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Abstract: Conventional wastewater treatment generates large amounts of organic matter–rich sludge
that requires adequate treatment to avoid public health and environmental problems. The mixture
of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate
composting facilities. The composting process is chemically and microbiologically complex and
requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation
of the compost. Adequate (near) real-time monitoring of the compost maturity process is highly
difficult and the operation of composting facilities is not as automatized as other industrial processes.
Spectroscopic analysis of compost samples has been successfully employed for compost maturity
assessment but the preparation of the solid compost samples is difficult and time-consuming.
This manuscript presents a methodology based on a combination of a less time-consuming compost
sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic
measurements were performed with liquid compost extract instead of solid compost samples.
Partial least square (PLS) models were developed to quantify chemical fractions commonly employed
for compost maturity assessment. Effective regression models were obtained for total organic matter
(residual predictive deviation—RPD = 2.68), humification ratio (RPD = 2.23), total exchangeable
carbon (RPD = 2.07) and total organic carbon (RPD = 1.66) with a modular and cost-effective visible
and near infrared (VNIR) spectroradiometer. This combination of a less time-consuming compost
sample preparation with a versatile sensor system provides an easy-to-implement, efficient and
cost-effective protocol for compost maturity assessment and near-real-time monitoring.
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1. Introduction

The treatment of domestic and industrial wastewater is usually associated with the production of
an organic matter–rich (and potentially dangerous due to the presence of pathogens, and even heavy
metals and micropollutants) sludge [1,2]. The implementation of new environmental regulations is
promoting an increase in the quantities of wastewater sewage sludge due to the constant rise in the
number of households connected to sewers and the increase in the level of treatment. As an example,
the production of sewage sludge in the European Union increased from 5.5 million tons of dry matter
in 1992 [3] to more than 10 million tons in 2012 (data calculated from [4]). It represents an average per
capita sewage sludge dry matter production of 19.0 kg/inhabitant for the European Union in 2012,
with a maximum of 58.9 kg/inhabitant for Spain (data calculated from [4]). That huge amount of
wastewater sludge requires adequate analysis and treatments to ensure its reuse. Options for sludge
treatment include stabilization (e.g., composting, anaerobic digestion), thickening, dewatering, drying
and incineration [5].
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Composting is a stabilization process of organic wastes, such as wastewater sludge, based
on the microbiological decomposition of the organic matter to produce compost (humus) [5–7].
The composting process involves the complex destruction of organic matter coupled with the
production of humic acids (HA) to produce a stabilized end product [1]. The correct development
of the composting process, from the raw organic material to a mature compost end product, is
associated with optimum conditions, such as moisture, the carbon-nitrogen ratio or temperature [1,5].
The complexity of the process and the large number of control variables (physical, chemical and
microbiological) has promoted the exploration of new methods and techniques for proper monitoring
of the composting process. Diverse techniques had been proposed for monitoring the composting
processes such as the employment of microbiological respiration indices [8], chemical fractionation [9],
or spectroscopic analyses [10] at several wavelength ranges. The last two techniques can be coupled
for a better assessment of compost maturity. For example, the progressive formation of humic-like
substances during the composting process is an appropriate way to assess the compost evolution [11].
Moreover, the visible-ultraviolet (Vis-UV) spectrum measured at different compost liquid extracts can
be used to predict the humification degree [12]. Consequently, the combination of both techniques is a
suitable way for monitoring the composting process.

