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Background-—Readmissions after hospitalization for acute myocardial infarction (AMI) are common. However, the few currently
available AMI readmission risk prediction models have poor-to-modest predictive ability and are not readily actionable in real time.
We sought to develop an actionable and accurate AMI readmission risk prediction model to identify high-risk patients as early as
possible during hospitalization.

Methods and Results-—We used electronic health record data from consecutive AMI hospitalizations from 6 hospitals in north
Texas from 2009 to 2010 to derive and validate models predicting all-cause nonelective 30-day readmissions, using stepwise
backward selection and 5-fold cross-validation. Of 826 patients hospitalized with AMI, 13% had a 30-day readmission. The first-day
AMI model (the AMI “READMITS” score) included 7 predictors: renal function, elevated brain natriuretic peptide, age, diabetes
mellitus, nonmale sex, intervention with timely percutaneous coronary intervention, and low systolic blood pressure, had an
optimism-corrected C-statistic of 0.73 (95% confidence interval, 0.71–0.74) and was well calibrated. The full-stay AMI model, which
included 3 additional predictors (use of intravenous diuretics, anemia on discharge, and discharge to postacute care), had an
optimism-corrected C-statistic of 0.75 (95% confidence interval, 0.74–0.76) with minimally improved net reclassification and
calibration. Both AMI models outperformed corresponding multicondition readmission models.

Conclusions-—The parsimonious AMI READMITS score enables early prospective identification of high-risk AMI patients for
targeted readmissions reduction interventions within the first 24 hours of hospitalization. A full-stay AMI readmission model only
modestly outperformed the AMI READMITS score in terms of discrimination, but surprisingly did not meaningfully improve
reclassification. ( J Am Heart Assoc. 2018;7:e008882. DOI: 10.1161/JAHA.118.008882.)
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H ospital readmissions after acute myocardial infarction
(AMI) are frequent, costly, and potentially avoidable.1–4

Nearly 1 in 6 patients with AMI have an unplanned
readmission within 30 days of discharge, accounting for over
$1 billion of annual healthcare costs.1,2 Since 2012, hospitals
have been subject to financial penalties for excessive 30-day

readmissions among patients hospitalized for AMI under the
Hospital Readmissions Reduction Program, implemented by
the Centers for Medicare and Medicaid Services (CMS).
Although federal readmission penalties have incentivized
readmissions reduction intervention strategies (known as
transitional care interventions), these interventions are
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resource intensive, are most effective when implemented well
before discharge, and have been only modestly successful
when applied indiscriminately to all inpatients.5–8

Predicting which patients with AMI are at highest risk
for readmission would enable both clinicians and hospitals
to proactively identify and target patients who are the
most likely to benefit from intensive readmission preven-
tion interventions, simultaneously optimizing the allocation
of scarce intervention resources and maximizing the
potential for a successful and sustainable intervention.9,10

Head-to-head comparisons of multicondition versus dis-
ease-specific readmission risk prediction models suggest
that disease-specific models are superior.11 However, a
recent systematic review of AMI-specific readmission
models found that current models have only modest
predictive ability and with uncertain generalizability
because of methodological limitations.12 Furthermore, few
existing AMI-specific models have the potential to provide
actionable data early during a patient’s hospital course,
which is the optimal time to initiate interventions to
maximize effectiveness.5,8,12

Thus, the objectives of this study were (1) to create a
pragmatic, actionable, and accurate prediction model to
identify patients with AMI at high risk for 30-day readmission
as early as possible during hospitalization (ie, on the first day);
(2) to assess whether including clinical data from the full
hospital stay would meaningfully improve model performance
compared with using data only from the first day of
hospitalization; and (3) compare our AMI models to other
published readmissions models.13–15

