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Abstract: Docetaxel (DTX)-based formulation development is still confronted with significant chal-
lenges, due to its refractory solubility and side effects on normal tissues. Inspired by the application
of the transdermal drug delivery model to topical treatment, we developed a biocompatible and
slow-release DTX-containing emulsion via self-assembly prepared by a high-speed electric stirring
method and optimized the formulation. The results of accelerated the emulsion stability experiment
showed that the emulsion prepared at 10,000 rpm/min had a stability of 89.15 ± 2.05%. The ADME,
skin irritation, skin toxicity and molecular interaction between DTX and excipients were predicted
via Discovery Studio 2016 software. In addition, DTX addition in oil or water phases of the emulsion
showed different release rates in vitro and ex vivo. The DTX release ex vivo of the DTX/O-containing
emulsion and the DTX/W-containing emulsion were 45.07 ± 5.41% and 96.48 ± 4.54%, respectively.
In vitro antioxidant assays and anti-lipid peroxidation models revealed the antioxidant potential of
DTX. However, DTX-containing emulsions could maintain and even enhance the antioxidant effect,
both scavenging free radicals in vitro and inhibiting the process of lipid peroxidation.

Keywords: docetaxel; emulsion; drug release; lipid peroxidation

1. Introduction

Docetaxel (DTX) is an antitumor drug [1,2] and plays an important role in the treatment
of breast cancer [3] and prostate cancer [4], among others. However, it has different degrees
of similar side effects to some chemotherapeutic drugs, such as pericardial effusion [5], fluid
retention [6] and radiation recall dermatitis (RRD) [7], which all can affect the treatment
outcome. Additionally, due to its bulky polycyclic structure, the insolubility of DTX
(4.93 µg/mL in water) becomes a disadvantage [8]. Therefore, to enhance DTX solubility
and to achieve sufficient DTX concentrations for clinical applications, researchers over the
last few years have been committed to new dosage forms, such as nanoparticles [9–11],
liposomes [12], microspheres [13], micelle [14,15] and lipid emulsions [16,17].

Paclitaxel microspheres modified by tyrosine were investigated a decade ago, and
it was reported that they could penetrate the epidermal layer via local skin administra-
tion [18]. In addition, previous research has also proved that paclitaxel ointment can be
used locally to treat psoriasis [19]. Based on the feasibility of transdermal administra-
tion, we chose the most common external dosage form of emulsion. Emulsions belong
to the transdermal drug delivery system (TDDS), where first-pass effects can be avoided
by topical dermal administration. Recently, particle systems have been widely exploited
to increase the solubility of insoluble drugs also with antitumor activity and to reduce
their toxicity [20,21]. DTX encapsulated inside the micelle structure of the emulsion can
reduce direct skin irritation [22]. Taking into account the possibility of skin inflammation

Pharmaceutics 2022, 14, 1993. https://doi.org/10.3390/pharmaceutics14101993 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics14101993
https://doi.org/10.3390/pharmaceutics14101993
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0003-2011-0840
https://doi.org/10.3390/pharmaceutics14101993
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics14101993?type=check_update&version=3


Pharmaceutics 2022, 14, 1993 2 of 17

during DTX treatment [23], we combined computer software to predict skin irritation and
the toxicity of each chemical component in the emulsion. Computer-aided drug research
has been involved in target docking, toxicological prediction, pharmacophore analysis,
etc. [24,25].

Recently, more and more attention has been paid to the relationship between the
destruction of lipid peroxidation and diseases. Lipid peroxidation is mainly divided into
two reactions: one is an enzyme-mediated reaction, such as lipoxygenase (LOX), cyclooxy-
genase (COX), cytochrome P450, etc., and the other is a free radical chain reaction initiated
by transition metals such as Fe and Cu [26]. Polyunsaturated fatty acids (PUFA) are the
substrate of lipid peroxidation and the main component of lipids. They can easily provide
hydrogen atoms through carbon–carbon double bonds. As the main component of cell
membranes, lipids play an important role in maintaining the integrity of the cell structure.
Once lipid peroxidation occurs, lipids are the first to participate in the reaction. During
the reaction, a large number of reactive oxygen (ROS) and some oxidation products are
produced, which affects the morphology and function of cells and increases the possibility
of inflammation [27]. In addition, long-term inflammation causes the cells to remain at the
level of oxidative stress. Oxidative stress is one of the main factors of membrane damage
and also one of the reasons leading to the malignant development of diseases such as cancer
(Figure 1). The formation of malondialdehyde (MDA) represents the state of oxidative
stress and is also an indicator of lipid peroxidation. In a large number of literature reports,
antioxidants can effectively inhibit lipid peroxidation and prevent mild inflammation from
moving to malignant tumors [28]. Paclitaxel (PTX) has been reported to have a certain
antioxidant potential [29]. PTX and DTX belong to taxane. From the perspective of chemical
structure, based on the mother nucleus of taxane, the substituents at the C10 position of
the two are different, and PTX is acetyl, whereas DTX is hydroxyl. However, there are few
reports of the antioxidant activity of DTX.