The continuous monitoring of chemical parameters in wastewater treatment processes is a subject
of major concern for the water industry [13–16]. It should allow a better control of the treatment
process for compliance with environmental regulations at the lowest cost and energy consumption.
However, many traditional parameters employed for wastewater treatment control (e.g., biochemical
oxygen demand, chemical oxygen demand) or biosolid composting assessment (e.g., total carbon,
total nitrogen) are time-consuming and/or require equipment with an unviable cost for the laboratory
control of many wastewater treatment plants (WWTP), requiring the shipment of samples to specialized
laboratories. It hinders the (near) real-time control of relevant chemical parameters of wastewater
and biosolid compost. Additionally, the hostile environment in which sensors have to be located
hampers their implementation [17]. However, the idea of employing optical-electronic sensors for
online monitoring of wastewater treatment processes is not recent [18], but it is generating increasing
attention [13,14,16,17,19,20]. They are a suitable method for fast data acquisition, which limits direct
contact of the sensor with the wastewater or compost, and provide a quantitative assessment of
chemical compounds through previous calibration experiments. Previous research has suggested
the employment of ultraviolet [21], ultraviolet-visible [22], visible–near-infrared (VNIR) [23,24],
or ultraviolet and visible—near-infrared [25] spectroscopy for monitoring wastewater sludge compost.
However, compost samples may require a complex and time-consuming preparation (e.g., compost
drying and sieving) before their spectroscopic analyses in order to minimize the physical-chemical
heterogeneity and different humidity contents of the samples. Both sources of uncertainty restrict the
(near) real-time monitoring of the compost process. It is therefore interesting to perform a compost
sample preparation prior to spectroscopic analysis, which minimizes both uncertainties by obtaining
liquid compost extracts that can be analyzed (chemically and spectroscopically) and related with
different characteristics of the composting degree. In fact, a combination of a faster and simpler compost
extraction method and a robust and cost-effective optical-electronic sensor would be desired for a wider
implementation of spectroscopy systems in (near) real-time monitoring of the composting process.

The aim of this study was the establishment of a feasible methodology to improve the composting
process’s control based on quantifying its degree of maturity with UV-VNIR spectroscopy of liquid
compost extracts. The objective of this manuscript was the assessment of the best spectral ranges
to quantify compost maturity based on regression models among compost chemical parameters
and humification indices, and the UV-VNIR spectra obtained for the liquid compost extracts.
This purpose could be satisfied by combining our previously developed one-step wastewater biosolid
compost extraction method for chemical fractioning [26] and relatively simple and cost-effective
spectroscopy systems.
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2. Material and Methods

Wastewater biosolid compost was processed in a composting tunnel located within a municipal
WWTP at the Alicante province (Spain). This facility includes four partially closed composting tunnels
(63 m length, 3 m width and 1.75 m height). The compost was obtained by processing a mixture
of municipal sewage sludge, sawdust and chopped wheat straw for a 4:3:1 proportion, respectively.
The composting process is improved by adding supplementary waste materials (e.g., wheat straw, rice
straw, cotton waste or sawdust) as bulking agents. They permit adequate gas exchange, absorbs excess
moisture, and prevent excessive compaction of the composting substrate by providing the structural
support to create interparticle voids [27]. Both bulking agents provided carbon to the wastewater
sludge to optimize the carbon:nitrogen (C/N) ratio. The mixture was automatically turned three
times per week with a mechanical turner (Volteco, model 2030, Ponzano Veneto, Italy), making the
advancement of compost along the tunnels (compost advancement speed between 0.6 and 1.2 m/min;
turning speed of the drum between 70 and 100 rpm). Finally, compost was moved to an outdoor pile
for completing the maturation process.

2.1. Compost Sampling and Analytical Methods

Sampling points were located at different stages of a sewage sludge composting process.
The samples differed in their degree of maturity by their different period of residence. Compost samples
were obtained at seven composting stages: 14, 21, 28, 35, 42, and 49 days of composting process within
the tunnel and an additional one at the outdoor compost pile (57 days of compost maturity). For each
sample point, four subsamples representing the width of the composting tunnel were selected; each
one was taken at a randomly chosen depth. A total of eighty four independent compost samples
(n = 84) were obtained. Independent compost samples were obtained at different depths and analyzed
by triplicate. Compost samples were immediately stored under cold conditions (~4 ◦C) to minimize
the alteration of the samples. All chemical analyses were done within hours from the sampling.
Further details of the sampling procedure can be found at Temporal-Lara et al. [26].