Methods

Study Design, Population, and Data Sources
The data, analytic methods, and study materials will not be
made available to other researchers for purposes of repro-
ducing the results or replicating the procedure because of the
terms of our data use agreements. We conducted a
retrospective observational cohort study using electronic
health record (EHR) data routinely collected as part of clinical
care from 6 diverse hospitals with percutaneous coronary
intervention capabilities located in the Dallas-Fort Worth
Metroplex in north Texas from 2009 to 2010, including safety
net, community, teaching, and nonteaching hospitals. All
hospitals used the Epic EHR (Epic Systems Corporation,
Verona, WI). Details of this cohort have been previously
published.11,14–17 We used data from 2009 to 2010, before
hospital-based readmission interventions became widespread,
to ensure that AMI cohorts across all 6 hospitals were
comparable. (Although penalties under the CMS Hospital
Readmissions Reduction Program were not administered until
2012, many hospitals across the country including in our
region began implementing interventions in 2010 after the
Patient Protection and Affordable Care Act was signed into
law.18)

We included consecutive hospitalizations among adults
≥18 years old discharged with a principal diagnosis of AMI
(International Classification of Diseases Ninth Revision, Clinical
Modification [ICD-9-CM] codes 410.xx, excluding 410.x2 for
subsequent episode of care for AMI), consistent with the
definition used by CMS for the Hospital Readmissions
Reduction Program.19 For individuals with multiple hospital-
izations during the study period, we included only the first
hospitalization. We excluded individuals who were transferred
to another acute care facility, left against medical advice, who
died during hospitalization or within 30 days of discharge, or
who did not have any abnormal troponin values during
hospitalization.

Outcomes
The primary outcome was all-cause 30-day hospital readmis-
sion, defined as a nonelective hospitalization within 30 days
of discharge to any of 75 acute care hospitals within a 100-
mile radius of Dallas, ascertained from an all-payer regional
hospitalization database.

Candidate Predictors
We included all variables from our previously published
multicondition EHR readmission models as candidate predic-
tors, including sociodemographics, prior utilization, Charlson
comorbidity index, select laboratory and vital sign

Clinical Perspective

What Is New?

• Among current readmission risk prediction models for acute
myocardial infarction, the acute myocardial infarction
READMITS score (renal function, elevated brain natriuretic
peptide, age, diabetes mellitus, nonmale sex, intervention
with timely percutaneous coronary intervention, and low
systolic blood pressure) is the best at identifying patients at
high risk for 30-day hospital readmission; is easy to
implement in clinical settings; and provides actionable data
in real time.

What Are the Clinical Implications?

• The acute myocardial infarction READMITS score can be
used by clinicians at bedside to accurately predict which
patients hospitalized with acute myocardial infarction are at
high risk for readmissions within the first 24 hours of
admission, allowing for targeted readmission reduction
interventions.
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abnormalities, length of stay, hospital complications (eg,
venous thromboembolism), and disposition status.11,14,15

Laboratories and vital signs were categorized and/or
dichotomized based on cut points identified in previous
studies.11,14,15 We also assessed additional variables specific
to AMI for inclusion that met the following criteria: (1) available
in the EHR of all participating hospitals; (2) routinely collected
or available at the time of admission or discharge; and
(3) plausible predictors of adverse outcomes based on prior
literature and clinical expertise of our multidisciplinary
research team. These included select comorbidities such as
coronary artery disease, depression, diabetes mellitus, hyper-
tension or chronic kidney disease; AMI-related severity of
illness on admission (ie, any of the following occurring within
the first 24 hours of admission: presence of heart strain
defined as elevated brain natriuretic peptide [BNP] serum
level, presence of shock defined as systolic blood pressure
≤100 mm Hg, ST-elevation myocardial infarction [ICD-9
codes 410.x, excluding 410.7 for non–ST-segment–elevation
myocardial infarction], elevated troponin level, and transfer to
the critical care or intensive care unit); in-hospital complica-
tions and procedures (ie, use of intravenous diuretics as a
proxy for acute decompensated heart failure; undergoing
coronary artery bypass grafting after the first 24 hours;
receipt of blood transfusion as a proxy for potential bleeding
complications, since diagnosis codes for such complications
were infrequently documented); and the presence of labora-
tory and vital sign abnormalities within 24 hours of discharge.

