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The emergence of macroscopic order and patterns is a cen-
tral paradigm in systems of (self-)propelled agents and a key
component in the structuring of many biological systems. The
relationships between the ordering process and the underlying
microscopic interactions have been extensively explored both
experimentally and theoretically. While emerging patterns often
show one specific symmetry (e.g., nematic lane patterns or
polarized traveling flocks), depending on the symmetry of the
alignment interactions patterns with different symmetries can
apparently coexist. Indeed, recent experiments with an acto-
mysin motility assay suggest that polar and nematic patterns
of actin filaments can interact and dynamically transform into
each other. However, theoretical understanding of the mech-
anism responsible remains elusive. Here, we present a kinetic
approach complemented by a hydrodynamic theory for agents
with mixed alignment symmetries, which captures the experi-
mentally observed phenomenology and provides a theoretical
explanation for the coexistence and interaction of patterns with
different symmetries. We show that local, pattern-induced sym-
metry breaking can account for dynamically coexisting patterns
with different symmetries. Specifically, in a regime with mod-
erate densities and a weak polar bias in the alignment interac-
tion, nematic bands show a local symmetry-breaking instability
within their high-density core region, which induces the forma-
tion of polar waves along the bands. These instabilities eventually
result in a self-organized system of nematic bands and polar
waves that dynamically transform into each other. Our study
reveals a mutual feedback mechanism between pattern forma-
tion and local symmetry breaking in active matter that has
interesting consequences for structure formation in biological
systems.

active-matter theory | pattern formation | emergent symmetries |
pattern coexistence

Any theory for systems of (self-)propelled agents must be
based on assumptions regarding the agents’ propulsion

mechanism as well as their interactions. One of the central
insights in active-matter theories is that interactions that align
the agents’ orientations—even if they are short ranged—can
lead to the formation of macroscopic order already in dilute
systems in two dimensions (1–4). Close to the onset of macro-
scopic order, both experiments with (self-)propelled agents and
theoretical studies quite generally observe phase separation into
high-density ordered clusters and a low-density disordered back-
ground, rather than spatially uniform long-range order (3–5).
Hence, symmetry breaking in active-matter systems seems to be
inextricably linked to formation of patterns.

In theoretical approaches, the symmetry of the macroscopic
order and the corresponding patterns is typically dictated a
priori by the assumed microscopic symmetry of the specific
active-matter model under consideration (4) (Fig. 1A): Models
with polar interaction symmetry exhibit propagating polar waves
(6–10), in which the agents’ directions of propulsion point
orthogonal to the wave front. On the other hand, in models

with nematic interaction symmetry the agents form bands (lanes)
within which the agents are (preferentially) oriented in parallel
along the band (11–13). Thus, in all of these theoretical models,
the choice of the underlying microscopic interaction symmetry
largely determines the model’s phenomenology. This should be
seen in light of the observation that in nature or in the labora-
tory microscopic details of the agent’s propulsion mechanism and
interactions are often unclear or essentially inaccessible. More-
over, these properties of the agents might not even be inherent
features (traits) characterized by a fixed set of parameters, but
could in principle dynamically depend on the emergent collec-
tive behavior of the agents, as suggested for animal herds (14) or
chemical active systems (15, 16).

Recently, experimental studies of actomyosin motility assays
reported coexistence of polar and nematic patterns, with
actin filaments dynamically cycling between polar waves and
nematic band patterns (17). Supported by large-scale computer
simulations—emulating the microscopic features of the observed
collision statistics—these authors concluded that in this partic-
ular case the symmetry of the self-organized patterns is not
determined a priori by the symmetry of the pairwise interaction
between particles, but is itself an emergent phenomenon of the
many-body system (17). What then is the mechanism underlying
this startling phenomenon?

Agent-based simulations indicate that both nematic and polar-
ordered clusters can arise and even coexist when the microscopic
alignment between agents is predominantly nematic with a polar
contribution, due to either the interactions between extended
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Fig. 1. Symmetries in active matter. (A) In models with fully polar align-
ment, polar agents assume the same propulsion direction upon alignment.
For fully nematic alignment, particles assume the same or opposing propul-
sion directions, depending on whether they collide at an acute or an obtuse
angle, respectively. Polar (nematic) alignment interactions enable macro-
scopic polar (nematic) order. Beyond the onset of order, the system evolves
into propagating wave patterns or nematic bands, depending on the sym-
metry of the alignment interaction. While the agents’ propulsion directions
are oriented orthogonal to the wave front in polar wave patterns, in
nematic bands they are aligned along the bands themselves. (B) “Collision
statistics” for the binary collision rule with polar bias ψ. ∆θout denotes the
angle differences between pairwise particle velocities after the collision and
is either 0 or π, depending on whether the agents’ angle difference before
the collision, ∆θin, is smaller or larger than π/2 +ψ, respectively. (C) Illus-
tration of our generalized collision assumption. The black arrow indicates
the precollision orientation of a reference polar agent. Alignment with a
second agent is polar if the propulsion of the second particle lies in the blue
shaded angular range and antipolar in the red shaded angular range.

rods (5) or memory in the orientational noise (18). Further-
more, analytical studies that account for contributions from
polar and nematic alignment due to the agents’ extensions (19–
22) or assumed mixed alignment symmetries (23–25) identified
distinct regimes of either nematic or polar patterns and even
indicate coexistence of spatially separated polar and nematic
patterns (22). However, cycling and transformations between
patterns of different symmetries as observed in ref. 17 were not
reported and the theoretical mechanism behind this coexistence
is poorly understood (4, 17, 26). Specifically, neither kinetic nor
continuum hydrodynamic approaches have so far been able to
reproduce or elucidate this phenomenology (4, 26).

