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Introduction
Decades of research support the association between blood lead 
concentrations and adverse neurobehavioral outcomes, even 
at levels below the current CDC reference level of 5 μg/dL.1–8 
Elevated childhood blood lead levels have been associated with 

decreased reading and cognitive abilities, increased hyperactiv-
ity and impulsive behaviors, decreased gray matter volume in 
mood-regulating and decision-making regions of the adult brain, 
and higher rates of arrests for violent offences in adulthood.9–13

Exposure to lead occurs via four main routes: transplacental 
transfer, ingestion, inhalation, and remobilization of lead depos-
ited in the bones14,15; the relative contribution of these sources 
to a child’s total lead exposure varies with age.16 When lead-
based paint deteriorates, it contaminates house dust and soil.14 
Ingestion can occur via hand-to-mouth contact or contaminated 
food or drink.14 Most of the lead is incorporated into bone and 
can leach back out into the body throughout life.15 Today, the 
highest concentrations of airborne lead, which are found in very 
small particle size, are due to nearby stationary sources such 
as industrial facilities and airports.17–20 Before the phase out of 
leaded gasoline began, however, leaded gasoline was the pre-
dominant source of airborne lead, accounting for over 50% of 
lead in blood.19,21 Between 1980 and 2014, ambient airborne 
lead concentrations decreased by 98%, shifting most lead 

What this study adds
In this article, we show that exposure to very low concentra-
tions of airborne lead during childhood is associated with poor 
behavioral outcomes at age 12. Controlling for potential con-
founders, we identified sensitive windows of exposure to air-
borne lead in mid- and late childhood for increased anxiety and 
atypicality scores and sensitive windows for increased aggres-
sion and attention problems immediately following birth. We 
believe that this manuscript is appropriate for publication by 
Environmental Epidemiology given the novelty of examin-
ing the impact of airborne lead exposure on child behavioral 
outcomes.
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Background: Despite the precipitous decline of airborne lead concentrations following the removal of lead in gasoline, lead is 
still detectable in ambient air in most urban areas. Few studies, however, have examined the health effects of contemporary airborne 
lead concentrations in children.
Methods: We estimated monthly air lead exposure among 263 children (Cincinnati Childhood Allergy and Air Pollution Study; 
Cincinnati, OH; 2001–2005) using temporally scaled predictions from a validated land use model and assessed neurobehavioral 
outcomes at age 12 years using the parent-completed Behavioral Assessment System for Children, 2nd edition. We used distributed 
lag models to estimate the effect of airborne lead exposure on behavioral outcomes while adjusting for potential confounding by 
maternal education, community-level deprivation, blood lead concentrations, greenspace, and traffic related air pollution.
Results: We identified sensitive windows during mid- and late childhood for increased anxiety and atypicality scores, whereas sen-
sitive windows for increased aggression and attention problems were identified immediately following birth. The strongest effect was 
at age 12, where a 1 ng/m3 increase in airborne lead exposure was associated with a 3.1-point (95% confidence interval: 0.4, 5.7) 
increase in anxiety scores. No sensitive windows were identified for depression, somatization, conduct problems, hyperactivity, or 
withdrawal behaviors.
Conclusions: We observed associations between exposure to airborne lead concentrations and poor behavioral outcomes at con-
centrations 10 times lower than the National Ambient Air Quality Standards set by the US Environmental Protection Agency.
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exposure concerns to residential sources, such as lead-based 
paint and contaminated drinking water.22 However, detectable 
levels of ambient airborne lead still exist due to industrial emis-
sions, transportation, and resuspended soil lead, and may travel 
directly to the brain due to their small particle size.16,17,19,23,24

Not only are children more susceptible to the effects of air 
pollution than adults, they are also more vulnerable to the neu-
rotoxic effects of lead exposure during brain development.25–28 
Assessing exposure over a time period during which a child is 
less susceptible to the effects of lead exposure can result in an 
underestimate of lead effects or absence of effects.29 Therefore, 
identifying windows of vulnerability is essential to fully under-
stand the relationship between ambient lead exposure and neu-
robehavioral problems, and can provide etiological insights.

