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Simple Summary: COVID-19 is a rapidly spreading and mutating pandemic. In the case of some
people the disease can be fatal It has been observed that weight and age are parameters of comorbidity
If it is difficult to take into account the uncertainties related to the combination of the two parameters
to build up a model of simulation. Therefore, we propose in this article a SIR/SIH model with fuzzy
parameters which allows us to simulate the pandemic in the absence of barrier actions and vaccines.

Abstract: In this paper, we propose a multi-group SIR to simulate the spread of COVID-19 in an
island context. The multi-group aspect enables us to modelize transmissions of the virus between
non-vaccinated individuals within an age group as well as between different age groups. In addition,
fuzzy subsets and aggregation operators are used to account for the increased risks associated
with age and obesity within these different groups. From a conceptual point of view, the model
emphasizes the notion of Hospitalization which is the major stake of this pandemic by replacing
the compartment R (Removed) by compartment H (Hospitalization). The experimental results were
carried out using medical and demographic data from the archipelago, Guadeloupe (French West
Indies) in the Caribbean. These results show that without the respect of barrier gestures, a first wave
would concern the elderly then a second the adults and the young people, which conforms to the
real data.

Keywords: COVID-19 simulation; SIR; fuzzy subsets; multigroup; data-based approach; aggregation
operators

1. Introduction

COVID-19 is a pandemic that has taken by surprises with the speed of its expansion
and by the severity of some of its forms. All countries, whatever their level of wealth and
development, are overwhelmed by the scale of this phenomenon. This virus with its severe
forms as well as its increasingly virulent variants is undermining health systems around
the world. The number of deaths and people in intensive care is remaining high which
has lead many countries to impose strong health restrictions on their populations: the
economic and social consequences are potentially devastating. The biggest challenge for all
countries is to manage the flow of patients with serious or critical forms and to manage the
hospitalizations of these people in order to avoid a large number of deaths. In parallel with
fields of medical research (vaccine, drugs, etc.) simulation and predication approaches
help the various institutions to prevent and manage this health, social and economic crisis.
In this paper, we present a simulation of COVID-19 in an island context. The peculiarity
of this approach is to use a multi-group SIR model and fuzzy subsets. This approach is
also a data-based model since it is based on statistical and demographic data from an
archipelago in the French West Indies, specifically the island of Guadeloupe. The use of
the multi-group approach makes it possible to take the disparities between the age groups
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into account since the disease takes more severe forms in the elderly compared to adults
and young people. The fuzzy subsets reinforce this distinction while bringing nuance
in relation to age but also in relation to obesity, which is also an aggravating factor for
COVID-19. From a conceptual point of view, the compartment R (Removed) is deliberately
replaced by a compartment H (Hospitalization) since this notion of hospitalization is the
sensitive point for most countries: such as India or Brazil but also the United States or
certain Western European countries. The COVID-19 pandemic is exerting strong pressure
on hospital systems, revealing the flaws and weaknesses of these systems, and leading to
life and death situations. All the specificities of this approach have a single objective: to
allow the simulation to be as close as possible to reality. The paper is organized as follows:
after presenting related studies, we will introduce our model and methods, then in the next
section, we will provide the experimental results we obtained before concluding.

2. Simulation of COVID-19 Using SIR
2.1. Related Work
2.1.1. Use of SIR Approach for COVID-19

SIR approach is one of the most frequently used methods for pandemic simulation
particularly for COVID-19 [1–6] used SIR or its extensions to simulate the spread of COVID-
19 among the population in various parts of the world, and these are only examples among
many others. Some but not all, of the approaches based on the SIR model incorporate risk
factors. Thus, refs. [1,7–9] consider age as a risk factor.

In our approach, we incorporate two elements as risk factors, namely age and obesity.
The choice of these two risk factors was guided by medical and statistical knowledge
derived from real data. Older age is the main risk factor for presenting a severe or critical
case among infected people [10–12]. Obesity seems to be the second main risk factor [13–15].
In particular, the age factor will be taken into account by breaking down the population by
age groups.

2.1.2. Multi-Group SIR

To assess the impact of age on the pandemic, the use of the multi-group SIR ap-
proach [16,17] is an interesting avenue and makes it possible to create groups by age group.
For example, refs. [18,19], or more recently [20,21] for COVID-19, use multi-group SIR to
model the spread of disease in different age groups.