We analyzed organic matter related chemical parameters and commonly proposed compost
extracts chemical fractions to quantify its maturity [26,28,29]. Total organic matter content (TOM)
was determined by loss on ignition at 450 ◦C for 6 h (UNE-EN 13.039 2001). Total carbon (TC) was
determined by dry combustion using an Elemental Analyzer (TruSpec). Total extractable carbon
(TEC) was obtained with sodium pyrophosphate 0.1 M (1:10 w:v) according to the one-step extraction
procedure of Temporal-Lara et al. [26]. An aliquot of TEC extracts was acidified to pH below 1 and
allowed to stand at room temperature overnight. Soluble fulvic acids (FA) and other non-humic
substances were then separated from the precipitated humic acids (HA), determining the organic
carbon in the supernatant according to Swift [30]. The HA was calculated by the difference between
TEC and FA. Nitrogen content was determined with the modified total Kjeldahl nitrogen (TKN)
method (UNE 77318:2001). Several compost maturity ratios were also computed, namely: C/N,
the humification ratio (HR = TEC/TOC) and humification index (HI = HA/TOC) [31]. Compost extracts
were immediately stored under cold conditions for spectroscopic analysis.

2.2. Spectral Measurements

Compost extracts were analyzed with two different spectroscopic systems to obtain UV and VNIR
spectra. UV measurements were performed with a Unicam UV-500 double-beam spectrophotometer
(Thermo Scientific, Waltham, MA, USA). It covers the wavelength range 190–900 nm, with an accuracy
of ±0.3 nm in the spectral range 250–500 nm and ±0.5 nm from 190 to 250 nm and 500 to 900 nm.
Compost extracts were manually placed in the default 10 mm cuvette holder. The spectrophotometer
was controlled with a computer for scanning absorbance spectra in the spectral range 220–400 nm.
A changeover between deuterium and tungsten lamps was setup at 325 nm. Spectra were acquired
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with a 1 nm data interval and a scan speed range of 120–1200 nm/min that provide adequate data for
UV scans.

VNIR measurements were performed with an Analytical Spectral Devices (ASD) Field Spec Hand
Held VNIR radiometer (ASD Inc., Boulder, CO, USA). It covers the wavelength range of 325–1075 nm,
which approximates with the visible and short wave near infrared (SW-NIR) spectral regions, with
an accuracy of ±1 nm and a resolution of <3 nm at 700 nm. The radiometer was connected through
a fiber optic cable to an Ocean Optics (Leesburg, FL, USA) 10 mm cuvette holder where compost
extracts were placed. Another fiber optic cable was connected from the cuvette holder to an ASD Fiber
Optic Illuminator® as light source. This systems enables the illumination of the cuvette from one of its
faces and the transmittance record from the opposite cuvette face. Five radiometric measurements
(with 15 automatic replicate spectra per measurement) were taken for each sample. The dark current
(detector background) and reference spectra were taken immediately before each spectral measurement.
The five radiometric measurements were visually inspected and then averaged to obtain a single
spectrum per sample.

Random noise of the spectra was minimized by applying a Savitzky-Golay algorithm across
a moving window of 10 nm with a third-order polynomial [32]. All compost extracts spectral
measurements were done in quartz glass cuvettes using the compost extractant (sodium pyrophosphate
0.1 M with a proportion 1:10 w:v) as blank. Excessive turbidity was avoided by dilution of the liquid
compost extracts (with sodium pyrophosphate 0.1 M with a proportion 1:5 v:v) before taking the
spectral measurements in the cuvettes. Spectra were acquired at room temperature (24 ± 1 ◦C) within
hours from the compost extraction.

2.3. Spectroscopic Analyses

Summary statistics of the chemical fractions obtained from the wastewater biosolid compost
extracts were computed. Minimum, maximum, mean, standard deviation (St. Dev.) and coefficient
of variation (CV) were included. Also, a comparison of the means through the normalized analysis
of variance (ANOVA) was computed. We considered the position along the tunnel as the factor for a
one-way ANOVA. Previously, the normal distribution and homogeneity of the variances were verified
with the Kolmogorov-Smirnov and the Levene’s test, respectively.