Despite the extensive research on health effects associated 
with blood lead concentrations, few studies have examined the 
impact of contemporary airborne lead concentrations on neuro-
behavioral outcomes. In this analysis, we estimated the impacts 
of exposures over specific time periods and tested for windows 
of increased vulnerability to ambient airborne lead exposure and 
behavioral problems in 12-year-old youth whose exposure to 
airborne lead never exceeded the United States Environmental 
Protection Agency (EPA) standard.

Methods

Study population

The Cincinnati Childhood Allergy and Air Pollution Study 
(CCAAPS) is a prospective birth cohort of children born from 
October 2001 to July 2003 in the Greater Cincinnati metro-
politan region. Study eligibility required having a birth record 
address either farther than 1,500 m or closer than 400 m from 
a major highway and having at least one biologic parent with 
allergic sensitization verified by skin prick testing.30,31 The study 
was approved by the University of Cincinnati and Cincinnati 
Children’s Hospital Medical Center’s Institutional Review 
Boards (IRB approval #: 2012-1619), and caregivers provided 
written informed consent for their own and their child’s partici-
pation before enrollment.

Airborne Pb exposure assessment

We used a previously validated exposure assessment model to 
estimate ambient concentrations of lead as a constituent of par-
ticulate matter of size 2.5 μm or smaller (PM2.5).

32 Briefly, we 
created land use random forest (LURF) models based on ambi-
ent air sampling conducted in the study area at 24 different sites 
from 2001 to 2005. Land use predictors including land cover 
measurements, bus routes, greenspace, and population density 
were used to build a random forest model that had a cross val-
idated accuracy pseudo-R2 of 0.89. The LURF model was used 
to estimate the airborne concentrations of lead at each child’s 
residence from birth through age 12, accounting for the length 
of residence in each home (Figure 1A).

To account for temporal variability in air lead concentrations, 
annual exposure estimates from the LURF model were scaled 
(monthly) using air quality system (AQS) data measured by EPA 
(Figure 1B).33 We constructed scaling factors using air lead mea-
surements derived from PM2.5 measured every 3–6 days at a cen-
trally located EPA monitoring station in the study area (monitor 
ID: 390610040). Air lead measurements before December 2003 
were not available at this site, so data from a nearby site (mon-
itor ID: 211170007) were substituted for this time period. To 
adjust for seasonal patterns of lead exposure, we constructed 
a scaling factor for each month of every participant’s life, from 
birth through age 12 years that was defined as the average 
monthly air lead level divided by the average air lead level from 
2001 to 2005. Monthly exposure estimates were constructed by 

multiplying each scaling factor by the corresponding annual air 
lead estimate at the residential address from the LURF model 
(i.e., scaling factors for months 1–12 were multiplied by the age 
1 time-weighted residential address estimate, scaling factors for 
months 13–24 by the age 2 estimate, and so on).34 For example, 
consider 9 October 2002 to be the birth date of a child of inter-
est. The month 1 exposure estimate was obtained by adjusting 
the age 1 LURF model estimate by an adjustment factor:

Month1Lead Estimate =Age1LURFEstimate

EPA avg leadOctober 9 to
×

NNovember 9(2001)
EPA avg lead (2001to2005)

This was done for each month of each child’s life through 
their 12th birthday, for a total of 144 monthly estimates of 
airborne lead exposure specific to each study participant, 
increasing the temporal resolution and variability of estimated 
airborne lead exposure (Figure 1C). Annual average scaled air-
borne lead was uncorrelated with total PM2.5 exposure (age 1: 
r = −0.06, P = 0.29; age 12: r = −0.08, P = 0.22).

Child behavioral assessment

The Behavioral Assessment System for Children, Second 
Edition, Parent Rating Scales (BASC-2) were completed by par-
ents of CCAAPS participants at the 12-year visit. The BASC-2 
was designed to assess the behavioral and emotional status of 
children and young adults in community and home settings, 
as well as aid in clinical diagnosis of behavioral and emotional 
disorders.35 BASC-2 subscale scores for internalizing behaviors 
(anxiety, depression, and somatization), externalizing behaviors 
(aggression, conduct problems, and hyperactivity), and others 
included in the behavioral symptoms index (attention problems, 
atypicality, and withdrawal) were selected as outcomes a priori 
based on existing evidence in the literature and biological mech-
anisms associated with air lead exposure. BASC-2 scores are 
reported as population normalized t-scores (with mean 50 and 
standard deviation 10), where scores above 59 are considered 
clinically at risk for problematic behaviors. BASC-2 measures of 
internal validity include the “Fake bad” (F) index, Consistency 
(C) index, and the Response Pattern (R) index. Observations 
were excluded from the analyses if the F-index score was >6, 
indicating that the parent rated the child overly negatively, the 
C-index was >17, indicating inconsistent responses to similar 
questions, or the R-index score was >125 or <66, suggesting 
parental inattention to the questionnaire.35,36

