and SM-10247,52.
available. The dose and the titers were transformed via log10
function to shape the distribution closer to normal. Eventually,
there were a total of 325 samples in the dataset.
2.1.2. Structural representation of ionizable lipids
In this study, the extended connectivity fingerprints54 (ECFP) were
introduced to represent the ionizable lipid structural characteris-
tics. ECFP is a bit string constituted by ‘1’ or ‘0’. Each bit of
ECFP corresponds to a set of chemical substructures, and the ‘1’
or ‘0’ indicates whether or not the compound contains it. ECFP
shows good modeling fitting in cheminformatics and bioinfor-
matics. The ionizable lipid ECFP (IL-ECFP) was generated by the
RDKit package version 2020.09.1.0 in Python55. Ionizable lipids
used in mRNA vaccine formulation have long chains. Thus, the
ECFP radius was set to 3 to cover a chain segment with up to 7
atoms, larger than the regular ECFP4 structure (ECFP with a
radius of 2). The ECFP sequence length was set to 1024.
2.1.3. Data splitting strategy
The whole dataset was split into two sets of training (260 data
points) and validation (65 data points). Stratified random sampling
was adopted to keep the same proportion of data points in each
mRNA vaccine formulation38. The training set was used for
training models, and the validation set was for turning hyper-
parameters to find the best model. Additionally, 10-fold cross-
L) work. (A) Data collecting and cleaning process. (B) The eventual

ids, including DLin-MC3-DMA (MC3), DLinDMA, L31951, Lipid M,
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validation (CV) was used to evaluate the final generalization of
machine learning models.

2.1.4. Evaluation criteria
Mean absolute error (MAE), mean squared error (MSE), root
mean squared error (RMSE), and determination coefficient (R2)
are the metrics for evaluating regression model performance.
MAE measures the mean absolute error between real labels and
predictions. MSE indicates the mean squared error between real
labels and predictions. RMSE indicates the root mean squared
error between real labels and predictions. R2 shows the correlation
between real labels and predictions. They are defined as the
following Eqs. (1)e(4):
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where n is the number of data, yi is the ith real label, and byi is the
ith prediction.

2.1.5. Hyper-parameters of lightGBM
In recent years, the techniques and applications of machine
learning have been driven by algorithmic advances and data
accumulation. Diverse machine learning algorithms and structures
have been tested to fit different types of correlations56,57. The
gradient boosting decision tree (GBDT) framework-based
ensemble learning algorithms are shown to have superior accu-
racies in both classification and regression problems on tabular
data with pre-engineered features. A typical algorithm is the
lightGBM58. In the present study, the model was constructed to
predict the titer concentration of mRNA vaccine immunological
performance. The model was established by the lightGBM pack-
age version 2.2.3 in Python. We searched 1000 hyperparameter
combinations in the hyperparameter space. The hyperparameter
configuration of lightGBM is that the learning rate is 0.018, the
number of trees is 930, the subsample ratio is 0.783, the sub-
sample ratio of columns is 0.394. The regularization terms
(maximum of eight leaves for base learners and minimum of 12
samples in a leaf) were used to prevent the overfitting issue. The
machine learning hyperparameters decide model selection and
have impact on model generalization. A random search method
was used for lightGBM. It has been shown that random search is
more efficient than grid search and manual search59.

2.2. Experimental methodology

2.2.1. mRNA synthesis
Our laboratory has established a system to conveniently test the
LNP delivery efficiency using mRNAs encoding the extracellular
segment of human angiotensin-converting enzyme 2 [ACE2 (18-
615)], human IgG Fc fragment, and an HiBit tag. The ectodomain
of ACE2 fused with IgG Fc fragment makes it a long-lasting
secreted protein60, which can be directly detected in the blood. A
HiBit tag added to the C-terminus of the protein facilitates later
protein detection.

Our mRNA was synthesized in vitro by a T7 RNA polymerase
mediated transcription system (IVT). The DNA template in-
corporates the 5ʹ and 3ʹ untranslated regions (UTRs) and a poly(A)
tail. Pseudo UTP instead of natural UTP was used during IVT to
reduce the immunogenicity of the mRNA. Cap1 is added co-
transcriptionally to ensure the normal translation of mRNA. The
pseudo UTP and cap1 were purchased from APExBIO Technology
LLC. (Houston, TX, USA). We purified mRNA by oligo dT column,
then diluted the mRNA in sodium citrate buffer to desired concen-
trations. The purity of mRNAwas confirmed by gel electrophoresis.