While theoretical approaches with mixed microscopic align-
ment symmetries have considered alignments that depend on
interparticle distance (23), chance (24), or particle species (25),
the computational analysis in ref. 17 suggested that the emer-
gence of dynamic coexistence critically depends on the simulta-
neous presence of polar and nematic contributions in the binary
collision statistics. Here, motivated by the results in ref. 17, we
propose a kinetic theory for a dilute system of propelled particles
with tunable “binary collision statistics” (Fig. 1B). Specifically,
we employ a kinetic Boltzmann approach (27) where particles
undergo binary collisions that lead to nematic alignment with a
small (tunable) polar bias (Fig. 1C).

For both vanishing and fully polar bias, our model recovers
the well-studied scenarios of purely nematic (13) and purely
polar (9, 10) interaction symmetry, respectively. Interestingly,
for an intermediate polar bias, our model features a transition
from macroscopic nematic order at intermediate densities to
macroscopic polar order at high densities. In a regime charac-
terized by intermediate polar bias and intermediate densities,
we observe that patterns of polar and nematic symmetry coexist

and are dynamically interconvertible, which is reminiscent of the
observations in ref. 17. Based on a combination of stability anal-
yses and numerical simulations we argue that such coexistence
depends on the inextricable link between symmetry breaking and
pattern formation. For instance, while the system forms nematic
bands in a density regime that leads to symmetry breaking toward
macroscopic nematic order, the density at the core of these bands
increases and eventually exceeds the threshold value for a transi-
tion from macroscopic nematic to macroscopic polar order. This
spatially local crossing of a critical value in the particle density—
a control parameter—triggers local symmetry breaking, which
induces the self-organized formation of polar waves.

To substantiate this hypothetical mechanism as a general
mechanism for the coexistence of polar and nematic patterns in
active-matter systems, we study simplified hydrodynamic equa-
tions which capture pattern formation in a nematic phase as well
as a transition from macroscopic nematic to polar symmetry for
high densities. Indeed, like our kinetic Boltzmann approach, our
hydrodynamic theory exhibits a regime of coexisting polar wave
and nematic band patterns.

Our study thus reveals an interesting mutual feedback between
pattern formation and macroscopic symmetry breaking in active
matter. This feedback occurs because the particle density, which
shows pattern formation in active systems, is at the same time a
control (bifurcation) parameter for the macroscopic symmetry
of the system. This twofold role of the particle density trans-
forms symmetry breaking in active systems from an ordering
phenomenon under the control of a global parameter into a self-
organization phenomenon with a local interplay between pattern
formation and symmetry breaking. We argue that this interplay
represents a fairly general mechanism that allows macroscopic
symmetries to be an emergent property in themselves, rather
than being imposed directly by microscopic interaction rules.

Results
Kinetic Boltzmann Approach with Polar and Nematic Contributions.
Our starting point for a mesoscopic theory of aligning agents is
the kinetic Boltzmann equation (27). It describes the temporal
evolution of the one-particle distribution function f (r, θ, t) for
the position r∈R2 and the orientation θ∈[0, 2π) of self-propelled
particles that undergo binary aligning collisions in a dilute (dry)
system (27). It reads

∂t f (r, θ, t)+ v0 eθ · ∂rf (r, θ, t) = Idiff[f ] + Icoll[f , f ], [1]

where v0 denotes the constant speed of the active particles, eθ
is a unit vector pointing along direction θ, and the terms Idiff[f ]
and Icoll[f , f ] describe diffusion of individual particles and colli-
sions between particles, respectively (SI Appendix, section 1). In
more detail, spherical particles (with diameter d) are assumed
to move ballistically with constant speed v0 along their orienta-
tions θ and can change their orientation by diffusion as well as by
local binary collision. Diffusion is modeled by a shift in a parti-
cle’s orientation from θ to θ+η at a rate λ, where we assume η to
be a Gaussian-distributed random variable with standard devia-
tion σ. Binary collisions between particles are emulated through
“alignment rules” (Fig. 1 B and C), with an additive random con-
tribution also drawn from a Gaussian distribution with a standard
deviation σ′; in the following we set σ′=σ for simplicity. In the
context of the kinetic Boltzmann approach, a fully nematic inter-
action rule dictates that particles that collide at an acute angle
adopt their average orientation (polar alignment), while particles
colliding at an obtuse angle also align, but with opposite orienta-
tions (antipolar alignment). For fully polar alignment, particles
adopt their average orientation irrespective of their precollision
angle (Fig. 1).

The dynamics of orientational order in the kinetic Boltzmann
approach are most conveniently studied by exploiting the fact
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that the polar vector P and nematic tensor Q can be expressed
in terms of the Fourier modes fk (r, t)=

∫ π

−π
dθ eiθk f (r, θ, t) of

the one-particle distribution function:

ρP =

(
Re[f1]
Im[f1]

)
, ρQ =

1

2

(
Re[f2] Im[f2]
Im[f2]−Re[f2]

)
. [2]

Furthermore, the local particle density ρ (r, t)is given by the k =
0 mode: ρ (r, t)= f0 (r, t). The dynamics of fk (r, t)read

∂t fk +
v0
2

[∂x (fk+1 + fk−1)− i∂y(fk+1− fk−1)]

=−λ
(

1− e−
1
2
kσ2
)
fk +

∞∑
n=−∞

In,k fn fk−n . [3]

Explicit expressions for the collision coefficients In,k can be
found in SI Appendix, section 1. For k = 0, Eq. 3 yields the
continuity equation ∂tρ (r, t)=− v0∇ · (ρP).