Partial Least Squares Regression (PLSR) was employed to relate the chemical fractions of the
compost extracts with the UV and VNIR spectra. PLSR has been designed to confront the situation
that there are many, possibly correlated, predictor variables, and relatively few samples [33]. PLSR is
a feasible quantitative multivariate modeling method for chemometrics [34] where highly detailed
spectra data (i.e., high spectral resolution or number of bands) are employed to quantitatively predict
a limited number of problem samples. PLSR models were developed for the UV (220–400 nm) and the
VNIR (400–1000 nm) spectral ranges. Two additional models were developed for subsets of the VNIR
spectra. These spectral subsets were identified with the visible (400–700 nm) and the near infrared
(700–1000 nm) spectral ranges [35]. The selection and evaluation process of the PLSR models [33]
was based on the following methodological procedure [33,36]: (1) the original 84 samples dataset was
stratified randomly divided into a subset for model cross-validation (75% of the samples), and the
remaining samples for independent test; (2) a leave-one-out (LOO) cross-validation (CV) procedure was
used for the development of PLSR models; and (3) selected models were tested with the independent
validation dataset in order to assess the predictive capabilities of the selected PLSR models.

Several diagnostic statistics were employed for PLSR models assessment. The root mean squared
error (RMSE) was the main statistical parameter used to guide the number of model components or
latent variables (LV) selection The number of optimal components and the selection of the better models
were determined based on the lowest RMSE values for the adjusted CV with the LOO procedure
(i.e., RMSECV). Cross-validation Pearson correlation coefficient (R2) was also applied as an illustrative
diagnostic statistic. RMSE of the prediction dataset (RMSEP) was also computed for selected models
evaluation. In addition, the residual predictive deviation (RPD) was used to determine the practical
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utility of the models in the prediction test stage. The models and predictions were classified according
to Chang et al. [37] as successful (RPD > 2), moderately successful (RPD = 1.4–2) or not successful
(RPD < 1.4). PLSR models and further statistical analyses were developed with the R statistical
programming language [38]. PLS package [33] was employed for the development of PLSR models.

3. Results

The compost samples collected at different locations within the composting tunnel exhibited
different spectral patterns and chemical fractioning. Figure 1 shows an overview of the composting
tunnel and a detailed image of the system employed for the aeration and mixture of the compost.
We include an example of a characteristic absorbance UV spectrum obtained for samples located
at the beginning of the composting process (14 days of maturity). A characteristic transmittance
VNIR spectrum for a higher degree of compost maturity (49 days of maturity) was included as well.
Both characteristic spectra do not exhibit relevant absorption or reflection bands that could be enhanced
with a derivative analysis.
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Figure 1. Composting tunnel and automatic compost turner. The figure composition includes
characteristic UV and VNIR spectra of the samples collected at the beginning and the end of the
composting process, respectively.

A statistical summary of the chemical parameters obtained from the wastewater biosolid compost
extracts is shown in Table 1. Mean TOM and TOC were 70.8% and 38.6%, respectively, while the
coefficient of variation was moderate (CV < 4.3%) for both parameters. We employed the ANOVA
to reveal variations of the chemical parameters in the composting processes. In this case, significant
differences (p-value < 0.001) were obtained for both chemical parameters. The mean TEC content of
the samples was 653 mg/L, with a maximum of 903.2 mg/L. Average FA and HA concentrations were
237.5 mg/L and 415.4 mg/L, respectively. The coefficients of variation for both variables were very
similar and slightly higher than for the TEC. Higher values of TEC, FA and HA were obtained in the
first half of the tunnel. Significant differences (p-value < 0.05 for HA and p-value < 0.001 for TEC and
FA) were obtained for the extractable chemical fractions. Non-significant differences were obtained for
both the TKN and C/N ratio. The mean value of TKN was 3.0% while the maximum and minimum
C/N values were 15.5% and 10.9%, respectively. Finally, the humification ratios revealed significant
differences in the composting process (p-value < 0.001 for HR and p-value < 0.05 for HI). Mean values
of the HR and HI were 17.0% and 10.8%, respectively.
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Table 1. Summary statistics of compost analytical parameters and humification ratios for all compost
samples (n = 84). ANOVA results (p-value and significance level) are shown in the last column.