2.2.2. LNP formulation and characterization
DLin-MC3-DMA (MC3) and SM-102 were purchased from
APExBIO. Cholesterol was purchased from AVT (Shanghai)
Pharmaceutical Tech Co., Ltd. (Shanghai, China). DSPC and
PEG2000-DMG were purchased from Avanti Polar Lipids Inc.
(Alabaster, AL, USA). Lipids were dissolved in ethanol at molar
ratios of 50:10:38.5:1.5 (ionizable lipid/DSPC/cholesterol/
PEG2000-DMG). The mRNAwas diluted in sodium citrate buffer
(pH 3.0) to desired concentrations for final N/P ratios 3:1 and 6:1,
respectively. We gave high-pressure to mix mRNA solution and
lipid solution rapidly through a T mixer. Formulations were dia-
lyzed against PBS (pH 7.4) in a dialysis cassette for 20 h. After
dialysis, LNPs were passed through a 0.22 mm filter, concentrated
to a suitable concentration, stored at 4 �C, and used within a week.
RiboGreen Assay from Invitrogen Corp. (Carlsbad, CA, USA)
was used to quantify the mRNA in LNPs, particle size was
determined by dynamic light scattering. The encapsulation effi-
ciency of our LNP was around 90%, and the particle size was
around 100 nm.

2.2.3. Animal studies
All animal experiments were performed under the ethical guide-
lines of Fudan University. Sixteen C57BL/6JGPt mice (eight
weeks old, mixed-sex) were randomly divided into four groups,
corresponding to four LNP formulations administrated (MC3-3:1,
MC3-6:1, SM102-3:1, and SM102-6:1). LNPs diluted in PBS
were injected into mice via the tail vein using a disposable syringe
(15 mg mRNA/dose). Tail vein blood was taken at 0, 4, 8, 24, 48,
72, 96, 168 h after injection with capillaries. The serum was
separated by centrifugation at 6000 rpm for 10 min. The ACE2
level in mice serum was measured using Nano-Glo� HiBit Lytic
Detection System from Promega Corp. (Madison, WI, USA)
following the manufacturer’s recommendations. Then the lumi-
nescence signal was detected on the microplate reader.

2.2.4. Statistical analysis
Means were compared using the unpaired t-test, and the area
under the curve (AUC) was calculated after 168 h of administra-
tion for all tests. Two-tailed P values < 0.05 were considered
statistically significant and are shown in the figures as *P � 0.05,
**P � 0.005, ***P � 0.001. Prism 8 (GraphPad Software, San
Diego, CA, USA) was used.

2.3. MD modeling methods

2.3.1. Model building of the formulation systems
The all-atom dynamic simulation method61,62 was performed to
investigate the formation mechanism of LNPs. Molecular structures



Table 1 Molecules’ number of the five simulated LNP

systems.

Parameter mRNA MC3-

3:1

MC3-

6:1

SM102-

3:1

SM102-

6:1

N/P ratioa NA 3:1 6:1 3:1 6:1

mRNAb 1 1 1 1 1

MC3 0 96 192 0 0

SM-102 0 0 0 96 192

Cholesterol 0 74 148 74 148

DSPC 0 19 38 19 38

PEG2000-

DMG

0 3 6 3 6

Naþ 31 0 0 0 0

Cl‒ 0 65 162 65 161

Water 6190 69,747 98,183 68,936 97,877

aThe number ratio between the nitrogen groups of ionizable

lipids to phosphate groups of mRNA sequence.
bThe mRNA consists of 32-mer of poly (A).

Figure 2 Three-dimensional structure of the MC3, SM-102, DSPC,

cholesterol, and PEG2000-DMG.
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of two ionizable lipids (MC3 and SM-102), cholesterol, DSPC, and
PEG2000-DMG, were manually built by Discovery Studio 2016
Client, as shown in Fig. 2. The mRNA nucleotide sequence con-
sisted of the 32-mer poly(A) tail generated by the NAB package in
AMBER (University of California, San Francisco, CA, USA).
Poly(A) tail was chosen because it is generally added to all man-
ufactured mRNA sequences8. The length of mRNA sequence for
simulation was decided because of the sizes of eventual simulated
systems limited to computer capacity. These molecules constituted
five different simulated systems in total (Table 1). At first, mRNA in
an aqueous solution in the absence of lipids (referred to as mRNA
system) was observed. Then, MD simulation simulated the other
four systems that consisted of a single mRNA, ionizable lipids,
cholesterol, DSPC, PEG2000-DMG, and water. Lipids were added
at the molar ratio of ionizable lipid/DSPC/cholesterol/PEG2000-
DMG Z 50:10:38.5:1.5, and the N/P ratio was 3:1 or 6:1. Both
composition ratio and N/P ratio were generally seen in our collected
data. In the mRNA system, sodium counterions were used to ensure
electrical neutrality, while in the other LNP systems, chlorine
counterions were added to the system.