Confounders

We created a directed acyclic graph (DAG) based on currently 
available literature to identify pathways confounding the esti-
mation of the causal relationship between air lead exposure and 
BASC-2 scores at age 12 (Figure 2). To estimate the direct effect 
of air lead on neurobehavioral problems, we used the DAG to 
identify a set of covariates for which to adjust in our statistical 
models. These included parental education, internal lead stores, 
neighborhood deprivation, nearby greenspace, and exposure to 
elemental carbon attributable to traffic (ECAT) as a marker of 
traffic-related air pollution exposure.37

Maternal education, a surrogate measure of the family’s 
socioeconomic status (SES) and child upbringing, was reported 
at the child’s 1-year follow-up visit (three levels: high school 
degree or less or trade school, some college, and college or grad-
uate school). To account for internal lead stores, we adjusted for 
blood lead concentration measured at the child’s 12-year visit. 
Blood lead concentrations were measured via inductively cou-
pled plasma-mass spectrometry using a method optimized for 
measuring very low background levels. The method is validated 
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Figure 1.  Spatiotemporal variation in airborne lead concentration in the Cincinnati area. A, Predicted ambient air lead concentrations from the LURF model before 
temporal scaling at CCAAPS children’s residential birth addresses. Specific address locations were jittered to maintain participant privacy. The different shades of 
gray represent different counties in the study area of the Greater Cincinnati, Ohio region in the United States and blue diamonds mark the location of EPA monitors 
in the study region used for temporal adjustment. B, Time series of airborne lead measurements recorded by EPA monitors in the study region from late 2001 to late 
2017. These measurements were used to construct ratios and temporally scale predicted air lead from the LURF model. C, Temporally adjusted monthly air lead 
concentrations for the first year of life (bars) and unadjusted annual air lead concentration from the LURF model (dashed line) for a randomly selected CCAAPS child.

Figure 2.  Directed acyclic graph quantifying the causal relationship between air lead exposure and BASC-2 scores at age 12, including potentially confounding 
pathways. Confounding exposures are red, competing exposures are blue, and unobserved exposures are in white circles.
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against National Institute of Standards and Technology Standard 
Reference Material 955c – Toxic Metals in Caprine Blood and 
has a limit of detection of 0.072 μg/dL.38 It is estimated that only 
one-third of lead measured in blood is due to inhaled lead,39 and 
in our cohort, average airborne lead exposure explained only 
6% of the variation in blood lead, so we used blood lead level as 
a surrogate for internal lead stores to estimate the independent 
effect of airborne lead. To quantify neighborhood deprivation, 
we used a previously described index based on census tract-level 
data associated with each child’s geocoded residential address.40 
Briefly, the deprivation index is the first principal component 
calculated via a principal components analysis of six socioeco-
nomic census tract-level measures (fraction that graduated high 
school, fraction of households in poverty, median household 
income, fraction of population receiving public assisted income, 
fraction of houses that are vacant, and fraction of population 
with no health insurance coverage) from the 2015 American 
Community Survey. The index values range from 0 to 1, with 
higher values indicating greater deprivation.

An association between BASC-2 scores and greenspace, 
defined as open land with some type of vegetative cover, has been 
previously identified within our study population.41 Greenspace 
includes but is not limited to city parks, domestic gardens, 
nature strips, green roofs, cemeteries, and grounds of institu-
tions such as hospitals and universities. Briefly, digital imagery 
numbers from satellite-derived normalized difference vegetation 
index (NDVI) images collected in June of 2010 were converted 
to surface reflectance values. Values within 400 m of each res-
idential address were then averaged to obtain the NDVI value 
at that address. NDVI values range from −1 to 1, with higher 
values representing more greenspace.41 An association between 
ECAT and BASC-2 scores has also been previously identified in 
our study population.36

Measurements of residential greenspace, community depriva-
tion, and ECAT were estimated based on residential addresses 
provided at the age 1-, 2-, 3-, 4-, 7-, and 12-year visits. We 
included an average of the six estimates in our models to repre-
sent the confounding effects of each of these variables.