Thus, we based our mathematical model on [19], in which the population is subdi-
vided into two age groups. For each i = 1,2

(1)



dSi(t)
dt

= −Si(t)
2

∑
j=1

bij Ij(t)

dIi(t)
dt

= Si(t)
2

∑
j=1

bij Ij(t)− yi(t)Ii(t)

dRi(t)
dt

= yi(t)Ii(t)

with the initial conditions Si(0) = Si0 ∈ R+, Ii(0) = Ii0 ∈ R+, Ri(0) = Hi0 ∈ R+ , where:
S1, S2: represent the number of susceptible subjects into group 1 and group 2, respectively.
I1, I2: represent the number infectious subjects into group 1 and group 2, respectively.
R1, R2: represent the number of removed people, respectively from group 1 and group 2.
bi,j: with i, j = {1, 2} represent the influence of the infectious subject from group i on
group j.
y1, y2 represent the rate of removed people into group 1 and group 2, respectively.
We adapted this model in order to use it for 3 age groups: young people, adults and
the elderly. In addition to this age differentiation, we also have introduced obesity as an
aggravating factor in the SIR model. In order to model these two risk factors linked to the
disease, we have used fuzzy subsets that will serve as parameters for the SIR multi-group
model equations.
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2.1.3. Fuzzy SIR Approach

The use of fuzzy subsets in SIR models [22–24] makes it possible to take the uncer-
tainties and inaccuracies inherent in real world data into account, and thus brings a form
of realism to the simulation. Fuzzy subsets have already been used for simulations of
COVID-19 [25,26] spreading; they make it possible to represent uncertainties related to
the biological properties of the virus and infected people, or uncertainties related to the
environment. For example, in [26], the fuzzy membership function is linked to the virus-
loads, whereas in [25], fuzzy sets are linked to as humidity (promoting the proliferation of
the virus) or future policies. In our approach, from real data, we use fuzzy membership
functions to model the risk of having a severe form of COVID-19 (requiring hospitalization)
as a function of age and as a function of the level of obesity. Demographic data allow us to
represent these fuzzy functions from age groups.

3. The Fuzzy Multigroup SIR Model
3.1. General Presentation

As we said above, the most important challenge for all countries facing COVID-19
is the management of people with severe or critical forms who require hospitalization
and which can unfortunately lead to death. From a formal point of view, we first propose
to adapt the SIR model by renaming it SIH model, namely Susceptible, Infected and the
letter H designates Hospitalized patients who have contracted a severe or critical form.
As in [21], we define groups corresponding to the 3 main age groups: young people, adults
and the elderly. These 3 groups make sense for the spread and level of severity of the
COVID-19 virus since we know that the older we are, the more the level of severity of the
virus increases [10–12]. Figure 1 provides an idea of the approach for each of the 3 groups.

Actual data 

sources

Parameters

Model

From COVID-19 

statistical data

From medical data 

modeled by fuzzy 

subsets

b intra-

group
b inter

-group

f obesity f age

fusion

y

Susceptible Infected Hospitalized

Figure 1. Representation of the model of each age group with the relationship between compartments.

COVID-19 statistical data [27] and medical data [28] have been used. The fuzzy pa-
rameter y represents the risk of making a critical form (requiring hospitalization) according
to age and to obesity distributed over age.

3.2. Mathematical Model

Thus, we start with a mathematical model largely inspired by [19], in which the popu-
lation is subdivided into three age groups. For each group i = 1, . . . , 3
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(2)



dSi(t)
dt

= −Si(t)
3

∑
j=1

bij Ij(t)

dIi(t)
dt

= Si(t)
3

∑
j=1

bij Ij(t)− yi(t)Ii(t)

dHi(t)
dt

= yi(t)Ii(t)

with the initial conditions Si(0) = Si0 ∈ R+, Ii(0) = Ii0 ∈ R+, Hi(0) = Hi0 ∈ R+

and where: S1, S2, S3: represent the number of young, adult and elderly among potentially
ill subjects, respectively. I1, I2, I3: represent the number of young, adult and elderly infec-
tious subjects. H1, H2, H3: the number of young, adult and elderly patients hospitalized.
b11, b12, b13: represent respectively the influence of the infectious youth subpopulation of
young people, adults and the elderly b21, b22, b23: represent respectively the influence of
the subpopulation of infectious adults on young people, adults and the elderly b31, b32, b33:
represent respectively the influence of the infectious youth subpopulation of elderly people,
adults and the elderly y1, y2, y3 represent the hospitalization rate of young people, adults and
the elderly, respectively.

An example of the relationship between two of the three groups is given in Figure 2.