Statistical Analysis
Model derivation

We developed 2 separate AMI-specific models: 1 incorporat-
ing data from only the first 24 hours of hospitalization,
termed the “first-day” AMI model, and a second model
incorporating data from the full hospital stay, termed the
“full-stay” AMI model. We classified candidate predictors as
available either within 24 hours of admission, or by the time
of discharge. For example, sociodemographic factors could
be ascertained within the first 24 hours of hospitalization,
whereas length of stay would not be available until discharge.
Clinical predictors with missing values (ie, comorbidities,
laboratory values) were assumed to be either not present (for
comorbidities) or normal (for laboratory values). Nonclinical
predictors such as sociodemographic characteristics, prior
utilization, and disposition status as well as vital signs had
very few missing values (<1% for each variable). Data on
laboratory values were missing for <2% of subjects, aside
from brain natriuretic peptide levels (addressed below). We
assessed univariate relationships between readmission and
each candidate predictor using a prespecified significance
threshold of P≤0.20.

Because of the use of both BNP and N-terminal pro-B-type
natriuretic peptide (NT-proBNP) across hospital sites, we
categorized natriuretic peptide levels as follows: low=BNP
<50 pg/mL or NT-proBNP <125 pg/mL; moderate=BNP 51
to 99 pg/mL or NT-proBNP 125 to 299 pg/mL; high=BNP
100 to 999 pg/mL or NT-proBNP 300 to 4999 pg/mL, and
extremely high BNP ≥1000 pg/mL or NT-proBNP ≥5000 pg/
mL. Values for BNP and/or NT-proBNP were not present for
39% of individuals; these were imputed as “normal/not
elevated.” Similarly, because of the use of both troponin I and
several different assays for troponin T across hospitals, we
transformed troponin into an ordinal variable, defined as
multiples of the upper limit of normal, using each hospital’s
specified reference values. Because neither of these
approaches yielded improvement in model performance, we
dichotomized both variables to maximize parsimony, using
BNP ≥50 pg/mL or NT-proBNP ≥125 pg/mL to define
“elevated” BNP and >10 times the upper limit of normal to
define “elevated” troponin.

Significant univariate candidate variables were entered in
respective first-day and full-stay AMI-specific multivariable
logistic regression models using stepwise backward selection
with a prespecified significance threshold of P≤0.10. In
sensitivity analyses, we alternatively derived our models using
stepwise forward selection using a significance threshold of
P≤0.10, as well as stepwise backward selection minimizing
the Bayesian Information Criterion and Akaike Information
Criterion separately, and also derived models for the
composite outcome of both 30-day readmissions and mortal-
ity in addition to readmissions only. These alternate modeling
strategies yielded models with predictors and effect sizes
nearly identical to those in our final models (data not shown).

Rationale for approach to “missing” data

Our aim was to create a pragmatic prediction model to
identify patients with AMI at high risk for 30-day readmission
using readily available real-time clinical data from the EHR.
Because our models were based on existing data collected as
part of clinical care (ie, not research or registry data), the
rationale for our approach to treating “missing” data on
comorbidities and laboratory data (including BNP and NT-
proBNP) as equivalent to “not present/normal” was based on
our understanding of clinical documentation workflows, which
are largely governed by the concept of “documentation by
exception.” This refers to the phenomenon that documenta-
tion of comorbidities and laboratory values in the EHR
typically only occurs when there is an exception to the
expectation that these are not present. For example,
“diabetes mellitus” is commonly documented but “diabetes
mellitus not present” is rarely documented in medical records
used for clinical care. Thus, lack of explicit documentation of
diabetes mellitus is highly likely to indicate that diabetes
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Table 1. Characteristics of Individuals Hospitalized with AMI

No Readmission (N=719) Readmission (N=107) P Value

Sociodemographic characteristics

Age (y) �SD 64.8�12.8 70.5�13.0 <0.001

Female, n (%) 237 (33.0) 51 (47.7) 0.003

Race/ethnicity 0.44

White 496 (69.0) 82 (76.6)

Black 90 (12.5) 11 (10.3)

Hispanic 103 (14.3) 11 (10.3)

Other 30 (4.2) 3 (2.8)

Primary payer, n (%) 0.001

Private 3431 (46.0) 36 (33.6)

Medicare 243 (33.8) 58 (54.2)

Medicaid 29 (4.0) 3 (2.8)

Charity, self-pay, or other 116 (16.1) 10 (9.4)

