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Abstract: In this report, layer by layer (LBL) fire retardant coatings were produced on wood ply and
Polypropylene Homopolymer/Flax fiber composites. FE-SEM and EDAX analysis was carried out to
analyze the surface morphology, thickness, growth rate and elemental composition of the samples.
Coatings with a high degree of uniformity were formed on Polypropylene composite (PP/flax), while
coatings with highest thickness were obtained on wood ply (wood). FTIR and Raman spectroscopy
were further used for the molecular identifications of the coatings, which confirmed the maximum
deposition of the solution components on the wood substrate. A physiochemical analysis and model
was proposed to explain the forces of adhesion between the substrate and solution molecules. Fire
protection and thermal properties were studied using TGA and UL-94 tests. It was explored, that
the degradation of the coated substrates was highly protected by the coatings as follows: wood
> PP/flax > PP. From the UL-94 test, it was further discovered that more than 83% of the coated
wood substrate was protected from burning, compared to the 0% of the uncoated substrate. The
flammability resistance of the samples was ranked as wood > PP/flax > PP.

Keywords: cellulose nano-fibrils; fire retardant coatings; DLVO theory; FTIR; UL-94; LBL

1. Introduction

Every year, around the globe, fire causes massive loss to human life and property.
The reason behind such tragic losses is the increasing use of polymers-based products,
wood and other highly flammable goods. Although initiation of fire cannot be stopped
due to the nature of the pyrolysis reaction, the speed of the fire, intensity of the fire and its
flammability can be retarded using novel bulk and surface coating techniques, in order to
provide sufficient time for human evacuation and emergency response measures [1].

Polypropylene and wood ply used in this study has widespread use in automo-
tive, electrical, packaging, transport and commercial goods, chemical tanks and medical
applications, due to its low cost, easy processing, low corrosion, excellent mechanical
properties, durability, and fatigue properties [2–4]. However, the inherent flammability
and melt dripping problems particularly with PP have restricted its widespread applica-
tions [5,6]. Previously, various efforts have been made to improve the fire vulnerability
of the PP. For instance, when 25% wt% loading of pentaerythritol (PER) and ammonium
polyphosphate (APP) were added to the PP matrix, a vertical burning test V-0 rating was
achieved [6]. However, such high quantity loadings causes significant negative shift in
the mechanical properties and migration of additives in the PP matrix. Furthermore, Zuo
et al., incorporated poly (2-morpholinyl-4-pentaerythritol phosphate-1,3,5-triazine) PMPT,
a novel intumescent fire retardant (IFR) into PP, achieving improved thermal stability
and flame retardancy of PP with lesser effects on the mechanical properties [7]. Lai et al.
introduced another IFR, poly(-ethanediamine1,3,5- triazine-o-bicyclic pentaerythritol phos-
phate) (PETBP) and achieved high durability and thermal stability [8]. However, precursors
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of these IFRs, such as cyanuric chloride [8,9] or phosphorus oxychloride [10,11] are highly
reactive and toxic to the environment.

This situation created a strong demand for environmentally friendly materials and
techniques to be adopted for fire protection purposes. In this regard, extracted deoxyri-
bonucleic acid (DNA), starch, chitosan and nano-fibrillated cellulose (CNF) are among
the novel materials to be considered for fire retardant research and applications [12–15].
Nano-fibrillated cellulose (CNF) as characterized from its nano-dimensions (3–15 nm in
diameter and 0.7–3 µm in length) are derivative of cellulose, obtained from wood or
other sources, [15,16] representing an interesting bio-based material due to its attractive
properties. These properties include high specific strength and elastic modulus ~150 GPa
combined with low weight [17], high specific surface area [18,19], low thermal expansion
coefficient ~10−7 K−1 [20], recyclability and transparency [21]. Due to these interest-
ing properties, CNF is used in several applications such as biomedical products [22,23],
biodegradable packaging materials [24], transparent composites [25,26] and sensors [27–30].
However, the use of CNF as fire retardant coating materials is still nascent, limited by
various constraints and specific to few kinds of substrates [31–33].