Age group

The 

adults

Intra-group 

infection rate

b adults, 

adults
b adults, 

youngs  y adults

Susceptible Infected Hospitalized

Inter-group 

infection rate
Hospitalization

 rate

The 

young 

people Susceptible

b youngs, 

youngs

b youngs, 

adults

Infected

 y youngs

Hospitalized

Figure 2. Example of relationship between the group of young people and that of adults. The rates
of intergroup infections reflect the contact between these two groups.

3.3. Calculation of Infection Rates b from Real Data

The infection phase is based on infection rates. As this is a multi-group SIR model,
there is, therefore, for each group an intragroup infection rate, and intergroup infection rate.

Infection rates are estimated as follows. For each of the three groups, the intragroup
infection rate is calculated from the incidence rate measured in age groups. Incidence
rate of each group comes from real and actual data [27,29]. The incidence rate is a time
series measured at the scale of weeks over the years 2020 and 2021 (see Figure 3). Like
the infection rate, the intragroup infection rate will be a time series whose values will be
proportional to those of the rates of incidence of each group.
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Figure 3. Incidence rates of COVID-19 per 100,000 inhabitants for each age group in Guadeloupe.
The rates are given for the 52 weeks of the year 2020 and the first 23 weeks of the year 2021 source: [29].

As for the intragroup infection rates, the intergroup infection rates are calculated from
evaluations of real clusters in the population.

Thus, the intergroup infection rates between adults–young people, young–adults,
adults–elderly, elderly–adults, young–elderly and elderly–young people are calculated
from the number of infected persons in clusters whose context is the extended family [27].

3.4. The Fuzzy Subsets and Fuzzy Parameter y

After the infection phase, we will look at the number of hospitalization. Hospitaliza-
tions due to COVID-19 (whether in a normal bed or in an intensive care unit) are caused by
critical forms of the disease. However, age and obesity are aggravating factors which lead
to critical forms. This is why these two parameters are integrated in Fuzzy-SIR model as
fuzzy subsets.

As a reminder, a classical subset A of X is defined by a characteristic function which
takes the value 0 for the elements of X not belonging to A and 1 for those which belong to
A (see Equation (1)):

χA : X → {0, 1} (1)

A fuzzy subset B of X is defined by a membership function which associates to each
element x of X a degree f (x) between 0 and 1, with which x belongs to B (see Equation (2)).

fB : X → [0, 1] (2)

As stated above, older age is the main risk factor for the severe or critical cases and
obesity is the second main risk factor. Generally, in demographic data, the population
is divided into three age groups: young people, adults and the elderly. The severity of
COVID-19 disease roughly corresponds to these three groups [10–12]: young people who
are infected often have a mild form of the disease, adults generally have a more serious form
and correspond to the group of severe patients, and elderly people represent the majority
of critical cases. The age membership function presented in Figure 4 shows that people
between 30 and 60 years old are more vulnerable than the young people but less than the
older group. Secondly, the membership function between 30 and 60 has been chosen linear.
This fuzzy membership function is not specific only to the islands of Guadeloupe but can
be generalized anywhere in the world and it depends on the observations made.
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age
0

1

0 30 60

Figure 4. Fuzzy membership function of Hospitalization compartment according to age (in years).

Of course, the second risk factor, obesity, has a membership function similar to the
age, but we made a difference between women and men [28]. Obesity risk can lead to the
critical form of COVID-19, even for young people [13–15].

The medical data [28] for Guadeloupe archipelago provided information on the dis-
tribution of obesity by age and sex. We model this risk of critical form linked to obesity
(leading to hospitalization) as a membership function which considers also the age for men
and for women. The proposed fuzzyfication is presented in Figure 5.

age
0

1

0 35 45 55

women

men

Figure 5. Fuzzy membership function of Hospitalization compartment in terms of obesity for men
and women.

According to the medical data, the proportion of obese women is about double that of
men among adults, which implies a greater risk. The proportion of obese young people is
low for both sexes. Concerning the elderly, majority of individuals are obese, regardless of
gender. This aspect increases the risk and explains the shape of the membership functions
described in the figure above.

From these two membership functions of men and women for obesity, we considered
a new observation obtained by aggregating the values of these two functions. According
to our data related to the ratio between men and women in hospital due to COVID-
19 [27,30,31], we defined some weights that ponder these two membership functions.
In order to respect the ratio of hospitalizations due to COVID-19 in Guadeloupe [27], we
use the following weighted average:

0.6× fmen + 0.4× fwomen (3)
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where fmen is the fuzzy membership function for obesity of men and fwomen is the fuzzy
membership function for obesity of women.