Statistical modeling

To identify sensitive developmental windows of exposure to air 
lead effects on BASC-2 scores, we used a distributed lag model 
(DLM) framework. In general, DLMs predict current values of a 
response based on current and past (“lagged”) values of a predic-
tor.42 This is done by accounting for the relationship between the 
exposure and outcome while also accounting for time as a third 
dimension.43,44 DLMs have the flexibility to incorporate differ-
ent functional forms to describe the time dimension and can be 
extended to distributed lag nonlinear models (DLNMs) to model 
nonlinear associations between the exposure and response. Since 
this is one of the first studies to estimate the relationship between 
airborne lead and behavioral outcomes, we chose to model a 
linear dose-response relationship between air lead and BASC-2 
outcomes because we did not have any information on the shape 
of the dose–response relationship. An investigation of residuals 
from the model fit did not suggest any violations of the normality 
assumption. Exposures in discrete monthly intervals from birth 
to age 12 were modeled with regression coefficients associated 
with each time interval. Given the fit of these models, the relative 
importance of each exposure window can be assessed.

Specifically, we fit the linear DLM

Subscore MaternalEducation BloodLeadi
j

j ij ix= + + +
=
∑α β α α0
1

144

1 2 ii

i i+ + + +α α α ε3 4 5Deprivation Greenspace ECATi i

where xij  is the estimated air lead level in each month j of life 
for each subject i.

Without additional structure on the beta terms, this is a 
multiple linear regression model. However, contiguous expo-
sures in time are often correlated due to temporal patterns in 
air pollution. Also, we constructed the 144 monthly exposure 
estimates per child as functions of their yearly exposure esti-
mates, so exposures within one year are inherently related. To 
avoid unstable month-specific effect estimates due to multicol-
linearity, we fit a constrained DLM that assumes the effects are 
a smooth function of the month j, such that βj h x= ( ).29,43 We 
modeled the smooth function h x( )  using penalized splines.45 A 
knot was placed at every lag, and a cubic regression penalty was 
applied, allowing for data-driven model selection through knot 
placement.

Each model fit resulted in estimated coefficients βj  associated 
with a 1 ng/m3 increase in airborne lead exposure during each 
month of life j and a measure of effective degrees of freedom (edf) 
that describes the degree of smoothness and model complexity. 
A sensitive window was defined as any month(s) in which the 
95% confidence interval for the coefficient excluded zero, and 
a higher edf indicated a more complex model shape (i.e., lower 
edf is closer to a linear fit and higher edf indicates more nonlin-
earity). To avoid overfitting, if an edf >20 was selected, we refit 
the model restricting to a maximum of 20 equally spaced knots. 
We also fit unadjusted DLMs to determine the degree of residual 
confounding.

Statistical computing

Data analyses were completed in R (R Core Team; Vienna, 
Austria), specifically using the dlnm package to fit the DLMs.43,46

Results

Cohort characteristics

A total of 344 children completed the 12-year study visit and 
had BASC-2 data available. Of these, we excluded 55 children 
due to missing covariate information, 26 children with missing 
monthly airborne lead estimates (due to missing address data) 
and 8 children who had an invalid BASC-2 based on the pub-
lisher’s validity indices, resulting in a total of 263 children in the 
analysis. For each covariate, we found no significant differences 
between the group of 263 included children and the group of 
excluded children with the available covariate information (e.g., 
one of the 81 excluded participants was missing data for depri-
vation index, so the group of 80 excluded deprivation indices 
was compared to the group of 263 included deprivation indi-
ces). The number of values used to calculate averages for each 
excluded group is noted to the right of the average in Table 1. 
Children were exposed to median monthly air lead levels of 
0.51 ng/m3 (range 0–10.8 ng/m3) (Table 1).