Parameter Minimum Maximum Mean St. Dev. CV (%) ANOVA

TOM (%) 66.3 75.4 70.8 3.0 4.2 <0.001 ***
TOC (%) 36.1 41.2 38.6 1.7 4.3 <0.001 ***

TEC (mg/L) 407.3 903.2 653.0 132.4 20.3 <0.001 ***
FA (mg/L) 121.4 359.6 237.5 67.0 28.2 <0.001 ***
HA (mg/L) 144.4 627.2 415.4 123.7 29.8 0.036 *

TKN (%) 2.6 3.6 3.0 0.2 8.4 0.069 ns
C/N 10.9 15.5 12.9 1.1 8.2 0.167 ns

HR (%) 10.0 24.6 17.0 4.0 23.5 <0.001 ***
HI (%) 3.5 17.1 10.8 3.5 32.0 0.012 *

Significance levels: ns: not significant; * p < 0.05; *** p < 0.001.

PLSR models of the compost extracts’ chemical fractions were developed for different wavelength
ranges (Table 2). The initial process of cross-validation was performed for all spectral ranges while
the prediction test phase was applied for the better models of the previous stage. The selection of the
better models was based on lower RMSE values. The number of latent variables or model components
was selected based on the minimization of the RMSECV. The Pearson correlation coefficient (R2) was
also computed for a general overview of the models’ performance.

Table 2. Results of the partial least square regression (PLSR) cross-validation (CV) and prediction (P)
models of compost analytical parameters and humification ratios.

Parameter
Spectral

Range (nm) LV
Cross-Validation Prediction Test

R2 RMSECV RMSECV (%) RMSEP RMSEP (%) RPD

TOM

220–400 4 0.476 2.18 23.81 - - -
400–1000 2 0.537 2.06 22.50 - - -
400–700 2 0.548 2.04 22.21 - - -

700–1000 7 0.628 1.82 19.89 1.11 12.14 2.68

TOC

220–400 4 0.476 1.21 23.81 - - -
400–1000 5 0.511 1.168 22.99 - - -
400–700 2 0.548 1.129 22.22 - - -

700–1000 4 0.607 1.05 20.64 0.99 26.60 1.66

TEC

220–400 4 0.400 101.20 22.00 - - -
400–1000 4 0.810 57.08 12.41 65.02 14.14 2.07
400–700 4 0.808 57.09 12.41 - - -

700–1000 4 0.724 68.74 14.95 - - -

FA

220–400 3 0.391 49.89 20.94 47.11 19.78 1.61
400–1000 3 0.286 54.06 22.70 - - -
400–700 4 0.196 57.31 24.06 - - -

700–1000 3 0.255 55.22 23.18 - - -

HA

220–400 4 0.000 123.60 25.60 - - -
400–1000 3 0.463 88.68 18.37 - - -
400–700 5 0.483 86.67 17.95 - - -

700–1000 2 0.538 82.40 17.07 102.35 21.20 1.27

TKN

220–400 2 0.000 0.29 27.58 - - -
400–1000 1 0.000 0.28 26.82 - - -
400–700 1 0.000 0.28 26.92 - - -

700–1000 1 0.000 0.28 26.79 0.25 38.37 0.82

CN

220–400 1 0.000 1.18 26.16 - - -
400–1000 1 0.000 1.11 24.65 - - -
400–700 1 0.000 1.12 24.72 - - -