Figure 1. One of the inducements of disease development is oxidation. (A) Under normal circum-
stances, free radicals attacking normal cells activates the secretion of antioxidant enzymes and still
maintains redox balance. (B) In the presence of internal and external inducements, more free radicals
and cytokines appear. The oxidative balance in the body cannot be maintained, forming an oxidative
stress state, and inflammation may occur. There is always an oxidative stress state in the body, and
the possibility of chronic inflammation gradually developing into cancer is greatly increased.
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Therefore, the objective of this study was to develop a safe and stable DTX-containing
emulsion, to investigate the antioxidant potential of DTX and DTX-containing emulsion
and to establish two different models of lipid peroxidation reaction ex vivo to explore the
relationship between DTX and lipid peroxidation.

2. Materials and Methods
2.1. Materials and Reagents

DTX (purity 98.0%) was purchased from Chengdu Pufei De Biotech Co., Ltd. (Chengdu,
China). Glycerol, Stearic acid, 1,1-diphenyl-2-picric acid hydrazine (DPPH) and Thiobar-
bituric acid (TBA) were provided by Shanghai Yuanye Biology Science and Technology
Co., Ltd. (Shanghai, China). Vaseline was provided by Shandong LIRCON Medical Tech-
nology Co., Ltd. (Dezhou City, Shandong, China). Sodium dodecyl sulfate (SDS) was
provided by Tianjin Guangfu Chemical Research Institute (Tianjin, China). Hydrogen
peroxide(H2O2) was provided by Shanghai SuYi Chemical Reagent Co., Ltd. (Shanghai,
China). Trichloroacetic acid (TCA) was provided by DAMAO Chemical Reagent Factory
(Tianjin, China). All the other chemicals and solvents were of analytical reagent grade.

2.2. Animals

Healthy Kunming mice (male, 20± 2 g) were purchased from the Animal Experimental
Center of Anhui University of Chinese Medicine (Hefei, China). All animal experiments
complied with the guidelines approved by the ethics committee of Anhui University of
Chinese Medicine (Hefei, China). The animals were raised under constant environmental
conditions (25 ± 2 ◦C, 40–70% relative humidity). The animals were free to access food and
sterile water.

2.3. Preparation and Optimization of DTX-Containing Emulsion
2.3.1. Selection of the Ratio of Oil Phase Composition

Vaseline is chemically inert and is often used as the auxiliary material of emulsion,
which plays a lubricating function. Stearic acid, as an amphiphilic molecule, plays an
important role in emulsification. In addition, we added flaxseed oil to the emulsion,
because it contains a lot of α-linoleic acids (ALA) that can increase affinity and permeability
to the skin. In the experiments, the two kinds of dosage ratios of stearic acid and Vaseline
(1:1 and 2:3), and whether prescriptions needed flaxseed oil added, were investigated, as
described in Table 1.

Table 1. Optimization of oil phase composition of DTX-containing emulsion via drug release in vitro.

Formulation
DTX
(mL)

Oil Phase Water Phase

Stearic Acid
(g)

Vaseline
(g)

Flaxseed Oil
(g)

SDS
(g)

Glycerol
(g) PBS

DTX (1:1) 1.0 2.5 2.5 - 0.1 1.5
to 10 mLDTX (2:3) 1.0 1.0 1.5 0.3 0.1 1.5

1:1 and 2:3 mean the dosage ratios of stearic acid and Vaseline in the formulation.

2.3.2. Preparation of DTX-Containing Emulsion

DTX-containing emulsions were prepared using a high-speed electric stirring method.
Hydrophilic and lipophilic components were separately weighed according to the pre-
scription and were placed in two 50 mL beakers, respectively. Then, they were melted in
a water bath at 75 ◦C. After complete dissolution, the water phase was added to the oil
phase, and it was then emulsified for 5 min at shear speeds of 500 rpm/min, 5000 rpm/min
and 10,000 rpm/min. The emulsion samples were placed on a slide and were spread
evenly with a cover slip, and then the droplet distribution and morphology of the emulsion
were observed using the optical microscope according to the method of Lee et al. [30]. An
amount of 1 mL DTX with a concentration of 5 mg/mL was added to the oil phase or
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water phase to prepare the emulsions, namely DTX/O and DTX/W. In addition, the blank
emulsion without DTX was prepared and defined as a blank emulsion (B).