We thus have only one value for the risk of hospitalization in relation to obesity.

3.5. Fusion of Membership Functions

To estimate the hospitalization rate, we have merged the two fuzzy functions corre-
sponding respectively to the risk associated with age and the risk associated with obesity.
The merger is carried out with different types of aggregation operators:

• the arithmetic mean
• the triple Π operator [32]

These two operators belong to two different categories [33]:

• the arithmetic mean is a averaging operator: these operators provide a value between
the maximum and the minimum. It is a compromise.

• the triple Π operator is a full reinforced operator [33,34]: these operators are
both positively reinforced and negatively reinforced. They favor extremes and
accentuate differentiation.

In other words, the mean models a moderation and a balance of obesity and age
factors, while if these two factors have strong values, the triple Π models the worsening of
the disease and systematically favors hospitalization.

For each of the three age groups, it is assumed that individuals have the same chance of
catching the disease within the group. Therefore, we will model, by a uniform distribution,
the probability of catching a form of COVID-19 involving hospitalization. Thus, via the
continuity of the fuzzy membership functions (respectively for age and obesity), we can
simulate the values to be used for the hospitalization rates. Each of the two values is then
recovered and merged using one of the two aggregation operators. This result of the fusion
then represents the hospitalization rate yi for each of the three age groups.

4. Results

We used the Euler method to solve the system of Equation (2), the estimated data
of confirmed coronavirus cases presented in [27] and the following initial conditions
presented in Table 1. In the following results, S1, I1 and H1 correspond to the proportions
of Susceptible, Infected and Hospitalized people among young people. Likewise, S2, I2,
H2 represent the proportions of Susceptible, Infected and Hospitalized people in adults,
and S3, I3, H3 represent the proportions of Susceptible, Infected and Hospitalized people
in the elderly. In Table 2, infection and hospitalization rates are presented and described.
Values for infection rates are based on actual data which is normalized, while values for
hospitalization rates are based on merging fuzzy membership functions.

Table 1. Initial values are taken from demographic data source: [35].

Compartment Initial Value

S1(0) 137,113
S2(0) 153,400
S3(0) 89,197
I1(0) 0
I2(0) 1
I3(0) 0
H1(0) 0
H2(0) 0
H3(0) 0
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Table 2. List of the model parameters used for simulations. K and L are normalization constants,
ri(t) represents the incidence rate as a time function for the age group i [29], and C is data on clusters
of infected from extended families [27]. For more details, see Appendix A.

Symbol Description Calculation of Values

b1,1 Infection rate intragroup young K× r1(t)
b2,2 Infection rate intragroup adults K× r2(t)
b3,3 Infection rate intragroup elderly K× r3(t)
bi,j Infection rate intergroup (i, j) = {1, 2, 3}, i 6= j L× C
yi Hospitalization rate for group i, (i) = {1, 2, 3} Fusion of fuzzy values

We used Maple on a computer with a AMD RYZEN 7 processor at 3.6 GHz and 8 GB of
RAM to do simulations. In the following lines, we present in the form of graphs, the results
obtained by running simulations over approximately 300 days.

In Figure 6, the peak of the infection appears around day 150, i.e., at the end of the
containment in Guadeloupe and in the rest of France, which took place on 11 May 2020
(remember that in this simulation there is no formal consideration of barrier gestures or
social distancing). This peak in infections is rapid and reflects a sudden explosion of
COVID-19 cases in young people. The curve of hospitalizations shows an exponential
growth, but this is lower than the growth of infections, since young people are less affected
by the severe form of COVID-19. It is recalled that in this model, there is no compartment
for discharge from hospital.

Figure 6. Number of people infected I1 (in blue) at time t, and number of people hospitalized H1 (in
purple) up to time t for the young group (with the mean as the fuzzy aggregation operator).

In Figure 7, the pick of infection appears at the same time as that of young people,
around day 150. At this peak, the curve of the infected and that of the hospitalized have
the same growth: this is due to the fact that adults more easily develop severe or severe
forms due to their immunodeficiency (age and obesity). On the curve of the infected, at the
level of this peak (which represents the first wave of patients), there is a slight decrease
followed by an increase as high as the first. A second wave appears at the time of the day
230: compared to the real data, we can compare this second wave with that which was
actually observed toward the end of August at the beginning of September 2020 (see [29]).
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Figure 7. Number of people infected I2 (in blue) at time t, and number of people hospitalized H2 (in
purple) up to time t for the adult group (with the mean as the fuzzy aggregation operator).

