
Frontiers in Oncology | www.frontiersin.org

Edited by:
Huimao Zhang,

First Affiliated Hospital of Jilin
University, China

Reviewed by:
Kunal Bharat Gala,

Tata Memorial Hospital, India
Zhichao Li,

Chongqing West District Hospital,
China

*Correspondence:
Xiaochun Meng

mengxch3@mail.sysu.edu.cn
Junsheng Peng

pengjsh@mail.sysu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 03 March 2021
Accepted: 11 May 2021
Published: 01 June 2021

Citation:
Chen Y, Wei K, Liu D, Xiang J,

Wang G, Meng X and Peng J (2021)
A Machine Learning Model for

Predicting a Major Response to
Neoadjuvant Chemotherapy in

Advanced Gastric Cancer.
Front. Oncol. 11:675458.

doi: 10.3389/fonc.2021.675458

ORIGINAL RESEARCH
published: 01 June 2021

doi: 10.3389/fonc.2021.675458
A Machine Learning Model for
Predicting a Major Response to
Neoadjuvant Chemotherapy in
Advanced Gastric Cancer
Yonghe Chen1,5†, Kaikai Wei2,5†, Dan Liu3†, Jun Xiang1,5, Gang Wang4,
Xiaochun Meng2,5* and Junsheng Peng1,5*

1 Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,
2 Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China, 3 Department of
Laboratory Science, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China, 4 School
of Public Health, Sun Yat-sen University, Shenzhen, China, 5 Guangdong Institute of Gastroenterology, Guangdong Provincial
Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China

Aims: To develop and validate a model for predicting major pathological response to
neoadjuvant chemotherapy (NAC) in advanced gastric cancer (AGC) based on a machine
learning algorithm.

Method: A total of 221 patients who underwent NAC and radical gastrectomy between
February 2013 and September 2020 were enrolled in this study. A total of 144 patients
were assigned to the training cohort for model building, and 77 patients were assigned to
the validation cohort. A major pathological response was defined as primary tumor
regressing to ypT0 or T1. Radiomic features extracted from venous-phase computed
tomography (CT) images were selected by machine learning algorithms to calculate a
radscore. Together with other clinical variables selected by univariate analysis, the
radscores were included in a binary logistic regression analysis to construct an
integrated prediction model. The data obtained for the validation cohort were used to
test the predictive accuracy of the model.

Result: A total of 27.6% (61/221) patients achieved a major pathological response. Five
features of 572 radiomic features were selected to calculate the radscores. The final
established model incorporates adenocarcinoma differentiation and radscores. Themodel
showed satisfactory predictive accuracy with a C-index of 0.763 and good fitting between
the validation data and the model in the calibration curve.

Conclusion: A prediction model incorporating adenocarcinoma differentiation and
radscores was developed and validated. The model helps stratify patients according to
their potential sensitivity to NAC and could serve as an individualized treatment strategy-
making tool for AGC patients.

Keywords: advanced gastric cancer, neoadjuvant chemotherapy, radiomics, pathological response,
machine learning
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INTRODUCTION

Gastric cancer is the fifth most common malignancy in the world
and the third leading cause of cancer-relateddeath (1).Themajority
ofpatients arediagnosedat an advanced stagewith apoor prognosis
(2). In recent years, neoadjuvant chemotherapy (NAC) plus
subsequent radical gastrectomy has become a popular treatment
modality for advanced gastric cancer (AGC). Some scholars stated
that NAC could result in tumor downstaging and a higher curative
resectionrate andmayeventuallyprolong survival forAGCpatients
(3, 4). Some other trials stated that NAC failed to offer any survival
benefit (5, 6). Moreover, well-designed prospective RCTs are still
lacking. Thus, the benefit and necessity of NAC remain
controversial. Previous studies have found that the survival
benefit of NAC vastly depends on the pathological response of
the tumor.Thosewithamajorpathological response and significant
downstaging gained more survival benefit than others (7, 8).
However, for those with a minor response, NAC offers no
survival benefit but only toxicity and the risk of tumor
progression during chemotherapy that may hinder surgical
resection. Thus, to achieve personalized precision medicine, a
pre-intervention prediction model to identify major responders
and minor responders is needed.