Solutions of Eq. 3 for fully polar (9, 10) or fully nematic (13)
alignment rules show a transition from disorder, i.e., vanishing
polar and nematic order, to nonzero polar or nematic order,
respectively, for sufficiently high densities or low noise level σ.
Close to the onset of order, it predicts the formation of patterns,
consistent with experimental observations and numerical simu-
lations (3, 28). The kinetic Boltzmann equation thus serves as
a useful basis for a qualitative study of the phenomenology of
dilute systems of self-propelled particles.

Recent experimental results from the actin motility assay and
corresponding simulation results from agent-based models (17)
strongly suggest that the relative weights of polar and nematic
contributions to the binary collision statistics are critical for
the self-organization of spatiotemporal patterns. As a minimal
extension of fully polar or nematic alignment rules (27), we
propose a collision rule with a small tunable polar bias. Specifi-
cally, we assume that colliding particles align in a polar manner
when their velocities form an angle difference smaller than π

2
+ψ

with ψ ∈ [0, π
2

] and align antipolar otherwise (Fig. 1 B and C).
The parameter ψ thus characterizes the polar bias, where for
ψ= 0 and ψ= π

2
the collision rule reduces to fully nematic and

fully polar collisions, respectively. It is convenient to rescale
time, space, and density such that v0 =λ= d = 1. Then, the only
remaining free parameters are the noise amplitude σ, the polar
bias ψ, and the mean particle density ρ̄= 1

A

∫
A

dr
∫ π

−π
dθ f (r, θ, t)

measured in units of λ/(dv0), i.e., the number of particles
found within the area traversed by a particle between successive
diffusion events.

Mean-Field Phase Diagram. Since the collision coefficients In,k
are zero for k = 0, Eq. 3 possesses a spatially uniform solution
with vanishing order, i.e., fk = 0 for |k |>0, and uniform density
f0 = ρ̄. To linear order, a small perturbation δfk of this disor-
dered state evolves according to ∂tδfk (t) =µk (ρ̄,σ,ψ)δfk with
the growth rate µk (ρ̄,σ,ψ) = (I0,k+Ik ,k )ρ̄−λ(1−e−

1
2
kσ2

). The
zeros of these growth rates, µk (ρck ,σ,ψ) = 0, mark the critical
densities ρck (σ,ψ) above which the mode k grows exponentially.
While previous studies have focused on the onset of order for
fully polar and nematic interactions as a function of the density
ρ̄ and noise amplitude σ (27), in the following we keep the noise
level constant, σ= 0.2, and focus on the onset of order as a func-
tion of the polar bias ψ. Fig. 2A shows the critical densities ρc1(ψ)
and ρc2(ψ) for the onset of polar and nematic order, which have
been calculated by setting µ1 and µ2 to zero and numerically solv-
ing for ρ̄, respectively. For small and large polar bias, only the
growth rate for k = 2 or k = 1, respectively, changes sign, indicat-

A

B C

Fig. 2. Uniform solutions and linear stability. (A) Regimes and linear sta-
bility of spatially uniform solutions for Eq. 3 in angular Fourier space
with a truncation at kc = 10. Solid lines denote the critical transition den-
sities ρc

2 and ρc
1 from a disordered solution to nematic and polar order,

respectively. Our analysis reveals another transition from nematic order to
polar order at intermediate polar bias (blue dashed line). (B) Spatially uni-
form solutions for f1 and f2 at ψ= 0.075π calculated from the truncated
Boltzmann equation in angular Fourier space (solid lines) compared to spa-
tially uniform solutions of the Boltzmann equation in real space (Eq. 1,
shaded lines) calculated using the generalized SNAKE algorithm. (C) Phase
portrait of spatially uniform solutions using the generalized SNAKE algo-
rithm (29). The numerical solutions used a single lattice point starting at
a disordered state with small fluctuations in the angular distribution. The
noise value was fixed to σ= 0.2.

ing that there are transitions from a disordered state to a state
with either nematic order (for small polar bias ψ) or polar order
(for large polar bias ψ). In contrast, for intermediate polar bias,
the transition densities ρc1(ψ) and ρc2(ψ) cross, implying that there
is a regime in the (ρ̄, ψ) phase diagram where the disordered
state is linearly unstable under both polar and nematic perturba-
tions. For a more detailed discussion of the transition densities
and the linear stability analysis see SI Appendix, section 1.

After identifying the parameter regimes where the spatially
uniform disordered solutions become unstable, we now deter-
mine the stable, spatially uniform, ordered solutions of Eq. 3
in these regimes. As this is no longer feasible analytically (due
to the infinite sum in Eq. 3), we resort to approximate solu-
tions, exploiting the fact that even above the ordering transition,
modes with sufficiently large |k | are still negligible (10, 30). To
this end, following ref. 30, we set all spatial derivatives and all
Fourier modes fk beyond a certain cutoff kc in Eq. 3 to zero and
numerically solve the ensuing equations for all remaining modes
with |k |≤kc (see SI Appendix, section 1A for details of our linear
stability analyses). We then performed a linear stability analy-
sis of the resulting spatially uniform solutions against uniform
as well as nonuniform (wave-like) perturbations. The directions
of spatial perturbations were varied to probe for instabilities
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perpendicular and parallel to the orientation of the spatially
uniform (polar and nematic) order parameters. Based on this
analysis we identified the type of order exhibited by spatially
uniform solutions, as well as their stability against wave-like per-
turbation for different values of the average density ρ̄ and polar
bias ψ (Fig. 2A).