LBL is a process through which layer by layer deposition of various materials includ-
ing CNF is carried out by dipping the substrate in alternate polyelectrolytes solutions.
Chemical species in the polyelectrolyte solutions attach to the substrate by electrostatic
attraction, yielding highly interpenetrated and uniform nanostructured coatings. Schematic
presentation of the LBL process is shown in Figure 1. Reports suggest that fire protection
properties of various substrates, such as cotton and polyester fabrics [34–37] polyamide
and flexible polyurethane foams [38,39] have been highly improved using combination
of LBL technique and appropriates materials. To the knowledge of the author, there is
no generous literature related to LBL-based coatings on wood ply, polypropylene and its
composite using a combination of cationized CNF and 2D VMT clay. Therefore, this project
presents a novel contribution to produce nature-based VMT/C-CNF assembly for the first
time on PP and wood ply substrate materials using LBL technique.

Figure 1. Schematic diagram of layer by layer (LBL) mechanism and process.
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2. Experimental Section
2.1. Materials and Substrates

VMT clay (vermiculite) was obtained from a specialized local company. The obtained
VMT was ground and sieved from a strainer of 50 µm mesh size. Cellulose nano-fibrils were
obtained from ANPOLY, Gyeongju, Korea, prepared through TEMPO oxidized method. A
semitransparent CNF gel was prepared using 2 wt% CNF fibers in deionized water (DI)
with a conductivity ~1.4 µS/cm. The suspension was homogenized using long time stirring
for about 48 h. The VMT solution was obtained using 1% of VMT platelets and was stirred
for about 48 h.

2.2. Layer-by-Layer Assembly

LBL coatings were deposited on three kinds of substrates, i.e., wood ply (wood),
molded Polypropylene Homopolymer (PP) and Polypropylene Homopolymer/Flax fiber
composite (PP/flax). In order to activate the surface of the substrates, UV light and acidic
solutions were used for initial substrate treatments. The substrates were initially soaked
in 0.1 M HNO3 solution for 1 h. Subsequently, the substrates were dried and treated
through UV light (80%) for 60 s. To deposit LBL coatings, the pre-treated substrates were
alternatively immersed into CNF and VMT solution. The process mechanism and steps are
shown in Figure 1. A total of 3 bilayers were deposited on each substrate. The first dipping
process was maintained for 5 min and then dried at 60 ◦C while the next two bilayers were
deposited by immersing the substrates in each solution for 2 min.

2.3. Measurements

The coated samples were analyzed through FTIR spectroscopy (JASCO 6300, Jeddah,
Saudi Arabia), in the frequency range ~(4000 to 400 cm−1). The spectra profiles were
recorded after 32 scans by FTIR spectrometer. Raman analysis was carried using Raman
spectrometer (JACSCO, JP/NRS-3300). The laser beam wavelength used for the Raman
analysis was ~785 nm. For FE-SEM, the substrates were coated with a Pt layer, and
morphologies were observed using FE-SEM (TESCAN, Pleasanton, CA, USA) (CZ/MIRA
I LMH). Elemental analysis of the overall coating surface and localized positions were
carried out using EDAX connected with the FE-SEM. Transmission electron microscopic
(TEM) images of the CNF nano-fibrils were obtained by Bio-TEM using low acceleration
voltage of 200 V (Anpoly, Gyeongju, Korea).

2.4. Thermal Protection Properties

To analyze the sample for thermal degradation, TGA of samples were carried out
under nitrogen atmosphere (20 mL/min) using Perkin Elmer Pyris-1 (Waltham, MA, USA)
instrument in the temperature range (50 to 600 ◦C) at a heating rate of 20 ◦C/min. The
flame test was carried out using UL-94 horizontal flammability test. Shape and dimensions
of the specimens are shown in the discussion sections. Each specimen was exposed to the
fire flame for 10 s, and the flame was then removed. Time and residue were recorded after
the flame was removed.