2.3.3. Determination of Drug Recovery

The drug recovery (DR) of DTX-containing emulsion was measured to check the
accuracy of the drug content determination method. Briefly, 1.8 mL of absolute ethanol
was added to 200 µL of DTX-containing emulsion by sonicating for 5 min and 10 min to
destroy the micelle structure of the emulsion. The drug content in the sample solution was
determined at 230 nm by ultraviolet spectrophotometry (1600 UV-Vis, Shanghai Mepeda
instrument Co., Ltd., Shanghai, China). The DR of the DTX-containing emulsion was
calculated, as below:

DR =
Amount o f DTX contained

Amount o f DTX added
× 100% (1)

2.3.4. Accelerated Emulsion Stability

The accelerated emulsion stability was referred to with the method described in [30],
with some modification. A fresh emulsion (6 mL) was placed into a 10 mL centrifuge
tube and was centrifuged at 7500 rpm/min for 15 min at 25 ◦C. Centrifugation caused the
unstable emulsion to divide into three layers, which were the oil layer (top), emulsion layer
(middle) and aqueous layer (bottom). The initial height of the emulsion (H0) and the height
of the emulsion layer (He) were measured. The emulsion stability (ES) was calculated using
the equation below.

ES =
He

H0
× 100% (2)

2.4. Drug Release across the Dialysis Membrane Experiment In Vitro

A small stirring magnet was placed in the Franz diffusion cell and was filled with PBS
solution (pH = 7.4). The dialysis membrane (MWCO: 8000–14,000) was soaked in boiling
water and was then taken out and placed between the upper and lower compartments
of the diffusion bottle in order to make it fully contact the PBS solution. An amount of
1.5 mL DTX solution, blank emulsion, DTX/W-containing emulsion and DTX/O-containing
emulsion as samples were put into the upper compartment. The diffusion experiment was
carried out at a constant temperature of 37 ± 1 ◦C, controlled by a constant-temperature
magnetic agitator. An amount of 2 mL of solution from the lower compartment of the
chamber was collected at different times (0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 24, 36, 48,
60, 72, 84 and 96 h), and a PBS buffer with the same volume and temperature was added.
Thereafter, their absorbance was measured at 230 nm and recorded. The test was repeated
three times. The percentage of the released DTX at each time point was calculated using
the following equation:

Released DTX (%) =
Amount o f DTX at time

Total amount o f DTX
× 100% (3)

2.5. Molecules Interaction Study

Molecular docking is one of the most common methods used to predict the binding
conformation of a ligand with a suitable target protein. In the present study, molecular
docking was performed using the software of Discovery Studio 2016. The structures of
tubulin were obtained from the Protein Data Bank (PDB ID = 1 TUB). First, we looked for
suitable binding sites on tubulin dimmers and performed the docking studies with the
flexible ligand (DTX) and the rigid receptor (β-tubulin). The local docking was performed
with a radius of 13 of a small sphere. The interaction forces between individual molecules
were analyzed with the help of computer software. According to the results of the analysis,
the molecular distribution in the emulsion was reasonably speculated.
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2.6. ADME Analysis

The ADME (absorption, distribution, metabolism and excretion) characteristics of six
selected compounds (DTX, stearic acid, Vaseline, flaxseed oil, SDS and glycerol) in the
prescription were studied via the ADMET protocol in the Discovery Studio 2016 software
package, to estimate the bioavailability of the compounds [31]. Some parameters were
calculated to include atom-based Log P98 (ALogP98), ADME 2D fast polar surface area
(ADME 2D FPSA), blood–brain barrier (BBB) and cytochrome P4502D6 (CYP2D6).

2.7. Toxicity Study

TOPKAT compound toxicological properties were used to predict the skin toxicity
and skin sensitivity of the components in the prescription [32,33].

2.8. Antioxidant Activity Studies
2.8.1. The Activity of Scavenging the DPPH Free Radical

The DPPH solution with a deep violet color has a characteristic absorption wavelength
of 517 nm. The color changes into pale yellow with a value of absorbance decreasing when
a non-radical form (DPPH-H) is produced. The activity of scavenging the radical DPPH· by
DTX and DTX-containing emulsions can be measured at 517 nm. The method previously
described was used with slight modifications to assess the scavenging free radical DPPH·
by DTX and its emulsions [34,35]. Briefly, we mixed 1.0 mL of different concentrations of
DTX solutions (concentration range of 10–50 µg/mL) with 2.0 mL of DPPH (0.2 mmol/L),
and they reacted in the dark. The DPPH· was measured at 517 nm. The equation of the
scavenging rate to the DPPH· is shown as follows:

Scavenging rate to DPPH (%) =

(
1− As−Ac

A0

)
× 100% (4)

where “A0” is the absorbance of the blank group; “AS” is the absorbance of the sample
group; and “AC” is the absorbance of the sample control group.