Above the critical transition densities ρc2(ψ) and ρc1(ψ), we
indeed find spatially uniform solutions with nonzero nematic and
polar order, respectively, as suggested by the linear stability anal-
ysis of the disordered state. In addition, within these regimes,
we identify subregimes in which the respective spatially uniform
solutions are unstable under spatial perturbations, suggesting
the formation of spatially nonuniform patterns (indicated by yel-
low and green in Fig. 2A, denoting nematic and polar patterns,
respectively). More precisely, we find that right above the tran-
sition density to nematic order, ρc2, spatially uniform nematic
order is unstable against wave-like perturbations perpendicular
to the nematic order, which suggests formation of nematic band
patterns. Furthermore, in a subregime of polar order, uniform
polar order is unstable against spatial perturbations parallel to
the orientation of polar order, which suggests the emergence
of traveling polar waves. The prediction of nematic bands and
polar waves for small and large polar bias is in accordance with
previous studies on systems with either fully nematic or polar
interaction symmetries, respectively (27). Interestingly, for suf-
ficiently large polar bias (ψ&0.05π) and high enough densities
(ρ̄>ρc2) we identify a transition that has not been observed in
previous studies with fully nematic or polar alignment: As the
density is increased above ρcnem-pol(ψ) (indicated by the dashed
line in Fig. 2A), there is a direct transition from solutions with
uniform nematic order to solutions with uniform polar order.

Furthermore, within the regime where the disordered solution
is linearly stable and for densities right below the intersection
of ρc1 and ρc2, our analysis reveals a regime of bistability (black
hatched regime in Fig. 2A). Here, we find a linearly stable disor-
dered solution as well as a uniform polar solution, which is lin-
early stable against spatially uniform perturbations, but linearly
unstable against spatially nonuniform perturbations with wave
vector orthogonal to the polar order. This implies bistability; i.e.,
depending on the initial conditions the ensuing collective state
(attractor of the dynamics) is either a uniformly disordered state
or a polar wave state. Within the range of polar bias values that
limit the regime of bistability (approximately between ψ/π= 0.1
and ψ/π= 0.15 in Fig. 2A), the transition line marked by ρc1 can
be understood as a “spinodal”; i.e., for densities above ρc1 polar
patterns form spontaneously. In the same sense, the line demar-
cating the bistable region can be considered as a “binodal”;
i.e., for densities above this line (but below ρc1) polar patterns are
metastable and require a large enough perturbation of the disor-
dered state to be able to form (see SI Appendix, section 1A and
Fig. S1 for a more detailed discussion). This bistability between
the uniformly disordered state and polar waves is an interesting
topic in itself. We defer the study of this bistability regime to
future work and focus here on the transition from nematic to
polar order.

To independently test the predictions of our approximate solu-
tions and linear stability analyses, we numerically solved the
Boltzmann equation, Eq. 1, in real space using a finite difference
method; for details on the SNAKE (solving numerically active
kinetic equations) algorithm (29) see SI Appendix, section 1B.
Fig. 2C shows the phase diagram obtained from the numerical
solution for spatially uniform systems, which is in excellent agree-
ment with the approximate solutions of our spectral analysis
(Fig. 2A); see also Fig. 2B.

Pattern Formation Leads to Dynamic Transformations between
Nematic and Polar Symmetries. Next, we study the full spatiotem-
poral dynamics of the kinetic Boltzmann equation, Eq. 1, espe-

cially in those regimes where our stability analysis predicts spa-
tially uniform solutions to be linearly unstable. To this end, we
numerically solved Eq. 1 using the SNAKE algorithm (29) for
a spatially extended system in a broad parameter regime of the
global density and polar bias. The results are shown as symbols
in Fig. 3A against the background of the predictions from the lin-
ear stability analysis (shaded) (Fig. 2A). For vanishing and small
polar bias, we observe nematic bands at densities right above
ρc2(ψ) and uniform nematic states at higher densities (orange
and red symbols in Fig. 3A, respectively; SI Appendix, section 1B
and Fig. S2A). For larger polar bias, we find regimes of traveling-
wave solutions and spatially uniform polar-ordered states (green
and blue symbols in Fig. 3A, respectively; SI Appendix, section 1B
and Fig. S2B). Consistent with linear stability analysis (Fig. 2A),
our numerical solution yields patterns for density values close
above the transition densities ρc1 and ρc2. The regimes of patterns
in our numeric solution are smaller than predicted by linear sta-
bility, probably due to finite size effects and spurious noise in the
implementation of the SNAKE algorithm as suggested by earlier
studies (30, 31).

Remarkably, we find patterns with polar order even for den-
sities below ρcnem-pol (nematic–polar patterns in Fig. 3A). More
precisely, we observe coexistence between polar and nematic
bands, which dynamically interconvert into each other (Fig. 3B;
SI Appendix, section 1B; and Movies S1–S3): Starting from a
disordered state, the nematic order grows quickly and the sys-
tem begins to exhibit high-density nematic band patterns (in line
with linear stability analysis). While the ensuing average nematic