3. Results and Discussion
3.1. Surface Morphology and Growth Analysis

Surface morphology of the coating layers formed on various substrates can be seen in
Figure 2a–c. It can be seen that surface of coatings on PP is porous, irregular and divided
into portions and layers. Such irregular structure causes partial coverage of the substrate,
which finally affects the protection properties of the coatings. These sub-portions and
overlapping layers are composed of micro-granular structure. As the surface was charged
using UV technique, it could be possible that the charge distributed preferentially on the
surface, thus leading to the formation of inhomogeneous interaction domains and final
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layers. The surface charge “σ” accumulated on the substrates surface by the UV can be
written using the Grahame equation [40]

σ =

√
8kTεεon∞sin h

(
zeψo
2KT

)
. (1)

where k is Debye length, ψo is the surface potential. Furthermore, it can also be possible
that localization of charges and thus the inhomogeneity could be caused by the steric and
other effective adhesion forces. The major attraction responsible for adhesion between the
solution components and substrate can be obtained using simple parallel plats approx-
imation. Considering the CNF as 2D materials with infinite width and length compare
to negligible thickness, as an extension to the work of Buning et al. [41], the double layer
interaction can be written as

VDL = 64nkTxY2S
1
k2 exp(−κH) (2)

where S is the surface area that is equal to wL for parallel cubic prismatic rods having
width denoted by w and length by L. The approximation is valid in this case as reported
elsewhere [42]. Similarly, having the stated assumption, the van der Waals attraction can
be fitted for flat-plan surface geometry as;

VVW = −
(

A
12πH2

)
S (3)

where H’ is the distance between the the cellulose fiber and the substrate surface, and “A”
is the Hamaker constant ~5 × 10−21 j [43]. In case of PP/flax, as in Figure 2b, it can be seen
that the surface is highly uniform and densely packed. Furthermore, there can be seen very
small size of VMT sheets distributed randomly on the surface, suggesting the effective LBL
deposition. Surface uniformness could be attributed to the enhanced effect of UV activation
and the negligible role of non-DLVO forces (bridging, solvation, steric and hydrophobic
forces) [40–44]. It is important to mention that the presence of micro and nanofibers in the
PP/flax matrix substrate could have played a significant role in the uniform activation of
surface upon UV interaction. In the case of wood, the surface has compact layers structure,
with minimum porosity and patches distribution. Due to the higher roughness of the wood
substrate, the steric forces could also play a role in the interaction process between substrate
and solution components. Thus, the coatings on wood have higher grain size and thickness
compared to other coatings. During the LBL process, in addition to electrostatic and van der
Waals interactions, friction, steric, capillary condensation and hydration forces could also
contribute; however, compared to the strong effect of the former two forces, effects of the
later forces can be neglected, or the attachment caused by these later forces could be sacked
during the washing process. Figure 2d–e shows the cellulose nano-fibrils morphology and
structure. At lower resolution, as obtained through FE-SEM, precipitate-type morphology
appeared. However, further resolved through low voltage TEM, as obtained from Anpoly,
the morphology composed of micron size fibrils. Growth characteristics were studied using
thickness of the cross-section layers. Thickness of all the coatings deposited on the substrate
can be seen in Figure 3d. High values of thickness can be observed in the case of wood
coatings, while the other samples have relatively lower values of thickness. Deposition of
the thicker layers on the wood can be attributed to the initial surface roughness (Amontons’
Law at micro scale) and the effective van der Waals interaction as wood ply have better
surface charge accumulation.
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Figure 2. Surface morphology of the coatings formed on various substrates obtained through FE-SEM., (a) Polypropylene
Homopolymer (PP) (b) PP/flax (c) wood (d) nano-fibrillated cellulose (CNF) (e) CNF1.

Figure 3. Cross section profiles of the coating through FE-SEM (a) PP (b) PP/flax (c) wood and
(d) average thickness values.

Growth of the multilayers assembly follows the relation obtained experimentally from
the fit of QCM negative frequency change [45].