Median income per ZIP code <$30 000, n (%) 58 (8.1) 11 (10.3) 0.44

Utilization history

≥1 ED visit in past y, n (%)* 118 (16.4) 26 (24.3) 0.05

≥1 hospitalization in past y, n (%)† 135 (18.8) 33 (30.8) 0.004

Clinical factors from first 24 h

Nonelective admission, n (%)‡ 690 (96.0) 102 (95.3) 0.76

Clinical comorbidities, n (%)

Charlson comorbidity score§ 0.005

0 593 (82.5) 74 (69.2)

1 29 (4.0) 7 (6.5)

2+ 97 (13.5) 26 (24.3)

History of coronary artery disease 85 (11.8) 20 (18.7) 0.05

History of depression 18 (2.5) 7 (6.5) 0.02

History of diabetes mellitus 60 (8.3) 23 (21.5) <0.001

History of hypertension 89 (12.4) 20 (18.7) 0.07

History of chronic kidney disease 45 (6.3) 20 (18.7) <0.001

Severity of illness measures in first 24 h, n (%)

Systolic blood pressure ≤100 mm Hg 373 (51.9) 72 (67.3) 0.003

PCI within first 24 h 341 (47.3) 31 (29.0) <0.001

ST-elevation myocardial infarction|| 188 (26.2) 23 (21.5) 0.30

Laboratory results in first 24 h, n (%)

Elevated BNP in first 24 h¶ 282 (39.2) 57 (53.2) <0.01

Elevated troponin in first 24 h# 537 (74.7) 83 (77.6) 0.52

Creatinine ≥2 mg/dL 63 (8.8) 34 (31.8) <0.001

Clinical factors from full hospital stay

Length of hospital stay, median (IQR) 3 (2–5) 5 (3–8) <0.001

In-hospital treatments and procedures

Underwent coronary artery bypass grafting 57 (7.9) 14 (13.1) 0.08

Use of intravenous diuretics (any) 229 (31.9) 58 (54.2) <0.001

Continued
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mellitus is in fact not present. Additionally, lack of explicit
documentation (ie, “missing” data) on comorbidities in
medical records is not likely to be random. This is in contrast
to research and/or registry data, where the presence of
comorbidities of interest such as diabetes mellitus is more
likely to be consistently ascertained across subjects and
clearly documented as either “present” or “not present,” and
thus a missing value would not necessarily be considered
equivalent to “not present.”

Similarly, with respect to BNP and NT-proBNP, in clinical
practice, physicians typically only order these tests in the
presence of signs, symptoms, or history that raise clinical
suspicion for myocardial strain or heart failure—ie, this is a
laboratory test that they would “order by exception,” to
parallel the concept of “documentation by exception.”
Conversely, the lack of a BNP value implies that the treating
physician did not have a concern for a new clinical
abnormality, which is valuable clinical information to take
into consideration in an EHR-based prediction model. Thus,
we thought it was reasonable to assume that patients who
did not have an NT-proBNP were deemed to be at lower risk
for myocardial strain and/or heart failure by treating
physicians.

Because the purpose of our study was to develop a
pragmatic model based on available clinical data, and because
data on comorbidities and laboratory tests such as BNP and
NT-proBNP were not missing at random as described above,
we did not apply multiple imputation to impute missing values
for our cohort. Our approach is consistent with the approach
used in the development of the CMS AMI model, which is
based on the presence of comorbidities coded in administra-
tive claims data, and is also the same approach we have used
in our past studies on readmission risk prediction
modeling.11,13–15

Model validation

We validated both the AMI-specific models using 5-fold cross-
validation, randomly dividing the cohort into 5 equally sized
subsets.20 For each cycle, 4 subsets were used for training to
estimate model coefficients and the fifth was used for
validation. This cycle was repeated 5 times such that each of
the 5 subsets was used once as the validation set. We then
repeated this entire process 50 times and averaged the C-
statistic estimates to derive an optimism-corrected C-
statistic. We qualitatively assessed calibration by comparing
observed to predicted probabilities of readmission by quintiles
of predicted risk, and with the Hosmer-Lemeshow goodness-
of-fit test.21,22

Scoring system

We derived a point-based risk scoring system for our final
first-day AMI model. We assigned points to each variable by
dividing each b-coefficient by the lowest overall b-coefficient
and rounding to the nearest integer. We determined point
cutoffs to define quintiles of predicted risk and assessed
calibration separately from that of the corresponding logistic
regression equation model.