A B

Fig. 3. Dynamic transformations between nematic and polar patterns. (A)
Numerical solutions of Eq. 1 (indicated by symbols) display regimes of uni-
form nematic and polar order as well as nematic band and traveling-wave
patterns (shaded background colors as in Fig. 2A). The green and yel-
low shades denote regimes in which linear stability analysis predicts polar
and nematic patterns, respectively (regimes in in Fig. 2 A and C). In addi-
tion to the states predicted by linear stability analysis of uniform solutions
(Fig. 2), we find dynamic transformations between patterns of nematic to
polar patterns below ρc

nem-pol. (B) Snapshots of the numerical solution of
the Boltzmann equation in the regime where polar bands and nematic
lanes interconvert into each other (nematic–polar patterns) shortly before
(Top) and after (Bottom) a local instability within the core of a nematic
band (ρ= 0.285, ψ/π= 0.1). Red bars and blue arrows indicate the orien-
tation and strength of local nematic and polar order, respectively. The color
denotes the local density. All numeric solutions were initialized with a uni-
form disordered state with small random fluctuations. For details on the
numerical solutions see SI Appendix, section 1B.
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order is approximately the same as that found for spatially uni-
form solutions of Eq. 3, the local nematic order is much higher
within the nematic bands and approaches zero in the disordered
regions between the bands (SI Appendix, section 1B and Fig. S3).
The local density in the center of a band is actually so high that
it far exceeds the threshold density for the transition between
nematic and polar order ρcnem-pol. This suggests that within a band,
purely nematic order eventually becomes unstable and polar
order starts to emerge there. Indeed, we observe that after some
time, polar order locally builds up in the nematic bands and
subsequently leads to the formation of polar waves that prop-
agate along the nematic band and whose density at the wave
front exceeds ρcnem-pol (Fig. 3B and Movies S1–S3). As a polar
wave front forms within a nematic band, this band locally broad-
ens and density is distributed from the high-density core of the
band into the disordered regions adjacent to the band (Fig. 3B
and Movies S1–S3). In the low-density regime adjacent to the
nematic band, polar order eventually decays, and the density
that had been redistributed to these areas condenses into exist-
ing (Movie S1) or new (Movie S3) nematic bands and the cycle
starts anew. Initializing the system with different randomly dis-
ordered states, we find that the local polar instability eventually
leads to various distinct types of spatiotemporal dynamics includ-
ing polar waves within nematic bands (Fig. 3B and Movie S1),
complete replacement of nematic bands by polar waves (Movie
S2), and dynamic switching between nematic bands and polar
waves (Movie S3).

The observation of different collective states, depending on
the initial conditions, suggests that these states are metastable.
This is in accordance with our numerical solutions which show
that at the transition lines between regimes of vanishing polar
order and patterns with polar order (i.e., regimes of “polar
waves” and “nematic–polar patterns” in Fig. 3A) the system
undergoes discontinuous transitions (SI Appendix, section 1B
and Fig. S4). It will be interesting to explore the nature of the
transitions between regimes of nematic and polar order as well as
the formation and dynamics of the metastable states more closely
in follow-up studies.

In summary, for low and high polar bias our kinetic Boltzmann
approach is consistent with the classical conception of self-
propelled particle systems with predominantly nematic or polar
symmetry (4), including the formation of nematic band patterns
and traveling polar waves at the onset of nematic and polar order,
respectively. For moderate polar bias, stability analysis uncovers
an additional transition from nematic solutions to polar solutions
at a density ρcnem-pol>ρ

c
2. This transition gives rise to spatiotem-

poral dynamics that are not predicted by linear stability analysis
of the spatially uniform solutions: The numerical solution of the
Boltzmann equation reveals that the high-density core of nematic
bands can locally cross the threshold density ρcnem-pol, which favors
the formation of polar waves. This instability eventually results
in traveling-wave solutions, as well as more complex dynamics
such as coexisting polar waves and nematic bands, and dynamic
rearrangements of nematic bands.

Importantly, while our alignment rule contains contributions
with both polar and nematic symmetry, the symmetries of the
patterns are not already determined or apparent from the as-
sumed alignment symmetry. Instead, the symmetries of the pat-
terns are selected by and critically depend on the spatiotemporal
dynamics of the system. We therefore argue that the symme-
try of the spatiotemporal pattern is itself an emergent property
in the following sense: The collective dynamics are based on a
reciprocal feedback between pattern formation and local sym-
metry breaking due to the redistribution (accumulation) of mass
(particle density).

Hydrodynamic Equations Account for Coexisting Symmetries. Com-
plementary to kinetic approaches, hydrodynamic theories have

served as a basis to study active-matter systems (2). They describe
the system’s dynamics in terms of slow collective variables, such
as the particle density and fields characterizing the macroscopic
order. The underlying hydrodynamic equations are frequently—
in the spirit of a Ginzburg–Landau approach—derived from sym-
metry arguments and small-amplitude expansions in the order
of parameter fields and their gradients (1, 2, 32). The collec-
tive dynamics are then studied as a function of the coupling
coefficients, which are considered to be free phenomenological
parameters.

It is possible to link these phenomenological approaches
to kinetic approaches based on the Boltzmann (27) and the
Smoluchowski equation (21, 33) by using scaling assumptions
for the order parameters and suitable truncation schemes for
their underlying dynamic equations (27, 34). While this yields
the structure of the hydrodynamic equations as well as explicit
expressions for the coupling coefficients as functions of micro-
scopic model parameters such as particle velocity and alignment
noise, there are also some limitations, mainly due to poten-
tial ambiguities associated with the truncation scheme used;
please refer to ref. 35 for a review and comparison of the dif-
ferent kinetic approaches. All these field theories, which are
more amenable to theoretical analysis than the respective kinetic
theories, have been successfully employed to reproduce and
understand the rich phenomenology of active-matter systems (4,
36). In particular, starting from a kinetic Boltzmann equation,
Peshkov et al. (13) derived hydrodynamic equations for purely
nematic systems and found excellent agreement with previous
microscopic agent-based simulations (12), including the forma-
tion of nematic band patterns close to the onset of nematic order.
This success suggests that their approach can be generalized to
systems with a small polar bias. Therefore, we adapt their anal-
ysis to our case and assume that, close to the onset of polar or
nematic order, the respective order fields f1 and f2 and their
temporal and spatial variations are small. Using their truncation
scheme for higher modes, as explained in SI Appendix, section
2A, we arrive at closed equations for the dominant hydrodynamic
fields,