Identification of sensitive windows

Figure 3 displays the estimated βj-time relationship for the nine 
response scales along with their corresponding edf selected 
using our data-driven approach. Adjusting for maternal edu-
cation, community deprivation, internal lead stores measured 
via blood lead concentration at age 12, greenspace exposure, 
and ECAT exposure, we observed possible associations during 
at least one sensitive window between airborne lead exposure 
and increased anxiety, aggression, attention problems, and atyp-
icality scores (Figure 3). We identified sensitive windows from 4 
years 4 months to approximately 5 years 11 months and from 
11 years 1 month to approximately 12 years for increased anxi-
ety scores. The effect peaked at age 12, where a 1 ng/m3 increase 
in airborne lead exposure was associated with a 3.1-point (95% 
CI: 0.4, 5.7) increase in anxiety scores (eTable S1; http://links.
lww.com/EE/A124). Similarly, a probable sensitive window 
from 4 years 1 month to 5 years 8 months was identified for 

http://links.lww.com/EE/A124
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increased atypicality scores. The effect peaked at age 5, where a 
1 ng/m3 increase in airborne lead exposure was associated with 
a 1.1-point (95% CI: 0.2, 2.0) increase in atypicality scores 
(eTable S1; http://links.lww.com/EE/A124). For aggression and 
attention problems, we identified sensitive windows early in 
life. Birth to 7 months was identified as a sensitive window for 
aggression, and birth to 5 months was identified as a sensitive 
window for attention problems. Both had relatively small effects 
that peaked at birth (aggression: 1.0; 95% CI: 0.4, 1.6; atten-
tion: 0.8; 95% CI: 0.1, 1.5) (eTable S1; http://links.lww.com/
EE/A124). No sensitive windows were identified for increased 
depression, somatization, conduct problems, hyperactivity, or 
withdrawal behaviors. In contrast to our hypothesis, we found 
windows of decreased risk that immediately followed windows 
of high risk for anxiety (age 7 years 7 months to 9 years 2 
months), attention problems (age 2 years to 2 years 11 months), 
and atypicality (age 2 years to 2 years 10 months).

Unadjusted DLMs resulted in nearly identical sensitive win-
dows for anxiety, aggression, attention, and atypicality (eTables 
S1 and S2; http://links.lww.com/EE/A124). Additionally, unad-
justed models identified sensitive windows with relatively small 
effect sizes for conduct problems, hyperactivity, and withdrawal 
(eTable S2; http://links.lww.com/EE/A124). An unrealistically 
high number of knots were originally selected for the unadjusted 
conduct problems model. After restricting the conduct problems 
model to a maximum edf of 20, a much more parsimonious 
model was fit.

Discussion
Although much is known about lead-associated neurobehav-
ioral effects, to our knowledge this is the first study to iden-
tify direct associations between airborne lead exposure and 
harmful effects on neurobehavior independent of blood lead 
concentration. Of note, exposure to airborne lead concentra-
tions was associated with increased behavioral problems at lev-
els 10 times lower than the EPA National Ambient Air Quality 
Standard (NAAQS). Specifically, the maximum rolling 3-month 

average airborne lead concentration measured by the EPA in 
our study area was 11.2 ng/m3 compared with the EPA NAAQS 
of 150 ng/m3.47 Compared with this threshold and airborne lead 
levels before lead was removed from gasoline, current ambient 
lead concentrations seem extremely low but are still orders of 
magnitude higher today than in preindustrial times.48 Although 
our observed associations between airborne lead exposures and 
elevated BASC-2 scores may not be clinically relevant for an 
individual, the effect sizes observed at low exposures are likely 
to have large public health implications due to the size of the 
population that is exposed to airborne lead. For example, if air-
borne lead concentrations increased by 1 ng/m3 at age 12 years, 
therefore increasing anxiety scores by 3.1 points on average, 
approximately 67 of every 1000 children would move from not 
at risk to clinically at risk for anxiety based on BASC-2 criteria. 
Of note, 1 ng/m3 is a relatively small increase in airborne lead 
concentration and would still be well under the current NAAQS.