Radiomics, a newly developed textural analysis method based
on high-throughput extraction of quantitative imaging features
within the tumor region (9), has shown potential as a
noninvasive predictor for histological grade (10, 11), tumor
stage (12), and prognosis (13) in gastric cancer. In certain
cancers, radiomic features have been demonstrated to be an
effective predictor for responses to anticancer therapy (14, 15).
However, similar work for AGC patients is lacking.

Thus, we conducted this study to evaluate the predictive value
of radiomic features for a major response to NAC in AGC
patients, aiming to build a predictive model integrated with
clinical and radiomic parameters and to provide a practical
tool for developing individualized treatment strategies.
METHODS

Study Population and Data Collection
This study was approved by the ethical committee of the Sixth
Affiliated Hospital, Sun Yat-sen University. We reviewed the
gastric cancer database of our institution and included patients
according to the following criteria:

Inclusion criteria: (i) patients with histologically confirmed
adenocarcinoma of the stomach or esophagogastric junction who
received NAC and radical gastrectomy; (ii) patients who
underwent abdominal multidetector computed tomography
(CT) inspection before any intervention started; and
(iii) tumor lesions that are assessable according to The
Response Evaluation Criteria in Solid Tumors Version 1.1 (16).

The exclusion criteria were as follows: (i) patients who
received preoperative radiotherapy, trastuzumab therapy, or
immunotherapy as a part of neoadjuvant therapy; (ii) patients
with indistinguishable tumor lesions on the CT images due to
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insufficient filling of the stomach during the CT inspection; and
(iii) patients with insufficient data.

All available pre-intervention clinical information was
retrieved from the database, including sex, age, body mass
index (BMI), adenocarcinoma differentiation, and tumor
staging information according to the staging system of the
AJCC 8th edition (17), as listed in Table 1.

CT Image Acquisition, Retrieval
Procedure, Radiomics Feature Extraction
Methodology, and Determination of
Pathological Response
The workflow of this study is depicted in Supplementary
Material S1. Venous-phase contrast-enhanced abdominal CT
images were retrieved from the picture archiving and
communication system (details described in Supplementary
Material S2). The region of interest (ROI) was delineated at
each cross section of the primary tumor lesions by two senior
licensed radiologists. Delineations were strictly confined within
the tumor border using the segmentation tool ITK SNAP (18)
ver. 3.6.0 (University of Pennsylvania, PA, USA). An example of
CT image delineation was shown in Figure 1. Radiomic features
of the ROI were extracted using the ‘pyradiomics’ package (19) in
the Python programming language ver. 3.7.0 (Python Software
Foundation, Virginia, USA; www.python.org). The list of extracted
features is depicted in Supplementary Materials S3 and S4.

For pathological response assessment, all resection specimens
were examined by two senior pathologists. A major response was
defined as primary tumor regressing to ypT0 (absence of residual
cancer cells in the primary tumor) or yp T1 (scattered cancer
cells in the mucosa layer). The other cases were defined as a
minor response.

Statistical Analysis
All statistical analyses were performed by R software version 3.6.1
(TheRFoundation for Statistical Computing, Vienna, Austria; www.
r-project.org). Details of the machine learning algorithm and
packages utilized are described in Supplementary Material S5.
P-values<0.05 were identified as statistically significant.

Features Selection and Radscore
Calculation
Clinical feature selection: Pre-intervention clinical characteristics
that were significantly correlated with pathological response
were selected.