∂t f1 =−(α0 +α1ρ)f1 +α2f
∗
1 f2−α3|f2|2f1

− 1

2
(∇ρ+∇∗f2) + γ1f

∗
2 ∇f2, [4]

∂t f2 = (−β0 +β1ρ)f2 +β2f
2
1 −β3|f2|2f2−β′3|f1|2f2

− 1

2
∇f1 + γ2∇∇∗f2− γ3f ∗1 ∇f2− γ4∇∗(f1f2), [5]

which are related to the polar and nematic order parameter
through Eq. 2. To simplify the notation, we used the definition
∇ := ∂x+i∂y and the asterisks denotes complex conjugation.

The derivation of Eq. 4 from the kinetic Boltzmann equation,
Eq. 1, also yields explicit expressions of the coefficients αi , βi ,
and γi , which are determined by the angular diffusion term and
combinations of the collision integrals In,k introduced in Eq. 3;
for explicit expressions see SI Appendix, section 2A. However,
using these coefficients to calculate the spatially uniform solu-
tions of Eq. 4 as well as their linear stability, we find that the
resulting phase diagram (SI Appendix, section 2A and Fig. S5)
critically differs from the phase diagram obtained by solving the
Boltzmann equation, Eq. 1 (Fig. 2A); see SI Appendix, section
2A for a more detailed discussion. Most importantly, it does
not feature a secondary transition from a regime of nematic
band patterns to polar-ordered solutions for increasing density as
observed in Fig. 2A (blue dashed line). We attribute this differ-
ence to higher-order modes that become important for systems
with polar bias but are disregarded in the truncation scheme
adapted from active systems with purely nematic alignment (13).
In fact, a numerical solution of Eq. 3, which takes into account
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modes fk with |k | up to a certain kh and sets all modes with
|k |> kh and their derivatives to zero (see SI Appendix, section
2B for details), shows that in the regime of nematic–polar pat-
terns in Fig. 3A all modes eventually diverge, even for relatively
large cutoff mode numbers kh&12 (SI Appendix, section 2B and
Fig. S6).

In the following, we thus take a semiphenomenological
approach which retains the structure of Eq. 4 but investigates
the dynamics of this field theory for general coupling parameters.
Similar to that for a Ginzburg–Landau theory for equilibrium
phase transitions, there are some phenomenological constraints
on the parameters. To reproduce a bifurcation from a disor-
dered state to a nematic state at a critical density ρc2 =β0/β1, the
parameters β0 and β1 need to be positive. The key phenomeno-
logical parameter in the hydrodynamic equations describing a
(bilinear) coupling between nematic and polar fields is α2. Since
in the absence of such a coupling, i.e., without a polar bias, the
systems should only show nematic but no polar order, α0 and
α1 are required to be positive. Given these constraints, the bilin-
ear coupling term α2f

∗
1 f2 in Eq. 4a might still induce growth of

polar order when the nematic amplitude |f2| is large enough such
that the coupling term dominates the decay term−(α0 +α1ρ)f1.
Finally, to ensure saturation of the amplitudes for both polar
and nematic order, |f1| and |f2|, the coefficients for the highest-
order terms, i.e., α3 and β3, have to be positive. The structure of
the hydrodynamic equations, especially the density dependence
of the first term in Eq. 4b and the possibility of induced polar
order due to a bilinear coupling term between polar and nematic
order parameters, is consistent with hydrodynamic equations
based on Smoluchowski approaches (37, 38). Taken together,
this establishes Eq. 4 as a well-founded, semiphenomenolog-
ical model for our further analysis. In the following, we use
it to systematically study the effect of a varying polar–nematic
coupling strength α2. For specificity, all other coefficients were
fixed to values derived from the kinetic Boltzmann equation
with fully nematic alignment and right above the transition to
nematic order (ρ= ρ̄= 0.16 and σ= 0.2). This choice naturally
satisfies all of the abovementioned general conditions on the
coefficients.

Fig. 4A shows the phase diagram as a function of the average
density ρ̄ and the polar–nematic coupling strength α2, obtained
by calculating the spatially uniform solutions of Eq. 4 and their
linear stability against uniform and nonuniform perturbations;
for details see SI Appendix, section 2C. This phase diagram shares
key qualitative similarities with the linear stability analysis of the
kinetic Boltzmann equation (Fig. 2A). By construction, for aver-
age densities above ρc2 the disordered solution is unstable and we
find solutions with uniform nematic order (yellow and red areas
in Fig. 4A). Right above ρc2, uniform nematic solutions are stable
against uniform perturbations, but unstable against nonuniform
perturbations perpendicular to the orientation of nematic order,
suggesting the formation of nematic band patterns (yellow area
in Fig. 4A). For moderate coupling strengths α2 (α2&1.3 in units
of [density/time]) and densities above a certain density ρ(c,h)nem-pol,
we find solutions with uniform polar order, which are stable
against uniform perturbations, but unstable against nonuniform
perturbations parallel to the orientation of polar order, suggest-
ing the formation of polar wave patterns (green area in Fig. 4A).
This is similar to our findings for the kinetic Boltzmann equation
shown as a dashed line in Fig. 2A. When both α2 and ρ̄ are large,
there are no physical solutions (the polar order lies beyond the
attainable density), indicating that the hydrodynamics equations
are not adequate in these regimes (white area in Fig. 4A). For
small α2 and large ρ̄ we find reentrance into a regime of nematic
patterns. In the following we disregard these regimes and focus
on the regime close to the transition density ρc2 (boxed regime in
Fig. 4A).