2.8.2. The Activity of Scavenging H2O2

The solution of hydrogen peroxide (40 mmol/L) was prepared in distilled water. In
the sample group, 0.6 mL DTX solution (concentration range of 100–500 µg/mL) and DTX-
containing emulsions were added into EP tubes, mixed with 1.8 mL H2O2 and reacted for
10 min at 25 ◦C, and then they were determined at 230 nm. Simultaneously, the absorbance
of the blank group with 40% ethanol and the sample control group without hydrogen
peroxide solution were determined. The scavenging rate to H2O2 was calculated as shown
in Equation (4).

2.9. Drug Release Study Ex Vivo

After being weighed, the mice were anesthetized with ethyl carbamate. The villi were
removed from the backs of the mice with a shaving knife and depilating cream. Back skin
with dimensions of 2 × 2 cm was cut off and washed with 0.9% normal saline. According
to a previously published paper, the transdermal model and the mouse subcutaneous
mucous membrane model have been established [36,37]. The skin section (complete mouse
back skin or mouse subcutaneous mucosa) was mounted between the donor and the
acceptance cavity of the diffusion cell, as shown Figure 2. The release kinetics studies
from DTX and DTX-containing emulsions ex vivo were performed using the subcutaneous
mucosa of mice at 37 ± 1 ◦C. A PBS buffer solution (pH = 7.4) containing 10% ethanol was
added to the acceptance chamber. The remaining experimental steps were the same as in
Section 2.4. Various mathematical models (zero order, first order, Higuchi, Hixson–Crowell
and Koresmeyer–Peppas were used to determine the drug release kinetics and mechanism
of DTX-containing emulsion, as reported prior [38].
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Figure 2. Schematic diagram of drug release experiments ex vivo. The left figure shows the DTX
release from the emulsion across the mouse skin, and the right figure shows the DTX release from the
emulsion across the mouse subcutaneous mucosa.

2.10. Lipid Peroxidation Model of Tissue Homogenate Ex Vivo

After the back skins of the above mice were taken, the liver and spleen tissues of the
mice were promptly removed. The tissues were carefully washed in 0.9% normal saline to
remove blood. After weighing, the tissues added to the 0.9% normal saline (divided three
times) were homogeneous, and then the 10% tissue homogenates were obtained [39].

In one model, after mixing 1.0 mL of liver tissue homogenate with 100 µL of DTX
solution or DTX-containing emulsions for 5 min, 100 µL Fe2+ solution was added to
establish a model of a normal cell’s lipid peroxidation reaction. In another model, 1 mL of
spleen tissue homogenate was taken out, and 100 µL Fe2+ solution (10 mmol/L) was added
to induce for 30 min (25 ◦C). Then, 100 µL of DTX solution or DTX-containing emulsions
was added to the above mixture solution to build the model of the Fe2+-induced lipid
peroxidation reaction in activated cells. The experimental steps of the two models were
consistent. The tissue homogenates were mixed with 100 µL 0.9% normal saline and 100 µL
Fe2+ as a blank control and positive control. After incubation for 1.5 h at 37 ◦C, the above
solution was mixed with 3.0 mL TBA working liquid and was heated at 95 ◦C for 40 min.
After cooling and centrifuging at 4000 rpm/min for 8 min, the absorption of the clarified
supernatant solution was determined at a wavelength of 532 nm.

2.11. Statistical Analysis

The obtained results were expressed as mean ± standard deviation (SD). The statistical
analyses were performed using SPSS Software 23.0 (IBM, Armonk, NY, USA) by an analysis of
variance (ANOVA) with Duncan’s test. p < 0.05 was considered a statistically significant difference.

3. Results and Discussion
3.1. Formulation Studies
3.1.1. Effects of Shear Speed on Emulsion Micelle and Stability

The micelle size and stability of the emulsion are important indicators of the quality
of the emulsion. To select the appropriate emulsifying speed, the blank emulsions were
prepared to emulsify for 5 min at low, medium and high shear speeds according to the
same prescription (Figure 3A). The emulsion mixed at 500 rpm appeared in three separate
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layers after centrifugation, which may have been caused by the state of the emulsion
being extremely unstable (Figure 3B). A significantly higher accelerated emulsion stability
(89.15 ± 2.05%) was obtained at a shear speed of 10,000 rpm (p < 0.05). However, there is
no difference between the shear speed of 5000 rpm and 10,000 rpm. Increasing mechanical
energy reduces interfacial tension and forms a stable emulsion quickly [40]. The micropho-
tographs of emulsions showed that the micelle dispersions of the emulsions prepared at
low and medium speed were uneven, except for the micelle of the emulsion prepared at a
high shear speed (Figure 3C–E). The particle size influenced the stability of the emulsion.
Therefore, a shear speed of 10,000 rpm/min was selected for preparing the emulsion.