Radiomic features were selected in 4 steps: In step 1, all
radiomic features values were standardized according to the
distance to mean value. In step 2, the correlations between the
radiomic features and pathological response were tested by
univariate analysis, and features with a P-value<0.05 were
selected. In step 3, the machine learning algorithm of the least
absolute shrinkage and selection operator (LASSO) method was
used to reduce data dimensionalities, and features with a nonzero
coefficient were further selected. In step 4, the radscore was
calculated by linearly combining the coefficients of features from
the third step.
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Development of an Individualized
Prediction Model Integrating Clinical
and Radiomic Features
After an individualized radscorewas calculated for each patient, the
total samplewas randomized into a training cohort and a validation
cohort. In the training cohort, the correlation between radscores
and pathological responses was tested by univariate analysis. The
selected clinical features and radscore are added to a multivariate
binary logistic regression model. An individualized model
integrating clinical features and radscore is established based on
Frontiers in Oncology | www.frontiersin.org 3
data obtained from the training cohort, visualizing the weights of
each parameter in the model.

Validation of the Integrated Model
and Decision Curve Analysis
The data obtained from the validation cohort were used to test
the prediction precision of the model. A calibration curve was
plotted to assess the calibration between the model and the
validation data set. The receiver’s operative curve (ROC) and
the respective area under the curve (AUC) were used to test the
TABLE 1 | Patients characteristic in the training and validation cohort.

Characteristic Training cohort p-value Validation cohort p-value

All
(n = 144)

Minor response
(n = 107)

Major response
(n = 37)

All
(n = 77)

Minor response
(n = 53)

Major response
(n = 24)