2.3.2. Simulation method
The detailed simulation method was similar to the previous
study37. All the simulations were carried out using AMBER 18
and AMBER Tools 18 software package. The FF14SB force field
was used to model mRNA, and the GAFF force field was applied
to model lipid molecules. For lipid molecules, the atom type and
charge were described by the antechamber package63. The
conformation of initially constructed systems may be far from
their equilibrated state, and molecules may arrange too close,
inducing unreasonably high energy in systems. Thus, minimiza-
tion of systems was needed before the simulation to relax the
structure and remove unreasonable contacts. First, the solute
molecules were constrained, and only water molecules were
minimized for a short time. Then the whole system underwent
20,000 steps of minimization. After minimization, systems were
heated, and the Langevin thermostat64 was used to maintain the
temperature at 300 K, while the Berendsen barostat65 was used to
keep the pressure at 1 atm. All the systems were equilibrated at
least 100 ns with a time step of 2 fs to produce the simulated
results.

3. Results

3.1. Data distribution and model performance of ML work

The data collected included LNP and mRNA information as input
features and IgG titer induced by vaccines at corresponding time
points as output parameters for prediction. The data distributions
of these parameters are overall uniform (Figs. 3 and 4).

Table 2 shows that the ML model using the LightGBM algo-
rithm presents a good performance. The dataset was first divided
into the training set and validation set, with samples of 260 and
65, respectively. After training and tuning hyperparameters, the
model shows impressive predictivity. For the training and vali-
dation set, the MAE and RMSE are around 0.2 and 0.3 log10 units,
respectively, corresponding to the error commonly seen in the
experiments. The R2 is above 0.9, showing this model has covered
major factors resulting in the variation in the IgG titer. Moreover,
additional 10-fold cross-validation was performed. The whole
dataset was divided into ten folds. One fold served as the
validation set and the rest as the training set for each iteration, and
this process was repeated ten times. The average results of 10
iterations are also presented in Table 2. Although the MAE, MSE,
and RMSE are slightly larger than those from the first training,
they also show an accurate predictivity on experimental value.

The next analysis determines the important input parameters or
features that hugely influence the model. The top 7 important pa-
rameters are biological factors, including protein type, log10 dose,
titer test time, population or strain, the second vaccination time,
subject type, and injection route. The following parameters are
formulation-related features, as shown in Fig. 5A. The codon
optimization, self-amplifying, and uridine modification show the
important role of mRNA sequence modification. Then, the formu-
lation features of the N/P ratio and some IL-ECFPs present the LNP
importance. The top 18 important positions among 1024 IL-ECFP
and their corresponding specific substructure of ionizable lipid are
shown in Fig. 5B. For the important 18 IL-ECFPs, 5 of them are
contained in DLinDMA, while 7, 8, and 11 are contained in
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selective ionizable lipids MC3, L319, and SM-102. Compared to
DLinDMA, MC3 contains a secondary ester linker (IL-ECFP 69
and 77). Compared to MC3, L319 contains a primary ester linker
(IL-ECFP 147) in tails, replacing one double bond (IL-ECFP 12),
and the chain after the double bond comprises six carbon atoms (IL-
ECFP 46). SM-102, compared to MC3, has a hydroxy group (IL-
ECFP 132) in the head and a primary (IL-ECFP 10) as well as a
secondary ester (IL-ECFP 935) in tails. The distance from the ni-
trogen to the ester is five carbons (IL-ECFP 795) in one tail of SM-
102. These features distinguish ionizable lipids from each other and
are deemed essential and ranked in the model.