Figure 3. (A) Diagram of the preparation of the emulsion. (B) Results of accelerated emulsion
stability and experimental figure at shear speeds of 500 rpm, 5000 rpm and 10,000 rpm. The data are
means± SD (n = 3). Means with different letters (a,b) are significantly different (p < 0.05) via Duncan’s
test. (C–E) Microphotographs of emulsions were mixed at 500 rpm, 5000 rpm and 10,000 rpm.

3.1.2. Effects of Different Ratios of the Oil Phase on Drug Release In Vitro

The release of DTX solution was only more than 20%, which may be due to the fact
that DTX solution does not create a leaky tank condition with the receiving solution in
the below compartment, thus making the release of DTX difficult to detect (Figure 4). In
addition, when the dosage of stearic acid to Vaseline was 2.5 g and 2.5 g (1:1) in a 10 mL
system, only a small amount of DTX was released from DTX-containing emulsions in vitro.
Although DTX/O (1:1) and DTX/W (1:1) suddenly released at 60 h, especially DTX/W
(1:1), the in vitro total release of DTX from DTX/W (1:1) did not exceed 20% in 96 h, and
DTX/O (1:1) was only half of DTX/W (1:1). However, after changing the ratio of stearic
acid and Vaseline to 2:3 and adding flaxseed oil, the release of DTX from both DTX/W
(2:3) and DTX/O (2:3) reached 20.82 ± 1.67 and 14.37 ± 1.73% within 12 h. Then, in the
next 72 h, an additional 5~8.5% of DTX was sustained and slowly released, which could
be attributed to the dissolution of DTX existing on the surface of the emulsion [11]. In
addition, these results are in accordance with the study by Zhang et al. [17], who reported
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that DTX was lipid friendly and could easily be encapsulated in the oil phase, making it
difficult to “detach”. On the other hand, DTX was freely distributed in the water phase and
was weakly limited by oil phase components [14].

Figure 4. In vitro release studies of DTX solution and DTX-containing emulsions were based on the
differences in the dosages of stearic acid and Vaseline in the emulsion, 2.5 g and 2.5 g (1:1), and the
dosage was 1.0 g and 1.5 g (2:3) in the 10 mL system, respectively.

In combination with the above results, we completed the formulation study of DTX-
containing emulsion, briefly described as follows: According to the formulation DTX (2:3)
in Table 1, DTX-containing emulsion was prepared at 10,000 rpm/min after complete
dissolution at 75 ◦C.

3.2. Drug Recovery

The drug recovery (DR) was calculated by determining the drug content. The drug re-
covery of DTX/O and DTX/W calculated by ultrasonic treatment for 5 min was
86.74 ± 2.18% and 70.21 ± 2.03%, respectively. However, with the ultrasonic time prolong-
ing, the DR of DTX/O and DTX/W reached 99.74 ± 1.09% and 99.68 ± 1.17%, respectively,
which could indicate the accuracy of the detection method.

3.3. Molecular Interaction Analysis between DTX and Excipients

It has been proved theoretically that docetaxel has good docking performance with
β-tubulin [41]. Therefore, we also conducted a docking model of β-tubulin with DTX
(Figure 5A). DTX kept a conventional hydrogen bond with amino acid residue Arg278 of
β-tubulin, and hydrophobic interactions were generated with Val23, Pro360, and Leu371. In
addition, it formed a mainly unfavorable bump with Arg369, His229, and Asp226. Due to
different in vitro release studies of DTX/O and DTX/W, the interaction forces between the
prescription components were analyzed. DTX could form hydrogen bonds with SDS and
glycerol. SDS could form ionic bonds with stearic acid (Figure 5B). The interaction forces
between the remaining molecules were mainly Van der Waals forces. These also showed
that the structure of emulsion was stable, and there was the possibility of a slow release
during the in vitro release process. As a result, we speculated on the chemical structure
distribution of DTX in the oil-in-water-type emulsions, as described in Figure 5C.
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Figure 5. Prediction results by Discovery Studio 2016 software. (A) Three-dimensional and two-
dimensional docking analysis binding β-tubulin (ID: 1TUB) with DTX. (B) Intermolecular docking
analysis: DTX-Glycerol (hydrogen bond); DTX-SDS (hydrogen bond); SDS-Stearic acid (ionic bond).
(C) Self-assembly layout and form of the micellar microparticles of DTX-containing emulsions.

3.4. ADME Analysis and Skin Toxicity Study

The pharmacokinetic properties of the components in formulation were investigated
using Discovery Studio 2016 ADME protocol. The results of the ADME results are listed
in Table 2 and Figure 6. Vaseline, flaxseed oil and SDS showed very high blood–brain
barrier penetration. Except for docetaxel, the remaining five components demonstrated
good or moderate levels of absorption. All the analyzing components were anticipated to
be CYP2D6 non-inhibitors. Finally, the components could bind the plasma protein at a rate
greater than 90%, except for glycerol, which was predicted to bind at a rate less than 90%.
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Table 2. ADME results of docetaxel and excipients.