Sex (%)
Male 106 (73.6) 77 (72.0) 29 (78.4) 0.584 54 (70.1) 36 (67.9) 18 (75.0) 0.719
Female 38 (26.4) 30 (28.0) 8 (21.6) 23 (29.9) 17 (32.1) 6 (25.0)
Age 57.94 ± 9.35 57.59 ± 9.51 58.97 ± 8.91 0.439 56.04 ± 11.35 54.75 ± 11.97 58.88 ± 9.44 0.141
Location (%)
Upper 52 (36.1) 36 (33.6) 16 (43.2) 0.273 28 (36.4) 21 (39.6) 7 (29.2) 0.654
Middle 27 (18.8) 24 (22.4) 3 (8.1) 12 (15.6) 9 (17.0) 3 (12.5)
Lower 62 (43.1) 45 (42.1) 17 (45.9) 35 (45.5) 22 (41.5) 13 (54.2)
Whole 3 (2.1) 2 (1.9) 1 (2.7) 2 (2.6) 1 (1.9) 1 (4.2)
Differentiation of adenocarcinoma (%)
Well 6 (4.2) 2 (1.9) 4 (10.8) 0.001 2 (2.6) 1 (1.9) 1 (4.2) 0.178
Moderately 63 (43.8) 40 (37.4) 23 (62.2) 25 (32.5) 14 (26.4) 11 (45.8)
Poorly 75 (52.1) 65 (60.7) 10 (27.0) 50 (64.9) 38 (71.7) 12 (50.0)
Clinical T stage (%)
T2 3 (2.1) 2 (1.9) 1 (2.7) 0.609 2 (2.6) 2 (3.8) 0 (0.0) 0.593
T3 73 (50.7) 51 (47.7) 22 (59.5) 33 (42.9) 21 (39.6) 12 (50.0)
T4a 55 (38.2) 44 (41.1) 11 (29.7) 32 (41.6) 22 (41.5) 10 (41.7)
T4b 13 (9.0) 10 (9.3) 3 (8.1) 10 (13.0) 8 (15.1) 2 (8.3)
Clinical N stage (%)
N0 6 (4.2) 5 (4.7) 1 (2.7) 0.968 2 (2.6) 2 (3.8) 0 (0.0) 1
N+ 138 (95.8) 102 (95.3) 36 (97.3) 75 (97.4) 51 (96.2) 24 (100.0)
Regimen (%)
Doublet 58 (40.3) 46 (43.0) 12 (32.4) 0.35 31 (40.3) 21 (39.6) 10 (41.7) 1
Triplet 86 (59.7) 61 (57.0) 25 (67.6) 46 (59.7) 32 (60.4) 14 (58.3)
Cycles 4.00 [4.00, 4.00] 4.00 [3.00, 4.00] 4.00 [4.00, 5.00] 0.045 4.00 [4.00, 5.00] 4.00 [4.00, 5.00] 4.00 [4.00, 4.00] 0.748
Resection (%)
Distal gastrectomy 63 (43.8) 45 (42.1) 18 (48.6) 0.614 33 (42.9) 20 (37.7) 13 (54.2) 0.271
Total gastrectomy 81 (56.2) 62 (57.9) 19 (51.4) 44 (57.1) 33 (62.3) 11 (45.8)
Laparoscopy surgery(%)
No 28 (19.4) 20 (18.7) 8 (21.6) 0.883 10 (13.0) 8 (15.1) 2 (8.3) 0.652
Yes 116 (80.6) 87 (81.3) 29 (78.4) 67 (87.0) 45 (84.9) 22 (91.7)
Multivisceral resection(%)
No 132 (91.7) 96 (89.7) 36 (97.3) 0.275 70 (90.9) 48 (90.6) 22 (91.7) 1
Yes 12 (8.3) 11 (10.3) 1 (2.7) 7 (9.1) 5 (9.4) 2 (8.3)
Pathological T stage (%)
T0 23 (16.0) 0 (0.0) 23 (62.2) <0.001 12 (15.6) 0 (0.0) 12 (50.0) <0.001
T1 14 (9.7) 0 (0.0) 14 (37.8) 12 (15.6) 0 (0.0) 12 (50.0)
T2 15 (10.4) 15 (14.0) 0 (0.0) 9 (11.7) 9 (17.0) 0 (0.0)
T3 86 (59.7) 86 (80.4) 0 (0.0) 39 (50.6) 39 (73.6) 0 (0.0)
T4 6 (4.2) 6 (5.6) 0 (0.0) 5 (6.5) 5 (9.4) 0 (0.0)
Pathological N stage (%)
N0 67 (46.5) 41 (38.3) 26 (70.3) 0.01 45 (58.4) 25 (47.2) 20 (83.3) 0.02
N1 31 (21.5) 24 (22.4) 7 (18.9) 9 (11.7) 6 (11.3) 3 (12.5)
N2 24 (16.7) 22 (20.6) 2 (5.4) 12 (15.6) 11 (20.8) 1 (4.2)
N3a 19 (13.2) 17 (15.9) 2 (5.4) 10 (13.0) 10 (18.9) 0 (0.0)
N3b 3 (2.1) 3 (2.8) 0 (0.0) 1 (1.3) 1 (1.9) 0 (0.0)
Harvested Lymph Node 29 ± 12 29 ± 12 27 ± 13 0.286 27 ± 12 27 ± 12 28 ± 12 0.842
Radscore 0.11 [-0.76, 0.86] -0.04 [-0.92, 0.64] 1.05 [-0.29, 1.66] <0.001 0.40 [-0.99, 1.01] 0.04 [-1.18, 0.58] 1.04 [0.33, 1.33] 0.001
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discriminative power. Decision curve analysis was conducted to
determine the predictive value of the integrated model compared
to the prediction model based on the clinical characteristics or
radiomic features alone.
RESULTS

Patients Characteristic
From February 2013 to September 2020, 221 patients who received
NAC and D2 radical gastrectomy were enrolled in the study. Patient
characteristics in the training and validation cohorts are depicted in
Table 1. The majority of patients were male (72.4%, 160/221), and
the lesions were mostly poorly differentiated adenocarcinoma
(56.6%, 125/221) with a clinical stage of T3-T4 (97.7%, 216/221)
and radiologically suspicious lymph node metastasis (96.4%, 213/
221). Cases were randomly assigned to a training cohort (n=144)
Frontiers in Oncology | www.frontiersin.org 4
for predictionmodel construction and a validation cohort (n=77) for
model validation according to a preset 2:1 ratio. The demographic
characteristics were similar in both cohorts, as shown in Table 1.