3.2. Experimental validation of the ML model

The ML model was validated by the animal test. LNPs of various
formations (ionizable lipid as MC3 or SM-102, N/P ratio at 3:1 or
6:1) were used to intravenously deliver mRNAs encoding human
ACE2 to mice. The ACE2 expression level was measured as the
relative light unit (RLU) of the nanoluciferase enabled by the
fused HiBit tag. Table 3 shows the characteristics of these LNPs.
Four LNPs have around 90% encapsulation efficiency and a
similar particle size of around 100 nm. Fig. 6 compares the pre-
diction results and in vivo test. Fig. 6A shows that the MC3-based
Figure 3 Data distribution of 325 formulation datasets. Numerical coun

type (B), population or strain (C), injection route (D), ionizable lipid typ

200945 and A/Puerto Rico/8/193446, respectively; SARS-CoV-2 S-2P and

and 987 amino acid positions47 and receptor binding domain (RBD)48, re

respiratory syncytial virus (RSV) with four-point mutations49,50.
LNP is predicted to induce a higher titer value than that based on
SM-102, but the N/P ratio does not influence the predicted titer. In
the animal results of Fig. 6B, MC3-based LNP with N/P ratio at
6:1 resulted in an overall higher RLU than that based on SM-102,
though there is no significant difference between them (Fig. 6C
and D). LNPs based on two ionizable lipids with an N/P ratio at
3:1 show similar RLU.

3.3. Investigating the molecular structure of mRNA LNPs by
MD simulations

MD modeling was performed to investigate the interaction be-
tween lipids and mRNA in LNP formation. Fig. 7 shows the initial
and final structure of a single mRNA sequence for 100 ns MD
simulation, which shows that the mRNA sequence is folded in the
water solution. Fig. 8 displays the final structure of four lipid
systems (ionizable lipid as SM-102 or MC3, and N/P ratio of 3:1
or 6:1) for 200 ns MD simulation. The four systems self-assemble
rapidly and form aggregates in the water solution, but the degree
of aggregation is different. In the SM102-6:1 system with a ratio
of 6:1, all molecules aggregate together. However, the other three
systems form several clusters of different sizes. All LNPs formed
show dense core structure. As for mRNA encapsulation, the
ts of the eventual data dependent on disease and protein (A), subject

e (E). In (A), H1N1 Cal and PR8 referred to strains A/California/07/

RBD referred to the S protein with two substitutions of proline at 986

spectively; and RSV mDS-Cav-1 referred to the full-length F protein



Table 2 Model performance of LightGBM.

Parameter Training

set

Validation

set

10-fold

cross-validation

(mean � SD)

Mean absolute error 0.220 0.278 0.303 � 0.053

Mean squared error 0.092 0.139 0.178 � 0.078

Root mean

squared error

0.303 0.373 0.412 � 0.086

R2 0.935 0.904 0.871 � 0.061
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SM102-6:1 system entraps a part of the mRNA sequence. How-
ever, in the rest of the lipid systems, the whole mRNA sequence is
almost exposed to the aqueous solution. Besides, long mRNA in
system MC3-6:1 attaches to multiple LNPs, while mRNA se-
quences in the other three systems only bind to a single LNP.

To show how mRNA interacts with LNP, the simulation results
were re-colored with nitrogen atoms on the ionizable lipid high-
lighted in Fig. 9. It shows that all lipid molecules aggregate
together to form the LNPs, and nitrogen groups of cationic lipids
preferentially locate at the surface of LNP. The mRNA molecule
twines around LNP by two possible mechanisms. On the one
hand, the nucleosides of mRNA are direct to or lie on the LNP by
the hydrophobic interaction. On the other hand, the phosphate
groups of the mRNA backbone are close to the nitrogen atoms of
LNP due to the electrostatic effect.

Fig. 10 shows the quantitative analysis of four lipid systems
during 200 ns MD simulation. The RMSD profile indicates that
four lipid systems reach a stable state after about 50 ns. The
surface areas of mRNA exposed to water in the systems decrease
with time, which indicates the encapsulation of mRNA molecule
to LNP. The mass-weighted radius of gyration (Rg) vs. time of the
whole system represents that aggregation of SM102-3:1 and
SM102-6:1 is more obvious than those of MC3-3:1 and MC3-6:1.
The density profile of the SM102-6:1 system shows a high-
intensity peak at about 100 Å. In contrast, more than one peak
is observed in the other three systems, and the MC3-6:1 system
shows a wide distribution. These results imply that SM102-6:1 is
compact, while MC3-6:1 is relatively loose.