Few studies have examined the relationship between airborne 
lead and neurobehavioral outcomes independent of blood lead, 
but one neighborhood-level study found that 3 years of elevated 
airborne lead emission concentrations was associated with a 
predicted 1- to 3-point reduction in child IQ.49 Studies in mice 
have shown that air pollution may travel directly to the brain via 
olfactory epithelium and olfactory nerves or via transport along 
sensory nerves of the trachea and bronchi.23,24,50 This mechanism 
is plausible for lead due to the small size of airborne lead par-
ticles from industrial and vehicular sources.17 Furthermore, the 
divalent metal transporter DMT1 found in olfactory nerves can 
transport lead and other metals to the brain.51,52 Unlike ingested 
lead, inhaled lead is not subject to the body’s digestive system 
defense mechanisms, which means that this route of exposure 
may result in adverse health consequences at much lower con-
centrations. Our results and similar studies of manganese expo-
sures support this hypothesis.53 Furthermore, animal models 
have shown that even picomolar levels of lead can stimulate 
certain Ca-dependent brain enzymes.54

This study has several strengths. First, we were able to estimate 
address-specific airborne lead concentrations using a validated 
LURF model. We then adjusted those estimates using airborne 
lead data from EPA monitoring sites in our study area to achieve 
monthly temporal resolution. Second, we were able to estimate 
the relationship between airborne lead exposure and neurobe-
havior independent of lead from other sources of exposure by 
adjusting for blood lead concentration. Finally, we used a data-
driven statistical method to identify patterns of association with 
respect to timing of exposure, rather than choosing time win-
dows a priori over which to assess exposure, which could result 
in underestimated or missed effects. Furthermore, we utilized 
penalized splines to model the lag relationship, which address 
the problem of choosing the appropriate degree of complex-
ity of the DLM.45 Most published studies using DLMs employ 
unpenalized methods, choosing specific model structures and 
knot placements without exploring or justifying model specifi-
cations. Imposing these specifications potentially creates biased 
estimates of the effects at each lag. It also is important to note 
that current selection methods are not effective for traditional 
unpenalized DLMs and produce less efficient estimators, and it 
has been shown that penalized DLMs show improved inferential 
properties compared with the standard unpenalized version.45

We also acknowledge limitations of this study. Like other 
studies, we were not able to apportion blood lead to sources or 
pathways of exposure. However, we felt it was appropriate to 
use blood lead as a surrogate for internal lead stores based on the 
lack of correlation between air lead and blood lead or between 
blood lead and nearby sources of lead. Omitting blood lead con-
centration as a covariate in our models did not meaningfully 
change our results, but these findings still highlight the need for 
further research and better methods for determining the impact 
of lead from different exposure pathways and sources. Because 

Table 1.

Descriptive statistics of the CCAAPS cohort (mean ± SD unless 
otherwise noted)

 Included Excluded  

N 263 81  
Female 122 (46%) 31 (38%)  
Maternal education   (N = 71)
  High school or less 50 (19%) 22 (31%)  
  Some college 77 (29%) 17 (24%)  
  College/graduate school 136 (52%) 32 (45%)  
Greenspace (NDVI: [−1 to 1]) 0.54 ± 0.08 0.55 ± 0.09  
Deprivation index [0 to 1] 0.41 ± 0.15 0.42 ± 0.16 (N = 80)
ECAT (μg/m3) 0.37 ± 0.10 0.39 ± 0.11  
Blood lead (μg/dL) 0.57 ± 0.37 0.53 ± 0.32 (N = 37)
Monthly air lead (ng/m3), median (IQR) 0.51 (0.56) 0.53 (0.59) (N = 55)
BASC-2 scores    
  Anxiety 52.1 ± 11.6 51.6 ± 12.1  
  Depression 49.6 ± 9.9 50.4 ± 9.9  
  Somatization 49.6 ± 11.2 48.8 ± 12.3  
  Aggression 49.5 ± 8.7  48.1 ± 8.2  
  Conduct problems 49.3 ± 8.8 48.0 ± 9.7  
  Hyperactivity 50.7 ± 9.8 50.9 ± 11.0  
  Attention problems 52.5 ± 9.8 52.5 ± 10.6  
  Atypicality 50.0 ± 9.7 50.0 ± 9.6  
  Withdrawal 50.0 ± 10.8 49.7 ± 11.4  

For categorical variables, percent of the total is displayed. For numeric variables, the values pre-
sented are the mean ± SD, unless otherwise noted. If covariate information was missing for chil-
dren in the excluded group, the number of excluded children with available covariate information 
is noted to the right of each summary statistic. None of the averages for any covariates statistically 
differed for included and excluded participants.