700–1000 1 0.000 1.11 24.63 0.95 34.71 1.04

HR

220–400 4 0.450 2.94 20.05 - - -
400–1000 4 0.828 1.65 11.23 - - -
400–700 8 0.882 1.36 9.25 1.81 16.82 2.23

700–1000 4 0.751 1.98 13.51 - - -

HI

220–400 2 0.000 3.41 25.05 - - -
400–1000 4 0.527 2.33 17.13 - - -
400–700 5 0.616 2.09 15.39 3.35 32.20 1.10

700–1000 2 0.585 2.19 16.10 - - -
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Total organic matter was better quantified for the 700–1000 nm spectral range. The cross-validation
test for the NIR spectra showed a RMSECV of 2.04 (i.e., 19.89%) and a medium-high Pearson correlation
coefficient (R2 = 0.628). A RMSEP of 1.11 (i.e., 12.14%) and a RPD of 2.68 were obtained for the
independent prediction test. The selected spectral range for the total organic carbon quantification was
the NIR (700–1000 nm) as well. The Pearson correlation coefficient (R2 = 0.607) of the cross-validation
was moderate. The RMESP was 26.60% and the RPD value revealed a moderately successful model
(RPD = 1.66). The total extractable carbon exhibited a better correlation with VNIR spectra and
especially with the visible spectral range. RMSECV was almost identical for the full VNIR (400–1000)
and the visible (400–700) spectral ranges. However, the full VNIR spectral range was selected as the
better model, which achieved the highest Pearson correlation coefficient (R2 = 0.810). The VNIR spectra
were employed for the prediction test. The results of the RMESP (65.02% and 14.14%) were slightly
higher but comparable with the RMSECV (57.08% and 12.41%) values, while the RPD was 2.07 for that
model. The RMSECV values for the fulvic acid models were above 22%, except for the UV spectral
range (220–400 nm). The absorbance UV spectra exhibited the highest correlation with the fulvic acids
(RMSECV = 49.89 and R2 = 0.391). The results of the prediction test revealed a RMSEP of 47.11 (19.78%)
and a RPD of 1.61 for the FA.

The results of the humic acids models revealed an improvement in the performance of the PLSR
models for higher wavelengths. The best model was for the NIR spectral range (700–1000 nm) with
a RMSECV of 82.40 (i.e., 17.07%) and a moderately high Pearson correlation coefficient (R2 = 0.538).
A RMSEP of 102.35 (i.e., 21.20%) and a RPD of 1.27 were obtained for the independent prediction test.
PLSR models for TKN, CN and HI were not very robust. The selected spectral range was 700–1000 nm
for both TKN and CN, while the visible range was the best for the humification index. Finally, the
regression model for the humification ratio was successful (RPD = 2.23). The best model was for
the visible spectral range (400–700 nm) with a high Pearson correlation coefficient (R2 = 0.882) and
a RMSECV of 1.36 (i.e., 9.25%). A RMSEP of 1.81 (i.e., 16.82%) was obtained for the independent
prediction test.

4. Discussion

The wastewater biosolid composting process has been associated with the progressive
transformation of several organic matter chemical fractions [9,11]. Our results were in accordance
with previous research as we obtained significant changes in the organic matter chemical fractions
(TEC, HA, FA), humification ratios and other chemical parameters through the compost pile (Table 1).
Besides, the temporal evolution of the compost chemical fractions and humification ratios was not
associated with a linear trend because their evolution is controlled by the development of several
microbial phases (i.e., mesophillic, thermophillic or cooling stages) [1,9]. That complex microbiological
and chemical temporal pattern makes the proper identification of the compost maturity difficult.
However, the quantification of several composts’ chemical fractions with spectroscopy has been
demonstrated as a feasible method for controlling the humification process and compost maturity [12].
Thus, monitoring compost chemical fractions is a suitable way for controlling the composting process.