4. Discussion

Currently, the selection of the ionizable lipid has attracted sig-
nificant attention for optimizing the LNP formulation for mRNA
delivery. Since traditional screening tests often consume a lot of
Figure 4 Data distribution of 325 formulation datasets. Numerical coun

second vaccination time (C), IgG titer test time (D), and log10(IgG titer)
time and materials, computational tools that can accelerate the
development should be valuable. The present work builds an ML
model with good prediction performance, which correlates the
critical substructures of ionizable lipids to the in vivo potency (IgG
titer) of mRNA vaccines to help the choice of ionizable lipids.

More importantly, the importance of features is ranked. The 18
critical IL-ECFPs among 1024 are identified in Fig. 5B, repre-
senting the cationic head group, ester linker, and tail of ionizable
lipids. A small head group, such as IL-ECFP 160, combined with
two relatively large dilinoleyloxy tails (IL-ECFP 162 and 171)
may behave in a “cone” shape and facilitate the formation of
hexagonal HII phase when contacting with endosomal membrane,
disrupting the bilayer structure and release the RNA therapeu-
tics29. These substructures are the symbols of DLinDMA, which is
one ionizable lipid that turned out to be highly effective in the
early stage. DLinDMAwas then optimized to DLin-KC2-DMA29
and further MC328 by substituting with a second ester linker (IL-
ECFP 69) distant from the nitrogen at three carbons length (IL-
ECFP 77), which are deemed more important than IL-ECFP 160
and 162. The original research also shows an improvement in
potency by this optimization. However, the adverse effect is also
commonly seen when administrated with MC3-containing LNP
ts of the eventual data dependent on N/P ratio (A), log10(dose) (B), the

results (E) were given.



Figure 5 Features ranking and important substructure of ionizable lipids. (A) The top 25 important features related to the formulation.

Importance times were recognized using the information gain (IG) values as a criterion from the lightGBM model. (B) The top 18 important IL-

ECFP and their corresponding specific substructure of ionizable lipid. The center atom, recognizing length, and environmental information of each

ECFP are indicated by the stressed blue area, black bonds, and grey bonds, respectively.

Table 3 Encapsulation efficiency and particle size of LNPs.

Formulationa MC3-

3:1

MC3-

6:1

SM102-

3:1

SM102-

6:1

Encapsulation

efficiency

89.5% 91.3% 89.6% 91.2%

Particle size

(nm)

97.8 101.0 101.2 106.3

aLNP was formulated from ionizable lipid, DSPC, cholesterol,

and PEG-lipid at a molar ratio of 50:10:38.5:1.5. The N/P ratio was

6:1 or 3:1.
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because of its low biodegradability30. Maier et al.51 developed
biodegradable L319 by substituting one double bond with an ester
linker (IL-ECFP 147 and 12), assuming this compound could be
metabolized by hydrolysis and b-oxidation. Sabnis et al.25

developed SM-102 from a similar compound to MC3 by obtain-
ing the balance between the lipid pKa

28,30, potency, and meta-
bolism behavior. SM-102 has a head group as IL-ECFP 132 and
two ester linkers, IL-ECFP 10 and 935. The distribution of esters
in two tails maintains the pKa within the desired range, the side
chain resulted from the secondary ester may facilitate the “cone”
shape, and the distance from the nitrogen to the ester (IL-ECFP
795 in SM-102) also impacts the metabolism25. Both L319 and
SM-102 also show high in vivo potency. The present AI model
recognizes these IL-ECFPs above as important substructures,
though the mechanism is not reflected in the collected data. Be-
sides, notice that the ECFPs presented here are just the top 18
important ones, but there are 1024 ECFPs in total. The efficiency
of ionizable lipids should be more dependent on the sum impor-
tance of all ECFPs.

The validation of the ML model against the in vivo test result
also proves our model with some suggestive ability about ioniz-
able lipids (Fig. 6). We modified the mRNA of human ACE2 to
encode a secreted protein, and therefore the ACE2 expression can
be directly detected from the blood samples, which is a straight-
forward and undisturbed way to assess the efficiency of LNP
carriers. The animal test shows that ACE2 expression level
induced by LNP at N/P ratio of 6:1 is higher than that at the ratio
of 3:1, consistent with the previous finding that the higher N/P
ratio induces more potency26,27,66. The result also shows that the
MC3-based LNP induces more expression than that based on SM-
102 at the N/P ratio of 6:1. A reasonable assumption is that
expression level is positively correlated to IgG titer, which con-
forms to the prediction by the ML model that MC3 induces higher
IgG titer than SM-102 at an N/P ratio of 6:1. However, low