Model comparisons

We compared the first-day and full-stay AMI models to each
other as well as to the corresponding multicondition EHR
models our group has separately developed and the CMS AMI
model derived from administrative claims data.13–15 We
compared each existing model’s performance using the
C-statistic, integrated discrimination index, and net reclassi-
fication index (NRI) using the AMI-specific models as refer-
ences.23 The integrated discrimination index is defined as the
difference in the mean predicted probability of readmission
between patients who were and were not actually readmitted

Table 1. Continued

No Readmission (N=719) Readmission (N=107) P Value

AMI-specific hospital complications, n (%)**

Congestive heart failure (new) 222 (30.9) 52 (48.6) <0.001

Shock (any) 24 (3.3) 9 (8.4) 0.01

Discharge to post-acute care†† 55 (7.7) 21 (19.6) <0.001

AMI indicates acute myocardial infarction; BNP, brain natriuretic peptide; ED, emergency department; ICD-9-CM, International Classification of Diseases, Ninth Revision, Clinical
Modification; IQR, interquartile range; NT-proBNP, N-terminus pro-brain natriuretic peptide; PCI, percutaneous coronary intervention.
*Prior ED visit at site of index hospitalization within the past year.
†Prior hospitalization at any of 75 acute care hospitals in the north Texas region within the past year.
‡Nonelective admission defined as hospitalization categorized as medical emergency, urgent, or trauma.
§Calculated from diagnoses available within 1 year before index hospitalization.
||Defined using ICD-9-CM codes 410.xx, excluding 410.7x and 410.2x.
¶Defined as ≥50 pg/mL for BNP or ≥125 pg/mL for NT-proBNP.
#Included both troponin T and troponin I assays; defined as ≥10 times the upper limit of normal, using site-specific criteria to define upper limit of normal for each of the included hospitals.
**Conditions were considered complications if they were not listed as a principal diagnosis for hospitalization or as a previous diagnosis in the prior year.
††Discharges to nursing home, skilled nursing facility, or long-term acute care hospital.
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between 2 models, where more positive values suggest
improvement in model performance compared with a refer-
ence model.24 The NRI is defined as the sum of the net
proportions of correctly reclassified people with and without
the event of interest compared with a reference model.24,25

Here, we calculated a category-based NRI to evaluate the
performance of AMI-specific models in correctly reclassifying
individuals with and without readmissions into the highest
readmission risk quintiles versus the lowest 4 risk quintiles
compared with other models. This prespecified cutoff is
relevant for hospitals interested in identifying the highest risk
individuals for targeted intervention.10 Finally, we assessed
calibration of comparator models in our cohort. We conducted
analyses using Stata 12.1 (StataCorp, College Station, TX).
The UT Southwestern institutional review board reviewed and
approved this study with a waiver of informed consent.

Results
Of 826 index AMI hospitalizations, 13.0% had a 30-day
readmission. Individuals with a readmission had markedly
different sociodemographic and clinical characteristics com-
pared with those who were not readmitted (Table 1). Troponin
values were similar among patients with and without a
readmission. ST-segment–elevation myocardial infarction was
less common among those who were readmitted (21.2%
versus 26.2%, P=0.30, Table 1).

Performance of a First-Day AMI Model: the AMI
“READMITS” Score
Our final first-day model, termed the AMI “READMITS” score,
included 7 variables: renal function (serum creatinine >2 mg/
dL); elevated BNP; age (per decade >18 years); diabetes
mellitus history; not male, no intervention with timely
percutaneous coronary intervention; and systolic blood pres-
sure <100 mm Hg (Table 2). The AMI READMITS score had
good discrimination (C-statistic 0.75, 95% confidence interval
[CI], 0.70–0.80; optimism-corrected C-statistic 0.73, 95% CI,
0.71–0.74; Table 3). It also effectively stratified individuals
across a broad range of risk (average predicted risk by decile
ranged from 2.1% to 41.1%) and was well calibrated, with less
than a 2% difference between mean predicted and observed
readmission rate by quintiles (Table 4). Approximately one
third of patients predicted to be at high risk (AMI READMITS
score ≥20) had an observed 30-day readmission versus only
2% of patients who were predicted to be at low risk (AMI
READMITS score ≤13).