Most of the previous studies have focused on the spectral measurement of fresh or dried compost
samples, the application of standard extraction methods to quantify chemical fractions, and a final
statistical analysis to relate the solid compost spectra with the parameters quantified in the liquid
compost extracts [24,39–41]. These studies employed very diverse spectral acquisition methods.
For example, Ilani et al. [24] configured a system to measure bidirectional reflectance of (fresh and dry)
compost samples placed a short distance away from light sources and the spectroradiometer (with a
spectral range of 350–2500 nm). The performance of the chemical parameters’ regression models was
sensitive to the humidity content of the compost samples. Other authors employed a laboratory-based
dual-beam spectrophotometer for the absorbance of dried and ground compost samples [39–41].
Other studies analyzed the spectra of compost extracts (instead of the solid compost) obtained from an
experimental laboratory scale reactor that required two to 10 days to obtain the extracts [42]. These last
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four cited studies employed Fourier Transform NIR (FT-NIR) spectrometers with a maximum spectral
range between 12,000 and 3800 cm−1 (i.e., 833–2632 nm).

Our methodological approach is slightly different because we combined a highly efficient one-step
compost extraction method for the quantification of chemical fractions [26] and the spectroscopic
analysis (in the UV, visible and SW-NIR spectral regions) of the liquid compost extracts themselves.
The laboratory procedure for quantifying organic matter chemical fractions implies their extraction
from the solid compost with an extracting solution (e.g., sodium pyrophosphate). This extraction
procedure is relatively easy, could be developed by the chemical technicians of a typical WWTP
laboratory, and does not need a great inversion in laboratory equipment and reactants. In addition,
the inherent physical-chemical heterogeneity of solid compost samples is minimized because the
extracting solution separates the organic matter chemical fractions from the rest of the solid material.
Thus, the liquid compost extracts contain a chemical fraction–rich solution that is very suitable for
spectroscopic analysis without the interference of different compost humidity content or the presence
of highly heterogeneous particles (in size and spectral response).

This study analyzed absorbance spectra obtained in the UV spectral region with a dual-beam
spectrophotometer and transmittance spectra obtained in the VNIR with a modular spectroradiometer
associated with an external light source. Wastewater or compost spectra in the VNIR spectral
range are frequently characterized by the absence of diagnostic bands for chemometric analysis [43].
On the contrary, the presence of diagnostic bands or differential spectral patterns in the UV is more
frequent [21]. PLSR allows a feasible chemometric analysis by taking into account the full spectral range
(or spectral regions) instead of single bands. PLSR can be used with a large number of explanatory
variables, generally providing regression models with the highest predictive ability with the smallest
number of factors as compared with other regression methods such as ordinary least squares estimator
or ridge regression [44]. The employment of partial least square regression for compost parameters
spectroscopic analysis is well established [23,24,39,40].

The PLSR models’ selection was based on the lowest RMSECV values and the usefulness of the
models was based on recommended thresholds for the RPD (Table 2). Effective regression models were
reported for the total organic matter (RPD = 2.68), humification ratio (RPD = 2.23), total exchangeable
carbon (RPD = 2.07), total organic carbon (RPD = 1.66) and fulvic acids (RPD = 1.61). All these models
were obtained with the VNIR spectroradiometer, thus suggesting its utility for the quantification
of relevant parameters of the compost maturity degree. The best TOM model was obtained with
seven latent variables for the short-wave near-infrared spectral range (700–1000 nm), R2 = 0.628 in
the cross-validation and a RMSEP of 12.14%. The most suitable HR model was obtained with four
latent variables for the visible spectral range (400–700 nm), R2 = 0.882 in the cross-validation and
a RMSEP of 16.82%. The best TEC model was determined with four latent variables for the visible
and short-wave near-infrared spectral range (400–1000 nm), R2 = 0.810 in the cross-validation and
a RMSEP of 14.14%. PLSR models for TOM, HR and TEC were the most confident, as indicated by
the residual predictive deviation (Table 2). We obtained values higher than two for these variables
(RPD = 2.68 for TOM, RPD = 2.23 for HR and RPD = 2.07 for TEC), which is a threshold proposed to
identify successful models [37].The accuracy of these PLSR models was comparable with previous
studies that employed even wider spectral wavelength ranges. Galvez-Sola et al. [41] employed a
FT-NIR spectrometer (830–2600 nm) and reported a good model performance for total extractable
carbon (RPD = 2.26) and total organic matter (RPD = 2.13) and a less robust regression model for the
humification ratio (RPD = 1.76).