Figure 6 Comparison between ML prediction and in vivo expression level. (A) Predicted log10(IgG titer) versus time profile of BALB/c mice

induced by mRNA-LNP encoding S-2P protein of SARS-CoV2 at the dose of 20 mg by i.m. administration on Days 0 and 21. LNP consists of

ionizable lipid, DSPC, cholesterol, and PEG-lipid at a molar ratio of 50:10:38.5:1.5. Ionizable lipids included MC3 and SM-102. The N/P ratio is

6:1 or 3:1. (B) Relative light unit (RLU) of HiBit tag versus time profiles in C57BL/6JGPt mice induced by mRNA-LNP encoding angiotensin-

converting enzyme 2 (ACE2) following i.v. administration. The LNP formulations were the same as the prediction task. The difference in the

maximum RLU at 8 h (C) and the AUC at 168 h (D) after administration were tested. Data are presented as mean � SD (nZ 4). **P � 0.005. ns,

not significant.

Figure 7 The snapshots of mRNA structure at the initial time (A)

and 100 ns of simulation (B).
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biodegradability correlates to side effects30, making the choice of
ionizable lipid complicated. In fact, it is SM-102 that is formu-
lated in mRNA-1273 vaccine67. Besides, the model predicts IgG
titers for two N/P ratios are similar. It is due to that the N/P ratio is
little varied for one kind of ionizable lipid, and the ML model is
difficult to discriminate the impact of the N/P ratio from ionizable
lipid. Inputting more diverse data can address this issue easily.

The structure of LNP is another important topic concerned in
the pharmaceutical field. The cryo-TEM images have shown that
LNPs are overall in dense core26,68 or lamellar23,69 structure.
However, visualization of LNP structure at a molecular level often
relies on modeling method70e72. In the present study, we per-
formed an MD simulation of LNP entrapping mRNA (Fig. 8).
During the simulation, the firstly dispersed lipids aggregate to
form small dense core particles. The mRNA can twine around or
be partly entrapped in these lipid particles. Besides, mRNA
twining around multiple particles is also possible. Analysis of the
aggregation behavior (Fig. 10) shows that system SM102-6:1
(SM-102-based, N/P ratio 6:1) converges most rapidly and
forms the most compact structure, while system MC3-6:1 forms a
relatively loose structure. Interestingly, increasing the lipid con-
tent (N/P ratio from 3:1 to 6:1) makes the SM-102 system more
compressed but loosens the MC3 system. These results indicate
that both ionizable lipid type and N/P ratio influence the LNP
aggregation behavior. Our simulated LNP structure agrees with
another all-atom modeling result by Rissanou et al.70, who have
simulated the aggregation behavior of mRNA and so-called DML
lipid molecules, wherein mRNA also twines around the LNPs.

The interaction between the phosphate on mRNA and the ni-
trogen on ionizable lipids is of research interest. The electrostatic
effect between the two kinds of molecules is presumed to promote
the mRNA binding to LNP28. Our modeling result suggests that
during the LNP formation, lipids aggregate first, and mRNA
twines around LNP with its phosphate groups getting close to
nitrogen atoms. This binding is also helped by the hydrophobic
effect implemented on the nucleosides of mRNA, resulting in
those nucleosides generally directing to or lying on the LNP.
Besides, hydrogen bonds70 is reported to be another potential
factor facilitating this binding.

The all-atom dynamic simulation provides rich insights into
the LNP formation mechanism. However, limited to computa-
tional capacity, this method can only handle small simulated
systems. Considering scaling up the system based on the mecha-
nism of particle formation deduces theoretical structures of LNP
as Fig. 11. At the first stage of mixing, lipids in the vicinity should
aggregate to form small clusters and attach to mRNA in the line.
This step is supported by the MD modeling (Fig. 8D and Ref.70).
The lipid clusters tend to fuse by their nature to reduce the surface
energy, but the cluster volume cannot grow unlimitedly since the
main stuff, the ionizable lipid, is amphipathic. Thus, the cluster
either grow along the mRNA (Fig. 11C) or enlarge like a liposome
particle (Fig. 11D), and this deduces two theoretical LNP structure
(Fig. 11E and F), respectively. The tunnel organization of the LNP
core proposed in Fig. 11E is supported by the transmission elec-
tron microscopy (TEM) image73, which shows the LNP core
texture as many arranged channels. These channels correspond to
hexagonal phase rods, as reported. The liposome-like volume
proposed in Fig. 11F is also recorded by TEM and is called
“blebs”. The occurrence of this structure seems to depend on PEG
content73, DSPC content, and the type of nucleic acids entrap-
ped22. It seems that long nucleic acids, such as DNA and mRNA,
are likely to induce the blebs. It is reasonable since longer nucleic