Performance of a Full-Stay AMI Model
Our final full-stay AMI model included 10 variables, including
all 7 predictors from the first-day model, and 3 additional
predictors available at discharge: use of intravenous diuretic
medications at least once during hospitalization, anemia on
discharge, and discharge to a post–acute care facility. The
full-stay AMI model also had good discrimination (C-statistic
0.78, 95% CI, 0.74–0.83; optimism-corrected C-statistic 0.75,
95% CI, 0.74–0.76), stratified individuals across a broad range
of risk (with average predicted risk by decile ranging from
1.6% to 43.9%; Table 3), and was well calibrated (Figure).

AMI READMITS Score Versus the Full-Stay AMI
Model
Although the full-stay AMI model had modestly better
discrimination than the first-day AMI READMITS score
(P=0.001 for comparison), it did not meaningfully improve
net reclassification (NRI 0.04, 95% CI, �0.03 to 0.11;

Table 2. Final AMI Risk Prediction Models for 30-Day
Readmission

Adjusted OR
(95% CI)* Points†

AMI READMITS score (first-day model)

Renal function (Cr >2 mg/dL) 3.95 (2.52–6.08) 6

Elevated BNP‡ 6.36 (1.65–24.47) 8

Age (per decade >18 y) 1.26 (0.98–1.61) 1

Diabetes mellitus history 2.41 (1.37–4.24) 4

Not Male (ie, female sex) 1.53 (0.92–2.57) 2

No Intervention with Timely PCI§ 1.31 (1.02–1.69) 1

Systolic blood pressure
<100 mm Hg

2.18 (1.68–2.82) 3

Full-stay AMI model

Renal function (Cr >2 mg/dL) 3.32 (2.18–5.07)

Elevated BNP‡ 6.65 (1.80–24.61)

Age (per decade >18 y) 1.14 (0.87–1.50)

Diabetes mellitus history 2.22 (1.16–4.25)

Not Male (ie, female sex) 1.40 (0.85–2.33)

No Intervention with Timely PCI§ 1.19 (0.91–1.54)

Systolic blood pressure
<100 mm Hg

2.19 (1.77–-2.72)

Use of any intravenous diuretics 1.58 (1.07–2.31)

Anemia on discharge
(hematocrit ≤33%)

2.04 (1.20–3.46)

Discharge to post–acute care facility 1.50 (0.90–2.50)

AMI indicates acute myocardial infarction; BNP, brain natriuretic peptide; CI, confidence
interval; Cr, serum creatinine; NT-proBNP, N-terminal pro-brain natriuretic peptide; OR,
odds ratio; PCI, percutaneous coronary intervention.
*Adjusted for all factors listed in the table for each respective model.
†We assigned points to each variable by dividing each b-coefficient by the lowest overall
b-coefficient and rounding to the nearest integer.
‡Defined as ≥50 pg/mL for BNP or ≥125 pg/mL for NT-proBNP.
§Defined as intervention within the first 24 h.

DOI: 10.1161/JAHA.118.008882 Journal of the American Heart Association 6

Predicting 30-Day AMI Readmissions: AMI READMITS Score Nguyen et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



Table 3). The AMI READMITS score and the full-stay AMI
model were similarly well calibrated, with modest overesti-
mation of predicted risk in the highest and lowest risk
quintiles by both models (Figure).

AMI READMITS Score Versus Other Models
The AMI READMITS score outperformed the first-day multi-
condition model with better discrimination (C-statistic 0.75
versus 0.70, P=0.04) and had improved net reclassification
(Table 3). The AMI READMITS score was better calibrated
than the first-day multicondition EHR model, which overesti-
mated risk in the lower 3 quintiles and underestimated risk in
the top 2 quintile risk groups (Figure).

Compared with the CMS AMI administrative model, the
AMI READMITS score had similar discrimination with no
meaningful improvement in net reclassification (NRI 0.03, 95%
CI, �0.07 to 0.14) (Table 3). However, the AMI READMITS
score stratified individuals into a much broader range of
average predicted risk (2.1–41.1% versus 7.2–24.3%, Table 3)
and was better calibrated (Figure).