The best TOC model was obtained with four latent variables for the short-wave near-infrared
spectral range (700–1000 nm), R2 = 0.607 in the cross-validation and a RMSEP of 26.60%. The most
suitable FA model was determined with three latent variables for the ultraviolet spectral range
(220–400 nm), a RMSECV of 20.94% (R2 = 0.391) and a RMSEP of 19.78%. The residual predictive
deviation of TOC and FA was slightly higher than 1.6 (RPD = 1.61 for FA) which is a value
associated with moderately successful models. Finally, the HA prediction model obtained a value
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slightly lower than 1.4 which is the threshold employed for poorly moderately successful models.
Galvez-Sola et al. [41] reported a RPD = 2.73 for TOC, a RPD = 2.12 for FA and a lower value for HA
(RPD = 1.55) as well. Vergnoux et al. [39] also reported lower prediction capabilities for HA regression
models with spectra acquired with a FT-NIR spectrometer.

The proposed methodology (VNIR spectroscopy + liquid compost extracts) was feasible for the
quantification of relevant compost chemical parameters commonly employed for the monitoring
of the compost maturity process. This approach was based in the employment of liquid compost
extract instead of solid compost samples, resulting in a simpler and less time-consuming sample
preparation. In addition, the most suitable sensor (three of four chemical fractions) was a visible and
short-wave near-infrared (SW-NIR) spectroradiometer. This kind of sensor is highly modular and
customizable, less expensive than laboratory-based FT-NIR spectrophotometers or visible and full NIR
spectroradiometers (350–2500 nm), and employs easy-to-replace parts which is important for wide
implementation of the methodology at medium-size compost facilities. The spectroradiometer and
the illumination source are connected to the cuvette holder by fiber optic wires, which prevent them
from getting dirty or damaged from vibrations or daily operation. The sensors are the weakest part of
the chain in real-time monitoring and control of sewer systems and wastewater treatment plants [17].
In this sense, the fiber optic sensor (FOS) possesses several advantages over conventional devices,
mainly due to the characteristics of the optical fiber itself. This is because FOS can be made very small
and thin, resistant to harsh chemical environments (as the conditions in the compost tunnels) and
impervious to electromagnetic interference [20]. This combination of a less time-consuming compost
sample preparation and a versatile and sufficiently accurate spectroscopy system are promising tools
for the development of near-real-time monitoring of the composting process.

5. Conclusions

The management of the composting process remains highly un-automatized and requires
time-consuming laboratory analyses. In this sense, the implementation of sensors and methodologies
capable of a fast and quantitative assessment of the compost maturity status are needed. We proposed
a methodological approach focused in the development of an easy-to-implement, efficient and
cost-effective protocol for compost maturity assessment and near-real-time monitoring (about 2 h
from the compost sampling to the final results). This approach is based on the employment of a
VNIR spectroradiometer with a cuvette holder and an external illumination source for spectroscopic
analyses of liquid compost extracts. Our previously proposed one-step extraction procedure is
feasible, less time-consuming, and the liquid compost extracts were highly suitable for spectroscopy.
The employment of those liquid compost extracts allowed the development of successful PLS regression
models for the total organic matter, humification ratio, total exchangeable carbon and total organic
carbon with the VNIR spectroradiometer. This kind of device is available on the market at a reasonable
cost, its operation is affordable and the statistical models employed for the prediction of the compost
chemical parameters were successful enough to allow better monitoring of the composting process.
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