Figure 8 The snapshots of four lipid systems for 200 ns MD simulation: (A) SM102-3:1; (B) SM102-6:1; (C) MC3-3:1; (D) MC3-6:1; water

molecules were not displayed in the figure. Red represents mRNA; purple represents SM-102 ionizable lipid; blue represents MC3 ionizable lipid;

yellow represents cholesterol; cyan represents DSPC; green represents PEG2000-DMG.

Figure 9 The snapshots of four lipid systems for 200 ns MD simulation: (A) SM102-3:1; (B) SM102-6:1; (C) MC3-3:1; (D) MC3-6:1; water

molecules were not displayed in the figure. Yellow: mRNA sequence. Blue: nitrogen on the ionizable lipids.
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acids form a larger obstacle in the system, which may induce
clusters fusing less randomly in the space and result in a hetero-
geneous particle. As for the other three lipids in LNP, PEG-lipid,
and DSPC, mainly located at the exterior, while the cholesterol
helping to constitute the core, are also evidenced73,74.

In this study, the ML model was built to predict the formu-
lation of mRNA vaccines, and the MD method was used to
Figure 10 Quantitative analysis of four lipid systems during 100 ns MD

Solvent accessible surface area of the mRNA sequence vs. time. (C) Mas

system as a function of the distance from the geometric center of the sys
investigate the LNP formation. The application domain is a crit-
ical issue for an ML model. Our model was trained on data from
ionizable lipids across a long history. These lipids contain
important substructures such as the tertiary amine, hydroxy group,
ester bond, secondary ester bond, and dienyloxy chain, which
have been represented as ECFPs and can be combined to build
other new and typical lipids. Thus, the coverage of ionizable
simulation. (A) Root mean square displacement (RMSD) vs. time. (B)

s-weighted radius of gyration (Rg) vs. time. (D) Density profile of a

tem.



Figure 11 The evolution of lipids fusion and theoretical structure of mRNA LNP system. (A) At the initial mixing stage, lipids form many

small clusters and attach along the mRNA sequence by electrostatic effect. (B) The clusters getting close tend to fuse into a bigger cluster to

decrease the surface energy. The tails of lipid in these clusters are reduced for clarity. Then, more clusters participate in the fusion to form a long

lipid particle (C) or liposome-like particle (D). If the fusion primarily results in long lipid particles, they should form tube structures in the core of

LNP (E). Otherwise, lipid fusion leading to liposome-like particles produces LNP containing a large chamber filled with aqueous phase (F). The

DSPC and PEG should locate at the exterior of LNP while cholesterols insert in the interval between lipids.
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lipids in our model is extended, benefiting the formulation se-
lection, which is the primary target of our study. On the other
hand, though we have collected data as much as possible, the
resulted data size is still relatively small, and the searched anti-
gens cover just several diseases, which narrows the range that uses
this model to predict IgG titer for specific diseases. Besides, small
data size impedes the further analysis about the dependence of
LNP formulation on specific diseases. More data of diverse dis-
eases and formulations are desired in the future to expand its
application domain and refine the design of LNP for specific
diseases. As for MD simulation, the current simulated systems are
relatively small in scale. To our best knowledge, modeling on
LNP at a typical size with good stability (60 nm)24 has not been
published. Thus, the real internal structure of an LNP can only be
deduced. The recently reported ML-based MD modeling method
has dramatically increased the scale of simulated systems75,
which may become a powerful tool in LNP modeling in the
future. Last, the current study has not revealed the relationship
between MD results and LNPs’ pharmacological effect. More MD
modeling associated with data science technology is promising to
deal with this issue.

5. Conclusions

The first ML model has been successfully developed to predict the
LNP formulations with the IgG titer of the mRNA vaccine, which
is validated by in vivo test on the ACE2 expression. The ML
model also recognizes important substructures of ionizable lipids.
The MD model is used to investigate the aggregation behavior and
the molecular structure of LNP. The integrated computational
methodology is able to design better ionizable lipid, which serves
a constructive role in the formulation development of nucleic
acids therapeutics.
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