Discussion
Using data from 6 diverse hospitals, we developed and
validated the AMI READMITS score, a parsimonious risk
prediction score that can be used by clinicians and hospital
systems to identify patients hospitalized with AMI at high risk
for 30-day readmission within the first 24 hours of admission.
The AMI READMITS score, derived from an AMI-specific model
using EHR data from the first day, outperformed most other
models—including our own multicondition EHR models—in

all aspects of model performance (discrimination, calibration,
and reclassification). Surprisingly, incorporating more data
from the full hospital stay into the AMI READMITS score only
modestly improved discrimination but did not meaningfully
improve calibration or net reclassification.

The limited improvement in performance of the full-stay
AMI model compared with the first-day AMI READMITS score
suggests that in-hospital factors such as clinical stability,
trajectory during hospitalization, and disposition status are
less important predictors of readmissions among patients
hospitalized with AMI than in other conditions such as
pneumonia.11 Thus, a key finding of our study is that patients’
readmission risk can be accurately predicted with the AMI
READMITS score on the first day of hospitalization, enabling
targeted early intervention to maximize the potential benefit
of readmission reduction interventions.5,8 This approach can
be implemented by clinicians at bedside, or by hospitals and

Table 3. Model Performance and Comparison of AMI Readmission Models Versus Other Models

Model C-Statistic P Value* IDI, % (95% CI) NRI (95% CI)†

Average Predicted Risk, %

Lowest Decile Highest Decile

AMI models‡

AMI READMITS score 0.75 (0.70 to 0.80) [Reference] [Reference] [Reference] 2.1 41.1

Full-stay AMI model 0.78 (0.74 to 0.83) <0.01 0.02 (0.01�0.04) 0.03 (�0.04 to 0.10) 1.6 43.9

CMS AMI model 0.74 (0.69 to .79) 0.57 �0.07 (�0.10 to �0.05) �0.01 (�0.11 to 0.09) 7.2 24.3

Multicondition models‡

First-day multicondition 0.70 (0.65 to 0.75) 0.04 �0.08 (�0.11 to �0.05) �0.19 (�0.30 to �0.18) 6.6 25.7

Full-stay multicondition 0.73 (0.68 to 0.78) 0.02 �0.06 (�0.09 to �0.03) �0.09 (�0.20 to 0.03) 5.7 29.6

AMI indicates acute myocardial infarction; CI, confidence interval; CMS, Centers for Medicare and Medicaid Services; EHR, electronic health record; IDI, integrated discrimination
improvement; NRI, Net Reclassification Index; READMITS, renal function, elevated brain natriuretic peptide, age, diabetes mellitus, nonmale sex, intervention with timely percutaneous
coronary intervention, and low systolic blood pressure.
*P values are shown for each model compared with the reference model.
†The categorical NRI compares reclassification between the highest risk quintiles and the lowest 4 risk quintiles.
‡We compared the first-day (AMI READMITS) and full-stay AMI models with each other as well as with the corresponding multicondition EHR models our group has separately developed
and the CMS AMI model derived from administrative claims data, as described in the Methods section.

Table 4. Observed vs Predicted Readmission Risk for the AMI
READMITS Score

Risk Category
(Quintiles)

AMI READMITS
Score (Points)

Mean
Observed
Risk

Mean
Predicted
Risk

Extremely high ≥20 34% 35%

High 18 to 19 17% 16%

Moderate 16 to 17 9% 11%

Low 14 to 15 8% 7%

Extremely low ≤13 2% 3%

AMI indicates acute myocardial infarction; READMITS, renal function,elevated brain
natriuretic peptide, age, diabetes mellitus, nonmale sex, intervention with timely
percutaneous coronary intervention, and low systolic blood pressure.
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health systems by integrating the AMI READMITS score
directly into the EHR, or by extracting EHR data in near real-
time, as our group has previously done for heart failure.10

A second key finding of our study is that clinical severity
measures directly related to the AMI (shock, heart strain or
failure, renal dysfunction) and timely percutaneous coronary