Component BBB Level a Solubility
Level b

Absorption
Level c

CYP2D6
Prediction d

PPB
Prediction e

Docetaxel 4 2 3 NIN
√

Stearic acid 4 2 0 NIN
√

Vaseline 0 2 0 NIN
√

Flaxseed oil 0 2 0 NIN
√

SDS 1 3 0 NIN
√

Glycerol 4 4 1 NIN ×
a BBB level, 0 = very high, 1 = high, 2 = medium, 3 = low and 4 = very low. b Solubility level, 1 = very low, 2 = low,
3 = good and 4 = optimal. c Absorption level, 0 = good, 1 = moderate, 2 = poor and 3 = very poor. d CYP2D6 is the
cytochrome P2D6. The compound may be a CYP2D6 inhibitor (IN) or non-inhibitor (NIN). e PPB is the plasma
protein binding that may be less than 90% (×) or more than 90% (

√
).

Figure 6. The plot of the two-dimensional polar surface area (PSA_2D) vs. the calculated ALogP98 for
tested compounds showing the 95% and 99% confidence ellipses corresponding to the blood–brain
barrier (BBB) and the human intestinal absorption (HIA) models.

Furthermore, considering that the dosage form of this study was mainly used for
local skin applications, the skin toxicity of all ingredients in the prescription was evaluated.
Except for Vaseline, the remaining components were not sensitive to skin. Vaseline can
be used as a carrier to increase the permeability of active ingredients and can be used in
combination with other active components as a dressing to promote wound healing [42].
In addition, only stearic acid and flaxseed oil in the prescription had moderate irritation
to the skin, whereas the rest of the ingredients were mild or had no irritancy (Table 3). In
general, the formulation of the emulsion could promote the penetration of DTX into the
skin and could be relatively friendly to the skin.

Table 3. Prediction of skin sensitivity and skin irritation in excipients.

Component Skin Sensitization Skin Irritancy

Stearic acid None Moderate
Vaseline Strong Mild

Flaxseed oil None Moderate
Glycerol None Mild

SDS None Mild
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3.5. Ex Vivo Release Study

Mouse skin and its subcutaneous mucosa were used to simulate the local release of
drugs under a physiological environment. In the ex vivo drug release device, a PBS solution
containing 10% ethanol was selected as the diffusion medium of the lower compartment
to form a sinking condition. This was consistent with the purpose of adding Tween-80 to
the diffusion medium, as reported [11]. The previous literature has also reported adding
different concentrations of glutathione (GSH) to the diffusion medium to simulate the
tumor microenvironment and induce DTX release [43].

In the transdermal release experiment, DTX release from the DTX solution was
15.31 ± 2.79%. Only a small amount of docetaxel was detected in DTX/O and DTX/W
within 96 h, which was 3.97 ± 0.34% and 5.64 ± 0.22%, respectively (Figure 7A). Then,
using sonication to handle experimental skin, the amount of docetaxel retained in the
mouse skin was 72.57 ± 6.02% for DTX/O-containing emulsion and 61.96 ± 5.11% for
DTX/W-containing emulsion, which indicated that the emulsion micelle structure made
DTX slowly release. In addition, the retention of inflammatory skin was higher than that
of normal skin, as reported by Yin et al. [19], who also showed that the inflammatory
environment could improve the permeation and induce DTX enrichment.

Figure 7. The transdermal release profiles of DTX solution, DTX/O-containing emulsion and DTX/W-
containing emulsion in phosphate buffer saline containing 10% ethanol: (A) Mouse skin; (B) Mouse
subcutaneous mucosa.

In addition to the skin, the subcutaneous mucosa, such as ocular mucosa [44], nasal
mucosa [45] and oral cavity mucosa [46] is the ideal route of administration. The drugs across
the mucosa of the ocular, nasal and oral cavity can reach the target site or directly enter
systemic circulation. The percentage of cumulative DTX released from the DTX solution,
DTX/O and DTX/W through subcutaneous mucosa ex vivo for 96 h reached 85.73 ± 7.63%,
45.07 ± 5.41% and 96.48 ± 4.54%, respectively (Figure 7B). As is clear, more DTX molecules
were released from DTX/W than that from DTX/O, which was consistent with the in vitro
release of DTX-containing emulsion. Moreover, DTX-containing emulsion penetrated into the
mucosa, laying the foundation for the future research of mucosal inflammation.