− Df = An + Bexp(Ron)− 1 (4)

where “n” is the number of single layer, A, B represents the amplitude of contribution with
linear growth and exponential growth respectively. Surface uniformity and adhesion of the
coatings can also be observed from the cross section, which confirm the highly uniform
coatings in the case of PP/flax. Furthermore, the layers in the case of PP/flax are highly
smooth and free from dendrites, broken parts or patches. This suggests excellent deposition
of the layers on the PP/flax substrate.
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3.2. Spectroscopic Analysis

Figure 4a shows the FTIR spectra of the individual CNF and coatings. A broad
absorption band can be seen around at 3370–3250 cm−1, which can be attributed to the
stretching vibrations of the OH groups attached to the cellulose structures in the CNF [40].
Such peaks can be observed with high intensity in the case of wood compared to other
samples, which suggests maximum deposition of the coating material on the wood. In the
middle wavelength ranges, the peak detected at 1614 cm−1 has two possible causes, i.e.,
bending mode of the absorbed water or stretching C=O bond [46,47]. Another peak can
be traced at 1061 cm−1, which was caused by the asymmetric stretching of C-O-C bond
in the cellulose. The stretching vibrations of the C–O–C bond, which are signified by β
(1→4)-glyosidic linkage, occur as consequence glucose structure vibration and contribution
from the OH bending [48]. In case of PP, the peaks are very weak and un-identifiable,
suggesting lesser quantity of cellulose/VMT matrix deposited through LBL process. The
FTIR results can be seen as in agreement with the literature [48–50].

Figure 4. (a) FTIR and complementary and (b) Raman analysis for each coating.

For complementary observation and deposition features, Raman spectrums of the coat-
ings were obtained as shown in Figure 4b. For homo-atomic bond, Raman is more effective
than IR, as in the case of C=C bond [51]. Therefore, polar functional groups can be resolved ef-
fectively through strong IR bands, while vibrations of non-polar groups can be easily resolved
through Raman lasers [52–54]. In Figure 4b, the peak at ~2883 cm−1 represents CH and CH2
stretching, while the peak at ~1608 cm−1 represents H–C–H and H–O–C bending. The peaks
in the middle range at ~1471.5 cm−1 and ~1191 cm−1 signify H–C–C, H–C–O and H–O–C
bending respectively. The lower range peaks obtained at ~1013 cm−1 represent C–C and
C–O stretching, while the peak at ~819 cm−1 can be attributed to C–O–C in plan symmetric
bending [55–58]. It can be observed that the Raman bands are fewer and lightly overlapped
compared to that of infrared spectrum. In Figure 4, C–O stretching was observed in both
IR spectrums ~1614 cm−1 as well as in Raman spectrum at~1608 cm−1. However, the
major difference appears in the range ~ (200–500 cm−1), which is caused by the aromatic
C=C stretching as shown Figure 4b. Peaks in the lower range of wavelength, specifically
attributed to C=C stretching, can be seen with high intensity in the Raman profile compare
to that in the IR profile, suggesting the proportional deposition of CNF/VMT coatings on
the substrates. Peaks obtained from the coated PP/flax and wood were very sharp and
clearly distinguishable, which suggest the high polycrystalline structure and well pattern
layer by layer coatings.

In order to carry out compositional investigation of the coating layers, elemental
analysis profile was obtained as shown in Figure 5a. It can be seen that “Na” and Al, Si, K,
Mg are particular peaks of VMT sheets. All coated specimens, except PP, revealed traces of
the elements from VMT in a dominant quantity ~50% as mentioned in Table 1. Similarly,
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the traces of CNF composition can be confirmed in the coating profiles. Furthermore, the
quantity of “C” increased in the coating profiles compare to the individual entities.

Figure 5. Elemental analysis spectroscopy of the coatings (a) before burn test and (b) after burn test.

Table 1. Elemental analysis before burn test.

Samples (At%) C O Al Na Mg K Si

CNF 73.19 24.11 2.56
PP 93.20 5.98 0.83

PP/flax 39.85 45.83 1.71 1.14 4.4 0.54 3.7
wood 38.4 52.5 1.29 1.78 3.9 0.31 2.2
VMT 31.79 47.51 4.58 7.9 1.61 7.0

3.3. Thermal and Fire Resistance Properties

Thermogravimetric (TGA) analysis was carried out to observe the thermal degradation
behavior of each coated substrate as shown in Figure 6, (a) weight loss curve and (b)
derivative curves. The residue amounts at 300, 500 and 600 ◦C for each substrate are
summarized in Table 2.