A B

C D

Fig. 4. Cycling symmetries in the hydrodynamic approach. (A) Linear stabil-
ity analyses of Eq. 4 yield a phase diagram with regimes of polar and nematic
patterns that qualitatively resembles the phase diagram derived from the
kinetic Boltzmann approach for a mixed collision rule (Fig. 2); colors denote
regimes of different symmetries and patterns following the color legend
in Fig. 2A. In particular, for densities close above ρc

2 (red solid line) linear
stability predicts a phase of nematic band patterns (yellow area) and, for
moderate coupling strengths α2 (α2&1.4 in units of [density/time]), a transi-
tion between a regime of nematic bands and a regime of polar waves (green
area) at a critical density ρ(c,h)

nem-pol (blue dashed line). When both α2 and ρ̄ are
large, there are no physical solutions (white area). For our numerical solu-
tions of Eq. 4 we focus on the boxed regime close to the transition density
ρc

2. (B) Numerical solutions of the hydrodynamic equations, Eq. 4 (denoted
by the same symbols as in Fig. 3A), show the formation of nematic bands and
polar waves, as well as coexistence patterns with transformations between
nematic and polar patterns. (C) Snapshot of nematic band patterns shortly
before the onset of local polar instabilities (red bars indicate orientation and
strength of local nematic order). (D) At later times, polar instabilities lead to
the formation of traveling-wave patterns with complex dynamics including
coexistence of local nematic and polar ordered regions which interact and
transform into each other. Blue arrows denote the strength and direction of
polar order. (Parameters are α2 = 1.5 in units of [density/time], ρ̄= 0.18.)
For details on the numerical solutions see SI Appendix, section 2C. In C
and D, the color code denotes the local densities, and red bars and blue
arrows show the orientation of local nematic and polar order, respectively
(the length indicates their respective absolute amplitudes).

To resolve the spatiotemporal dynamics of the polar and
nematic modes beyond linear stability analysis, we numerically
solved Eq. 4, together with the continuity equation for the
density, using XMDS2 software (39), a fast Fourier transform
(FFT)-based spectral solver; see phase diagram in Fig. 4B. For
low polar–nematic coupling strength, α2.1.4, and slightly above
the threshold density ρc2, we find nematic band patterns as pre-
dicted by the linear stability analysis discussed above. For larger
α2 and densities between ρc2 and ρ

(c,h)
nem-pol, we find a dynamic

that exhibits dynamic transitions between patterns of polar and
nematic symmetry (Fig. 4 C and D and Movie S4) reminiscent of
our observations in the kinetic Boltzmann approach (Fig. 3B).
Starting from a disordered uniform state with superimposed
small random fluctuations, the system first forms nematic bands
as predicted by the linear stability analysis (Fig. 4A). Subse-
quently, we observe that at the core of these bands the local
density increases and eventually exceeds ρ(c,h)nem-pol, which then
should trigger a local instability toward polar order (SI Appendix,
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section 2C and Fig. S7). Indeed, the numerical solutions show
the formation of traveling-wave patterns propagating along the
nematic bands. These instabilities eventually result in intrigu-
ing spatiotemporal patterns of nematic and polar order which
dynamically interconvert in a cyclic fashion (Fig. 4C; SI Appendix,
section 2C; and Movie S4), similar to the numerical results we
found for the kinetic Boltzmann equation (Fig. 3B). Specifically,
nematic bands induce polar wave patterns which propagate along
the bands, build up a wave front, and thereby remodel the bands
in turn. Furthermore, we observe that polar clusters can remain
stable even after penetrating other polar clusters with close to
opposite propagation direction (Movie S4).

While the coefficients used in Fig. 4 were chosen mainly
for specificity, we found similar results for other choices of
coefficients that are consistent with the heuristic requirements
discussed above (SI Appendix, section 2C and Fig. S8). In fact,
we argue that other choices yield similar results as long as the
phase diagram features a transition from a regime of nematic
bands to polar order for increasing density. Note that this quali-
tative requirement on the phase diagram is consistent with the
experimental observations in actin motility assays (17), where
one finds a transition from nematic bands to polar patterns
for increasing densities, connected by a regime of interconvert-
ing polar and nematic patterns. This qualitative robustness of
our results against different parameter choices indicates a more
general validity of our results which may also apply to hydrody-
namic theories based on other scaling assumptions or truncation
schemes.

Discussion
Motivated by the intriguing dynamic coexistence of polar and
nematic patterns observed in recent active-matter experiments
and simulations (17), we studied a system of self-propelled par-
ticles that exhibit binary nematic alignment interactions with
a tunable polar contribution. For a moderate polar bias, our
kinetic Boltzmann approach reveals a direct transition from a
phase of macroscopic nematic to polar order for high enough
densities. In addition to the previously studied nematic bands
and traveling waves for respectively small and large polar bias
(4, 27), we identify a parameter regime of moderate polar bias
and density that exhibits intriguing spatiotemporal dynamics:
A dynamic increase of particle density within nematic bands
induces a local symmetry-breaking instability and an ensuing
transition to polar patterns. This self-organized transition then
leads to a rearrangement of the nematic bands which eventually
results in a rich set of different final patterns, including coex-
istence of patterns with nematic and polar symmetry as well
as dynamic transformations between them. We find a similar
phenomenology in hydrodynamic equations when the coupling
between polar and nematic order is strong enough.