Using various mathematical models, the drug release curves were analyzed via Ori-
gin Software 2019b (OriginLab Corp., Northampton, MA, USA). Zero-order, first-order,
Higuchi, Hixson–Crowell and Koresmeyer–Peppas are commonly used models used to
describe drug release kinetics [47,48]. The correlation coefficient values (R) of each mathe-
matical model for DTX, DTX/O and DTX/W are summarized in Table 4. For DTX solution
and DTX/O, the first-order models of drug release had a higher R value, whereas for
DTX/W, the R value of the zero-order model was 0.9922. This suggests that the drug
release mechanism of DTX/O is more suitable for the first-order kinetic study, and the drug
release mechanism of DTX/W is more suitable for the zero-order kinetic study.
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Table 4. Correlation coefficient values (R) for each mathematical model of DTX, DTX/O and DTX/W.

Group Zero-Order First-Order Higuchi Hixson–Crowell Koresmeyer–
Peppas

DTX
Q = 0.0235 t +

11.427
R = 0.7665

Q = 81.5433(1 −
e−0.0016 t)

R = 0.9881

Q = 1.5584 t1/2 +
2.8141

R = 0.9569

Q = 100 [1 − (1 −
0.00029 t)3]
R = 0.9096

Q = 0.3045 t0.4132

R = 0.9689

DTX/O Q = 0.0126 t + 4.073
R = 0.6611

Q = 39.0424(1 −
e−0.0027 t)

R = 0.9879

Q = 0.9384 t1/2 −
0.7333

R = 0.9181

Q = 100 [1 − (1 −
0.00013 t)3]
R = 0.6984

Q = 1.1403 t0.4642

R = 0.9238

DTX/W Q = 0.0169 t + 5.688
R = 0.9922

Q = 148.7101(1 −
e−0.0002 t)

R = 0.9276

Q = 1.001 t1/2 +
2.5097

R = 0.9504

Q = 100 [1 − (1 −
0.00011 t)3]
R = 0.6729

Q = 1.9069 t0.4262

R = 0.9275

DTX means DTX solution. DTX/O means the emulsion containing DTX with oil phase. DTX/W means the
emulsion containing DTX with water phase.

3.6. In Vitro Antioxidant Activity Assays
3.6.1. In Vitro DPPH and H2O2 Scavenging Assays for DTX

DPPH and H2O2 scavenging assays are the most effective, convenient and accurate
methods for the evaluation of the antioxidant activity of chemical compounds [49]. There-
fore, these two assays were used to investigate whether DTX has antioxidant activity.
Within the range of 10~50 µg/mL, the DTX solution showed a logarithmic relationship
with the DPPH free radical clearance rate at 4 h (Figure 8A). Additionally, within the
range of 100~500 µg/mL, the DTX solution showed a linear relationship with the H2O2
clearance rate (Figure 8B). According to the relationship described above, the IC50 (half
maximal inhibitory concentration) of DTX scavenging on DPPH free radical and H2O2
were 40.65 ± 6.29 µg/mL and 327.47 ± 52.23 µg/mL, indicating that DTX had excellent
antioxidant activity. The IC50 of PTX to DPPH free radical and H2O2 was 1.49 mg/mL and
2.17 mg/mL [50]. Compared to the IC50 of DTX with that of PTX, it can be concluded that
DTX is superior to PTX in terms of antioxidant activity.

3.6.2. Comparison of Antioxidant Activity of DTX and DTX-Containing Emulsion

To further determine the antioxidant activity of DTX-containing emulsion and whether
the excipients affect antioxidation function, the free radical removal rates among DTX
solution, DTX/W and DTX/O were compared. The scavenging rate of the excipients on
DPPH free radicals was 57.07 ± 6.34%, which was not significantly different from that of
free DTX. However, the scavenging rate of DTX/W and DTX/O on DPPH free radicals was
significantly higher than that of blank emulsion (Figure 8C). Interestingly, blank emulsion,
DTX/O and DTX/W had extremely high clearance rates on hydroxyl radicals, which were
94.74 ± 6.12%, 96.54 ± 7.14%, and 98.29 ± 5.50%, respectively, showing that the excipients
themselves played a greater role to help DTX clear free radicals (Figure 8D). For example,
the total unsaturated fatty acids in flaxseed oil accounted for 74%, of which α-linoleic
acid accounted for 57%. This unsaturated fatty acid not only provides lipid content and
antioxidant function, but also has excellent permeability and affinity with the skin [51]. It
is also possible that the excipients firstly exert the ability to scavenge free radicals in the
long-term action and perform the antioxidant effect with the gradual release of the drugs.
In the current report, H2O2 is recognized as the primary ROS-signaling molecule [52].
DTX and its emulsions all had strong scavenging stability against H2O2, which also meant
that DTX could clear ROS. However, in cancer cells, ROS is 100-fold higher than that in
normal cells, and the entire environment belongs to an oxidized condition. DTX induces
the apoptosis of cancer cells by promoting the level of ROS. Therefore, from the present
results, DTX with a low concentration sharply inhibits hydrogen peroxide in the early mild
inflammation stages.
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Figure 8. Antioxidant activity studies in vitro: (A,B) The relationship between DTX solution and
DPPH scavenging rate (E%, blue) or H2O2 scavenging rate (E%, yellow); (C,D) DTX solution
(DTX), blank emulsion (B), DTX/O-containing emulsion (DTX/O) and DTX/W-containing emulsion
(DTX/W) had different scavenging rates on DPPH free radicals (DTX-containing concentration:
50 µg/mL) and H2O2 (DTX-containing concentration: 250 µg/mL). The data are means ± SD (n = 3).
Means with different letters (a–c) are significantly different (p < 0.05) via Duncan’s test.