Figure 6. TG and DTG profiles of the non-coated and coated substrate under nitrogen atmosphere.

Table 2. Thermal parameters obtained from TGA analysis.

Samples Residue (%)
at 350 ◦C

Residue (%)
at 500 ◦C

Residue (%)
at 600 ◦C

Uncoated PP 99.83 0.88 0.1
PP 94.05 9.0 5.51

Uncoated PP/flax 98.3 5.4 4.4
PP/flax 96.96 21.2 7.76

Uncoated wood 64.3 24.64 21.59
wood 61.1 26.58 24.07
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It is evident from the derivative-curves, that there is significant increase in the degra-
dation temperature for all the coated samples, which suggest enhanced thermal protection.
Similarly, the residues obtained for the coated samples were significantly higher compare
to the uncoated samples. The degradation of the uncoated wood occurred at around
~350 ◦C, which is caused by two competitive pathways: the depolymerization of glycosylic
units into volatile products (levoglucosan) and the decomposition of the same units into
thermally stable aromatic char (residue) as reported [59]. It is believed that the degradation
of coated and uncoated wood followed the same route, except the significant decrease
in degradation rate of the coated wood and final residue as shown in Table 2. At 600 ◦C,
less than 21.4 wt% residue was obtained for uncoated wood. However, adding only 3BL,
the residue weight increased up to ~24.5% which is 3 order of higher magnitude than the
uncoated wood. The residual differences can also be seen at the pre-final stages (around
300 ◦C). The increase amount of residue for coated samples clearly demonstrates the
protection of substrates during TGA test. The onset temperatures of PP/flax and PP are
lower than the uncoated PP and PP/flax substrates, which can be attributed to the earlier
degradation of the CNF-based layers that could possibly degraded earlier to form the
intumescent char [60]. However, such intumescent char could shield the substrate from
flaming; therefore, the lowered decomposition temperature is likely necessary rather than
a defect of the CNF/VMT based LBL-layer system. The protection of the intumescent
char can be confirmed from the residual weight at higher temperature. In case of wood
samples, the difference in the onset temperature cannot be observed evidently; however,
the residue at higher temperature is higher for coated wood, compared to the uncoated
wood substrates. Besides, a consistent reduction in residue % age at 350 ◦C can be seen
for all the coated substrates, which verify the initial degradation of the CNF-VMT matrix
layers, thus protecting the substrates in the ending regime.

Comparison of the residual values at various stages for each coated and uncoated
specimen can be seen in Figure 7. At higher temperature, the uncoated PP specimens
completely vanished compare to its coated counter parts. In case of PP/flax, the residues
left at 500 and 600 ◦C are quite high compared to those of uncoated PP/flax specimens,
suggesting the effective resistance of the coating layers on PP/flax substrate.

Figure 7. Comparative profile of the residue left at various temperatures during TG.

The same set of samples was put through UL-94 test (ASTM D6413). Flammability
was tested by holding a butane torch on one side of the samples for 10 s. The flame heat
causes stepwise effects, such as flame impingement, decomposition, ignition, flame spread
and extinction processes. Ignition temperature, conductivity, density and specific heat of
the deposited LBL coatings are highly responsible for retarding the fire. These are called
thermal response parameters, which have direct relation with the ignition characteristics as
given by the relations [61]:

tig =

(
TRP

q ′

)2
(5)
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where “q’" is the net heat flux. During the flammability test, it was observed that a brighter
and more vigorous flame was created after ignition for each uncoated substrate. This is well
expected due to the high flamable nature of the uncaoted substrates. For each uncoated
sample, no significant length (residue weight) was left. On the contrary, a significant
residual length was left for each coated sample before extinguishing as can be seen in
Figure 8a–c. The maximum protection of the substrate by the coatings was observed
for wood and PP/flax, with leftover residue length as ~84% and 73% respectively. The
enhanced thermal protection of the coated wood can be attributed to the higher thickness
of the coating layers and in case of PP/flax, the improved adhesion between CNF and VMT
resulting from the LBL structuring and uniformity [55]. Generally, three phenomena can be
attributed to the fire protection mechanism offered by the coatings as shown in Figure 9a–g:
(a) Excellent flame protection by the efficient thermal barrier by the coatings that causes
reduction in thermal degradation of the substrate as also confirmed by thermogravimetric
analysis (TGA). The schematic presentation of such barrier layer is shown in Figure 9c.
(b) Protection by the char, produced as a result of CNF-VMT matrix. Since the coatings
layers burns with time, the char produced by the CNF/VMT matrix act as a blocking
agent to retard the fire access to the actual substrate as in Figure 9d,e. (c) Gases emission
by the coating layers that cause saturation of the near-surface zone and thus limit the
diffusion of oxygen to burn with carbon as in Figure 9f,g and prevent the chain reactions
resulted from combustion as reported [1]. Morphological analysis of the char produced
after the UL-94 test was carried out as shown in Figure 10a–d. PP/flax and wood char
were selected for the after-burn FE-SEM analysis. It can be seen that char of the coated
wood has regular and well-shaped cellular structure. Apparently, the coatings effectively
retarded the fire to protect the structure from damage. However, the uncoated wood has
broken sub-structures, due to the fatal damage caused by the fire. The cracks and broken
parts have been used for the intake of oxygen to react the combustible gases, produced
through degradation. It can be further confirmed from the EDS spectra, that the coated
wood has significant percentage of solution components, i.e., (Mg, Al, Si) as mentioned
in Table 3, which suggests the resistance offered by the coatings to large extent before
degradation. Similarly, char of the coated PP/flax and uncoated PP/flax can be seen in
Figure 10c,d. Coated specimen have compact structure with no cracks or broken patches;
however, the uncoated counterpart can be seen as ruptured with larger cracks and patches.
It suggests that uncoated PP/flax could not withstand against the fire, while 3 BLs coatings
on PP/flax effectively protected the substrate from the significant mechanical damages.
Therefore, addition of few BLs coatings, caused not only fire protection but also enhanced
the mechanically stability of the substrates.

Figure 8. (a–c) Flame test specimens and (d) % of the residue left after flame test.
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Figure 9. Threefold mechanisms offered by coatings to protect the substrates.

Figure 10. Surface morphology of the char produced after flame test. (a) coated wood, (b) uncoated
wood (c), coated PP/flax and (d) uncoated PP/flax.

Table 3. Elemental analysis after-burn test.

Samples (At%) C O Al Au Na K

PP/flax 95.71 3.96 0.33 0.03
Uncoated PP/flax 97.1 2.73 0.08

wood 89.54 9.37 21.59 0.05 0.39 0.69
Uncoated wood 87.99 10.95 0.07
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4. Conclusions

LBL coatings were successfully deposited on wood ply, PP and PP/flax substrates
using CNF/VMT based polyelectrolyte solutions. From the surface analysis, relatively
uniform layers were formed on PP/flax; however, rough and thick coatings were observed
on the wood substrates. FTIR and Raman spectroscopy further confirmed the maximum
deposition of solution components on the wood samples. Thermal degradation of the
coated substrates suggested significant improvement in the residue weight at 600 ◦C as
follows: wood (24.0%) > PP/flax (7.8%) > PP(5.5%), compared to the uncoated counterparts
as 0.1%, 4.4% and 21.6%, respectively. Using UL-94 fire test, it was further explored that
self- extinguishing was achieved with enhanced anti-flammability properties of the coated
substrate as follows: wood > PP/flax > PP. The after-burn surface analysis suggested
improvement in mechanical integrity of the original microstructure of the wood and
PP/flax substrates. Three important mechanisms, i.e., physical barrier, char resistance
and retardant gases emission, were suggested as being responsible for the improved
fire-retardant properties of the wood and PP/flax substrates.
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