http://links.lww.com/EE/A124
http://links.lww.com/EE/A124
http://links.lww.com/EE/A124
http://links.lww.com/EE/A124
http://links.lww.com/EE/A124
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blood lead samples were only collected at the age 12 visit, we 
were unable to adjust for blood lead concentrations over time. 
Here, we considered blood lead a cumulative measure of life-
time exposure to noninhaled lead. Bone lead is a more accu-
rate measure of cumulative exposure, but because lead stored 
in the bones is leached into the bloodstream throughout life, 
blood lead is in equilibrium with bone lead stores.55 Therefore, 
in the absence of repeated blood lead concentrations or a mea-
sure of bone lead, we used blood lead as a surrogate measure 
of cumulative exposure. This required us to assume that lead 
ingestion was either trivial at the time of the blood sampling or 
represented chronic, low-level exposure, which is likely in young 
adolescents.25

We were not able to assess prenatal exposures and their rela-
tionship with neurobehavior because we did not have prena-
tal residential address histories nor measures of airborne lead 
concentrations in our study area prior to November 2001. 
Furthermore, concentrations of airborne lead as a component 
of PM2.5 were correlated with concentrations of other metals 
that make up PM2.5, which could be confounding our results.32

Similar to other studies that used DLMs to examine early 
life air pollution exposures and health outcomes in children, we 
identified some windows of exposure that appear to be protec-
tive, such as the association between air lead from age 7 years 
7 months to 9 years 2 months with decreased anxiety scores 
(Figure  3).56–59 There is no known biological mechanism that 
would explain why airborne lead exposure during any period 
of development would improve anxiety in children at age 12. 

These protective windows could be, in part, explained by the 
harvesting hypothesis, which assumes that a portion of the ini-
tial risk is discounted by a decrease in the susceptible pool after 
an event.60,61 In other words, if airborne lead caused problem-
atic changes among children that were susceptible to its effects 
(i.e., “high risk” children) and had little effect on healthy chil-
dren, then further exposure on subsequent days would not cause 
additional problematic changes in the high-risk children who 
were already affected. Fewer children would then be affected in 
the subsequent period because the effects of airborne lead are 
applied to a smaller at-risk pool.61 This paradox is an artifact 
of the counterfactual condition associated with the DLM back-
ward perspective.60 Essentially, the association of the exposure 
and outcome over a specific lag period is compared with the 
association at a constant exposure. When the susceptible pool 
is depleted, as previously discussed, the observed population 
becomes “healthier” than the counterfactual population, which 
leads to apparent associations in the opposite direction than 
what is expected.60

Future studies could utilize model validation techniques to 
address the choice of function used to model the exposure–re-
sponse relationship. Other studies have found evidence of a 
“supralinear” dose–response relationship for environmental 
toxicants such as lead, in which risk of negative health effects 
increased at a much greater rate at low levels of exposure 
compared with higher levels of exposure, and DLMs could 
be extended to DLNMs to explore these possible nonlinear 
dose–response relationships.9,43,62,63 Last, we used measures 

Figure 3.  Associations between monthly airborne lead exposure levels from birth to age 12 and behavior scores from BASC-2 estimated using DLMs. Models 
were adjusted for maternal education level, blood lead at age 12, community deprivation, residential greenspace, and ECAT exposure. The x axis is the child’s 
age in years. The y axes (with differing scales for each outcome) represent the change in score associated with a 1 ng/m3 increase in airborne lead. Solid lines 
show the predicted change in score, and gray shading indicates the 95% CI. A sensitive window is identified for months where the estimated 95% CIs do not 
include zero.
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averaged over time to adjust for residential greenspace, ECAT, 
and community deprivation, but their associations with neuro-
behavioral outcomes could also vary in time and could be mod-
eled using DLMs.

In conclusion, we identified potentially sensitive windows of 
exposure to exceedingly low concentrations of airborne lead 
and behavioral problem scores. This study is consistent with 
adverse consequences observed at very low blood lead concen-
trations. Due to the exploratory nature of identifying sensitive 
exposure windows and the multiplicity of comparisons assessed, 
follow-up studies in different cohorts are needed to replicate our 
findings and investigate the underlying mechanisms.
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