Our findings shed additional light on traditional symmetry
assumptions in dilute active-matter theories (4) and suggest that
the symmetry of patterns can depend on the (nonlinear) dynam-
ics of the system. In the system we studied, a global symmetry-
breaking instability of the uniform nematic state first leads to a
redistribution of the density into nematic band patterns. Since in
our system the density acts as a control (bifurcation) parameter
for the macroscopic symmetry, the high-density core of a nematic
band can locally cross a threshold value in the density such that
there is symmetry breaking; i.e., the symmetry of the system
changes from nematic to polar. These local symmetry-breaking
transitions eventually lead to the self-organized coexistence of,
and cycling between, polar and nematic patterns. In these pat-
terns, nematic and polar patterns are firmly intertwined: Nematic
bands serve as scaffolds for the creation of polar wave pat-
terns, which propagate along the nematic band and decay in its
low-density neighborhood, which again fuels the formation of

nematic bands. All of these observations are in very good agree-
ment with the phenomenology observed in previous actomyosin
motility assays (17).

Local steady states and their stability have been found to play
an important role in the context of mass-conserving reaction–
diffusion systems (40, 41), which have been used to study pattern
formation in a broad range of intracellular protein systems.
There, following similar principles to those in our study, the local
protein densities act as dynamic control variables that determine
the local steady states. Since density is diffusively redistributed,
this can have particularly dramatic consequences when local
steady states become unstable, driving the protein concentrations
away from them (40, 42). It will be interesting to further explore
the analogies between these nonequilibrium chemical systems,
where detailed balance is broken at the level of the chemi-
cal reactions, and active systems with (self-)propelled particles.
We believe that the observed feedback between pattern forma-
tion and local instabilities of steady states is not limited to our
study, but could be a more general principle whenever a control
parameter (such as density) is dynamically redistributed dur-
ing pattern formation. From a broader perspective on biological
active matter, this could apply whenever individuals dynamically
change their microscopic properties (velocity, interaction behav-
ior, etc.) in response to macroscopic parameters such as the
density. Prominent examples of such feedback between macro-
scopic effects and the microscopic components of the system are
found in synthetic active systems with chemical interactions (15),
collective sensing in bacteria (43–46), and animals (14).

Previous studies on active-matter systems have observed insta-
bilities of nematic band structures in systems with fully nematic
alignment interactions between polar particles (28, 47), particles
with velocity reversal (48), and apolar particles (49, 50). There,
for large enough system sizes, nematic bands exhibit a trans-
verse instability, which causes long undulations and transverse
breakup of nematic bands and can lead to chaotic dynamics (28,
47, 49, 50). While our numerical solutions of the hydrodynam-
ics equations also exhibit undulations of nematic bands (Fig. 4
B and C and Movie S4), our system with mixed alignment sym-
metry features an additional instability of nematic bands toward
polar order parallel to nematic bands, which leads to the for-
mation of polar waves along the bands. We hypothesize that
the resulting deformation and remodeling of nematic bands by
polar patterns as well as the time and length scales involved in
these processes denote an interesting field of research with simi-
larly rich phenomenology and impact to those of transverse band
instabilities.

In addition to actomyosin motility assays, patterns with polar
and nematic symmetries were commonly suggested in systems
of rodlike particles (19–22) and observed in experiments with
motile bacteria in liquid crystals (51–53). Moreover, patterns of
intertwined symmetries play a prominent role even in equilib-
rium systems, such as in high-temperature superconductors (54,
55). We believe that it would be promising to further investigate
interactions between polar and nematic symmetries in pattern-
forming systems with focus on mutual feedback between pattern
formation and local symmetry-breaking instabilities (bifurca-
tions) as the cause of dynamic coexistence between patterns of
different symmetry.

Our results suggest that the existence of interconverting polar
and nematic patterns depends only on qualitative features of the
system’s phase diagram (in particular, a transition from a regime
of nematic bands to a regime of polar order for increasing den-
sity) and not on assumptions on microscopic details. This implies
a possible relevance of this phenomenon for a broad class of
experimental systems beyond the actomyosin motility assay. We
hypothesize that pattern-induced symmetry breaking could serve
as a useful and general design principle with broad applications
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to synthetic and living active matter (51–53) as well as other
pattern-forming systems with intertwined symmetries (54, 55).

Materials and Methods
Kinetic Approach. Our kinetic approach is based on a kinetic Boltzmann
equation for propelled particle systems first presented in ref. 9. We gener-
alize this approach to account for binary collisions with nematic alignment
with a tunable polar bias (for details see SI Appendix, section 1). We find
approximate uniform stationary solutions of the respective equation system
in Fourier space and study their stability against wave-like perturbations
following ref. 30. The resulting stability diagram is shown in Fig. 2A. The pre-
dictions from this diagram are tested in numerical solutions using a modified
version of the SNAKE algorithm (29) (for details see SI Appendix, section 1B).

Hydrodynamic Approach. For our hydrodynamic approach, we study the lin-
ear stability as well as numeric solutions of Eq. 4 together with the conti-

nuity equation for different coefficients. In the main text and in Fig. 4, we
fixed all coefficients except for α2 to their values derived explicitly from the
kinetic Boltzmann equations for ρ̄= 0.16, σ= 0.2, and ψ= 0 (for details see
SI Appendix, section 2). In addition, we tested different alternative choices
that fulfill the conditions discussed in the main text (SI Appendix, section 2C
and Fig. S8).

Data Availability. All relevant data are within this paper and SI Appendix.
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