3.7. Lipid Peroxidation Study of DTX and DTX-Containing Emulsion in Different Tissue Homogenates

Cells ingesting too many ferrous ions triggers the Fenton reaction to initiate lipid
peroxidation, which is one of the mechanisms by which ferroptosis occurs [53,54]. This
characteristic of ferrous ions (Fe2+) was used to establish a model of lipid peroxidation,
and the production of malondialdehyde (MDA), an oxidation product, was monitored.
As seen in Table 5, in liver homogenate, the inhibition rate of DTX on MDA production
increased slightly with increasing the concentration. There was a significant difference in
the inhibition rate between 100 µg/mL DTX and 200 µg/mL DTX on MDA production.
This showed that DTX to lipid peroxidation in liver tissue was insensitive when the
concentration of DTX solution was between 200 µg/mL and 1000 µg/mL. This situation
could also be that the metabolism of DTX by hepatic cytochrome CY4P3 enzyme attenuates
the effect of DTX on the inhibition of MDA production [55].
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Table 5. Inhibition rates of MDA production by DTX and DTX/W-containing emulsions in different
tissue homogenates.

Group
Inhibition Rate

Liver Spleen

50 µg/mL DTX - 43.90 ± 2.38% b

100 µg/mL DTX 7.69 ± 0.72% b 52.79 ± 1.80% ab

200 µg/mL DTX 21.98 ± 1.18% a 48.33 ± 1.72% ab

500 µg/mL DTX 20.11 ± 1.13% a 57.0.2 ± 1.51% a

1000 µg/mL DTX 26.77 ± 1.38% a 50.58 ± 1.11% ab

DTX/W 26.21 ± 4.21% a 56.59 ± 6.71% a

The concentration of DTX/W-containing emulsion is 500 µg/mL. The data are means (n = 3) ± SD. Means with
different letters (a,b) are significantly different (p < 0.05) via Duncan’s test.

However, the overall results showed that the production of MDA was affected by
DTX, especially in spleen tissue. It has been reported that paclitaxel inhibited the hyper-
activation of splenic cells by LPS [56]. Moreover, DTX is considered an immune adjuvant
in vaccines [57]. In the context of an immune response, DTX has been studied and seen
as a novel chemical immunomodulator that enhances CD4 and CD8 T-cell function in
the spleen in the tumor environment [58]. A total of 43.26~57.02% of the inhibition rate
of MDA production was obtained in the spleen homogenate. This could be attributed
to the time difference in the addition of Fe2+ in two models. However, there was still a
small disparity in the inhibition rate, which may have been caused by DTX promoting
oxidation. The previous literature reports that anticancer drugs cause oxidative stress
inside the cells [59,60]. Moreover, Ray et al. used DTX as an inducer to establish a lipid
peroxidation model of goat livers [61].

DTX/W-containing emulsion with a high DPPH free radical scavenging rate in vitro
can participate in lipid peroxidation reactions. Interestingly, compared with 500 µg/mL
DTX solution, DTX/W had the same effect on inhibiting MDA production in different tissue
homogenates. This demonstrates that excipients can reduce the possibility of oxidative
stress induced by DTX. The emulsion can wrap DTX in the center of micelles, release DTX
dosage stably and slowly, inhibit lipid peroxidation and control the oxidative stress it may
produce. In addition, flaxseed oil in excipients is an excellent antioxidant [62], which can
resist external oxidation reactions and play a double guarantee.

4. Conclusions

In summary, we successfully screened out a suitable process to prepare DTX-containing
emulsion by adjusting the proportion of oil phase components and screening the sheering
speed. There were mainly Van der Waals forces between each component in the emulsion,
and a small number of hydrogen bonds improved the stability and permeability of the
emulsion. The drug release ex vivo experiments showed that docetaxel could be retained
in the skin or could directly infiltrate into the general circulation through mucosal adminis-
tration for systemic treatment. Furthermore, free radical scavenging experiments in vitro
showed that both DTX and DTX-containing emulsion had antioxidant capacity, and there
was a synergistic effect between them. Although increasing the concentration of DTX did
not regularly control lipid peroxidation, DTX affected the production of oxidation products
as a whole. Therefore, taking emulsion as the platform for DTX delivery, the targeted
treatment of some refractory chronic diseases makes it more meaningful in clinical practice.
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