Figure. Comparison of model calibration. AMI indicates acute myocardial infarction; CMS, Centers for Medicare and Medicaid Services;
READMITS, renal function, elevated brain natriuretic peptide, age, diabetes mellitus, nonmale sex, intervention with timely percutaneous
coronary intervention, and low systolic blood pressure.
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intervention were strong predictors of readmission risk.
Unlike our multicondition and pneumonia-specific readmis-
sion models, key nonclinical factors such as social factors (ie,
marital status, or residing in a low-income neighborhood), as
well as in-hospital clinical trajectory and complications (ie,
changes in clinical status, vital sign abnormality on discharge)
were not predictive of 30-day readmissions in AMI.11,14 The
implications are that readmission risk in AMI may be more
influenced by clinical interventions and comorbidity manage-
ment than in other conditions.

Although elevated cardiac troponin levels have been
previously found to be predictive of adverse cardiac events
in various settings and populations,26,27 we were surprised to
find that the magnitude of troponin elevation was not different
between patients who were and were not readmitted, nor was
this an independent predictor of adverse 30-day outcomes
even in models predicting the composite outcome of 30-day
readmissions and mortality that we derived as part of our
sensitivity analyses (data not shown). Previous studies have
suggested that elevated BNP—which was included in the AMI
READMITS score—rather than elevated troponin may be a
better predictor of adverse events in patients with acute
coronary syndrome.28 Furthermore, the downstream clinical
consequences of AMI may matter more than simply the
magnitude of infarction as measured through troponin level,
since cardiogenic shock, heart strain, heart failure, and renal
dysfunction were strongly predictive of readmission in our
models.29

Another key implication of our study is that for AMI, a
disease-specific modeling approach has better predictive
ability than using a multicondition approach. Compared with
a first-day multicondition model, the AMI READMITS score
correctly reclassified an additional 18% of patients. Thus,
hospitals interested in identifying the highest risk patients
with AMI for targeted interventions should do so using the
disease-specific AMI READMITS score. Of note, another
disease-specific model, the CMS AMI administrative model,
had similar discrimination but poorer calibration than the
AMI READMITS score in this cohort. Additionally, the CMS
AMI model is not usable in clinical settings for near real-
time risk prediction, since it is based on 31 variables
ascertained from claims data not available until well after
discharge.13

Our study was notable for several strengths. First, the AMI
READMITS score is parsimonious and incorporates clinically
relevant predictors available within the first day of hospital
admission that can be easily calculated by clinicians. Second,
we used routinely collected and available data from a common
commercial EHR system, allowing for implementation through
automation and integration directly into the EHR. Third, our
study population was derived from 6 hospitals diverse in
payer status, age, race/ethnicity, and socioeconomic status,

increasing the potential generalizability of our findings.
Fourth, our models are less likely to be overfit to the
idiosyncrasies of our data given that the predictors in our final
AMI-specific models have good clinical face validity, and have
been associated with adverse outcomes, particularly mortal-
ity, in prior studies of this population.28,30–39

Our results should be interpreted within the context of
several limitations. First, generalizability to other regions or
settings is unknown. Our inclusion of a large sample of
diverse patients treated in 6 different hospitals (including
safety net, community, teaching and nonteaching institu-
tions) should minimize this concern. Future studies should
focus on external validation of this model in other popula-
tions and settings. Second, while we used cross-validation
and optimism-corrected estimates of the C-statistic to
reduce the risk of overfitting the AMI READMITS score to
our data, the AMI READMITS score has not yet been
externally validated in a separate cohort, which would
further strengthen its validity. Third, we were unable to
include data on medications (aspirin, b-blockers, and
angiotensin-converting enzyme inhibitors), AMI care process
measures (door-to-balloon time), and clinical characteristics
of AMI (location, size of infarction), which may also influence
readmission risk.

In conclusion, the AMI READMITS score is parsimonious,
uses clinically relevant risk factors, outperformed the CMS
AMI and our previous EHR multicondition readmission
prediction models, and yields actionable data on the first
day of hospitalization to enable early prospective identifica-
tion of high-risk AMI patients for targeted readmissions
reduction interventions. The AMI READMITS score can be
easily implemented by clinicians at the bedside and/or by
hospitals with integration directly into the EHR for near real-
time use.
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