In Figure 8, the hospitalization curve grows significantly faster than the infection
curve, because this age group directly develops severe forms of the disease given their pre-
disposition (age) and the large number of obese and overweight people. in this age group.

Figure 8. Number of people infected I3 (in blue) at time t, and number of people hospitalized H3 (in
purple) up to time t for the adult group (with the mean as the fuzzy aggregation operator).

In Figure 9, shows that during the first wave (first peak) young people are the first
to be affected, then adults and finally the elderly. It could be argued that it was young
people who initiated the transmission of the virus to older groups. The second wave of
the elderly comes after that of adults and we can conjecture that this wave is therefore
the consequence of the wave that appeared in adults a few days before and which was
transmitted by intergenerational mixing (via the intergroup infection rate).
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Figure 9. Number of infected people at time t, for young (I1), adults (I2) and the elderly (I3), with the
mean as the fuzzy aggregation operator.

In Figure 10, looking at the trends in the curves, we see that adults were the first
affected, certainly because they are the most active, and therefore the most exposed in the
population (most often via the intragroup infection rate). Older people follow because they
are the most vulnerable people (due to their immune deficiency).

Figure 10. Number of hospitalized people up to time t, for young (H1), adults (H2) and the elderly
(H3), with the mean as the fuzzy aggregation operator.

In Figure 11, the curves of the infections in the three age groups are calculated with the
3Π as the aggregation operator. The results are close to those obtained with the arithmetic
mean (see Figure 9) . However, we can see some differences in the spikes present on the
contamination waves. This can be explained by the fact that the triple Pi is more sensitive
and a priory produces a greater variability, which is often more in line with reality.
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Figure 11. Number of infected people at time t, for young (I1), adults (I2) and the elderly (I3), with the
3Π as the fuzzy aggregation operator.

In Table 3, the data from our model and the real data are compared. Here, we see that
for the groups of elderly people, the proportion of people hospitalized is quite close to the
real data, especially when comparing the data from the model (taken at the start of the
peak) to data from the second wave (between August and September 2020), the largest
observed in Guadeloupe to date. This is also the case for the adult group. Taking the
immunodeficiencies (age and obesity) of these two age groups into account in the model
can explain the proximity of the results of the model to the real data. the percentage of
young people hospitalized in our model is greater than that of the real data; we can assume
that this difference is due to the failure to take barrier gestures into account in our model.

Table 3. Comparison of the distribution (in percentage) of hospitalizations in the age groups for the
simulation and the real data at day 140 and 248 ([36]).

% for Age Group Simulation at Day 140 Real Data at Day 140 Real Data at Day 248

youth 18.5% 3.4% 8%
adults 29.4% 31% 45%
elderly 52.1% 65.6% 47%

5. Conclusions and Perspectives

In this paper, we have proposed a model of the spreading of COVID-19 in an insular
context, namely the archipelago of the Guadeloupe F.W.I. Our main contribution is to show
the benefits of using a multigroup SIR model, using fuzzy inference. The data used in
this model are the real data from the pandemic in the Guadeloupe archipelago. From a
conceptual point of view, the compartment R (Removed) has been voluntarily replaced by
compartment H (Hospitalization). We have done so because the notion of hospitalization
is the most important issue for most countries.

The plasticity of this model (through fuzzy sets and aggregation operators) makes
it easier to take into account the uncertainties concerning the major risk factors (age,
obesity, and gender). This analytical mode, being without time delays and including
intergenerational mixing through the intergroup rates, is well suited to describe the real
situation of Guadeloupe.

Nonetheless, there is a significant gap between the results obtained in our simulation
and those of reality. As indicated this can be explained by the absence of barrier gestures,
social distances and vaccination. The working hypothesis used in our model, namely of not
leaving the hospital compartment, after infection, may also be a factor. The results show
that the trend is towards a consequent increase in hospitalization. Preventative and/or
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corrective measures at this level should be considered. Future work will focus on also
taking into account the addition of compartment modeling discharges from hospitalization
(either death or recovery) and sanitary measures (wearing a mask, social distancing, and
vaccination) into account.
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Abbreviations

The following abbreviations are used in this manuscript:

COVID-19 COrona VIrus Disease-(20)19

Appendix A. Other Values for the Simulation

K is a normalization factor taking into account notably the number of days of the
simulation: K = 6.963644033× 10−6

L is a normalization factor taking into account notably the number of days of the
simulation: L = 1.321245344× 10−6 between days 1 and 140, and L = 6.606226720× 10−7

for other days.
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