Neoadjuvant Chemotherapy and
Pathological Findings
Enrolled patients received a median of 4 cycles of NAC. Triplet
agent regimens were the mainstream regimen (59.7%, 132/221).
Most lesions were resected through laparoscopy (82.8%, 183/
221). In the final pathological analysis, a total of 61 patients
(27.6%) achieved a major response, of whom 35 regressed to
ypT0 (15.8%) and 26 regressed to ypT1 (11.8%).

Feature Selection and
Radscore Calculation
In the univariate analysis, 92 of 572 features were selected
according to the P-value (<0.05). In the binary LASSO
FIGURE 1 | Pre-intervention venous-phase computed tomography images of a patient with major response (A) and a patient with minor response (B) to
neoadjuvant chemotherapy. The lesions were delineated slice by slice and merged into a 3-dimensional region for features extraction.
June 2021 | Volume 11 | Article 675458
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regression, which is depicted in Figure 2, 5 features with nonzero
coefficients were included in the radscore calculation formula
(Supplementary Material S6). The distribution of radscore and
responses to NAC is depicted in Figure 3.

Development of a Prediction Model
Integrating Clinical and
Radiomic Parameters
Among all the pre-intervention characteristics of the training
cohort listed in Table 1, only adenocarcinoma differentiation
and radscores were significantly correlated with major
pathological response. Thus, these two factors were included in
the binary logistic regression analysis. Based on their weight in
the model, a model integrating clinical and radiomic parameters
for predicting major response after NAC was constructed
(Figure 4) with the radscore yielding the heaviest weight in the
prediction model.

Validation of the Integrated Model
The AUC of the ROC curve of the model based on the data of the
validation cohort was 0.744, showing satisfactory predictive
discriminative power (Figure 5A). The calibration curve of the
integrated model for the probability of a major response
demonstrated satisfactory agreement between the training and
validation cohorts (Figure 5B). The C-index based on the
validation cohort for the training model was 0.763 (95% CI:
Frontiers in Oncology | www.frontiersin.org 5
0.648-0.878), suggesting a good model fit. The result of the
decision curve analysis is presented in Figure 6. We compared
the predictive power of models including only the clinical
parameter (adenocarcinoma differentiation) or radiomic
parameters (radscore) to the model integrating both factors.
The results confirmed the superiority of the integrated model,
indicating that adenocarcinoma differentiation and radiomic
features have an intercrossing incremental effect on each other,
adding up to a more satisfactory prediction model for major
responses to NAC.
DISCUSSION

In this study, we managed to develop and validate a model for
predicting major response to NAC in AGC patients based on a
machine learning approach. This model incorporates only pre-
intervention clinical and CT radiomic features and effectively
stratifies patients according to their sensitivity to NAC, making it
a simple and practical tool for assisting individualized treatment
strategy development.

In the model, the radscore represents the pre-intervention CT
characteristics of each patient. The radscore was calculated in 3
steps. In the first step of univariate analysis, features without
significant correction to major response were eliminated, and
92 features of 572 features were selected. In the second step,
FIGURE 2 | Radiomic feature selection using the least absolute shrinkage and selection operator (LASSO) model. The area under the receiver operating
characteristic (ROC) curve was plotted versus the logarithm of tuning parameter l. Dotted vertical lines were drawn at the optimal values using the minimum criteria
and the 1 standard error of the minimum criteria (the 1-SE criteria).
June 2021 | Volume 11 | Article 675458
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a machine learning algorithm, LASSO regression, was utilized,
and features with collinearity and weak predictive strength were
further eliminated, leaving only 5 features. In the third step, the
remaining 5 features with the strongest independent predictive
value were fit into a single radscore via linear combination weighted
by coefficients. This approach was proven to be stable and effective
and has been embraced by similar previous studies (20–23).
Additionally, in the ROI delineation procedure, we adopted the 3-
dimensional delineation method, which means that each cross
section of the tumor was included and rebuilt into a 3-
Frontiers in Oncology | www.frontiersin.org 6
dimensional model. Previous research has indicated that this
approach provides extracted features that are more stable, precise
and reflect more detailed information on the tumor nature
compared with the 2-dimensional delineation method (24). The
radscore also retains a heavier weight in the final established
prediction model, indicating satisfactory prediction power.

In the final established model, not only radiomic features but
also clinical features were integrated. Among all the clinical features
analyzed, only adenocarcinoma differentiation and cycles of NAC
achieved statistical significance. Given that cycles of NACwere not a
FIGURE 4 | A visualized model for predicting major pathological response after neoadjuvant chemotherapy incorporating only pre-intervention characteristics, such
as adenocarcinoma differentiation and CT radscores.
FIGURE 3 | Waterfall chart showing radscores for each patient in the training and validation cohorts. The red columns represent patients with minor pathological
responses, and the green columns represent those with major pathological responses.
June 2021 | Volume 11 | Article 675458
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pre-intervention parameter, only differentiation was included. A
higher differentiation grade was associated with a poorer response to
chemotherapy, which is consistent with previous reports (25, 26).

For the choice of the outcome variable, we defined primary
tumor regressing to ypT0 or T1 as a major response to NAC, as it is
the definition used in early gastric cancer (27). Other previous
reports also stated that the regression of the T stage is an important
survival predictor, and patients with lower ypT stage are associated
Frontiers in Oncology | www.frontiersin.org 7
with more survival benefit gain from NAC (28–30). Thus, this
variable can be used as an effective surrogate endpoint for
survival (31).

Validation of the model showed a good fit between the
validation cohort and the model. A c-index of 0.763 indicates
robust predictive power. Decision curve analysis showed that by
integrating radiomics and differentiation into the model, the
prediction accuracy was higher than the prediction based on
FIGURE 6 | Decision curve analysis comparing the predictive value of different models. The Y-axis measures the net benefits. The X-axis represents the threshold
probability for “positive” (indicating the patient is likely to achieve a major response after NAC and should be recommended for NAC). The green line represents
predictions based on only radscores. The red line represents predictions based on only adenocarcinoma differentiation. The purple line represents predictions based
on the model incorporating both radscores and differentiation. As shown in the figure, in most thresholds, the integrated model demonstrates superiority and more
net benefit gains.
A B

FIGURE 5 | (A) Receiver’s operating curve for validating the discriminative power of the model using data in the validation cohort, showing a satisfactory
discriminative power of the model with an area under the curve of 0.744. (B) The calibration curve shows a good fit between the data of the validation cohort and
the model with a C-index of 0.763.
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radscore or differentiation alone, indicating an intercrossing
incremental value and further demonstrating the superiority of
the integrated model. The model could serve as a useful reference
tool for developing treatment strategies for AGC patients,
especially since NAC has yet to become the standard approach
for AGC. First, stratifying patients according to the probability of
achieving a major response could not only help us identify
patients with good sensitivity to NAC but also help patients
with poor sensitivity to NAC avoid unnecessary toxicity and the
risk of tumor progression. Second, the features included in our
model were all easily achievable by pre-intervention routine
inspection, with easily accessible tools and no excessive trauma
to the patients.

A few limitations to our study should be noted. First, there
was a lack of genomic data, such as microsatellite stability
status, which are potential chemosensitivity predictors
according to previous literature (32). Second, there was a lack
of a prospective validation cohort from an independent
institution to prove the model’s universality. Nevertheless, the
image sets analyzed in our study were retrieved from CT
scanners of various manufacturers, and the total sample was
randomly divided into a training and a validation cohort based
on a reasonable ratio. The final established model should be
reliable and robust.
CONCLUSION

In conclusion, a model integrating pre-intervention clinical and
CT features for predicting major response to NAC was
successfully developed and validated. The model helps stratify
AGC patients according to their potential chemosensitivity and
can serve as a practical tool for the development of
individualized treatment strategies for advanced gastric
cancer patients.
Frontiers in Oncology | www.frontiersin.org 8
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