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A B S T R A C T   

Beyond causing local ischemia and cell damage at the site of injury, stroke strongly affects long-range anatomical 
connections, perturbing the functional organization of brain networks. Several studies reported functional 
connectivity abnormalities parallelling both behavioral deficits and functional recovery across different cognitive 
domains. FC alterations suggest that long-range communication in the brain is altered after stroke. However, 
standard FC analyses cannot reveal the directionality and time scale of inter-areal information transfer. We used 
resting-state fMRI and covariance-based Granger causality analysis to quantify network-level information 
transfer and its alteration in stroke. Two main large-scale anomalies were observed in stroke patients. First, inter- 
hemispheric information transfer was significantly decreased with respect to healthy controls. Second, stroke 
caused inter-hemispheric asymmetries, as information transfer within the affected hemisphere and from the 
affected to the intact hemisphere was significantly reduced. Both anomalies were more prominent in resting-state 
networks related to attention and language, and they correlated with impaired performance in several behavioral 
domains. Overall, our findings support the hypothesis that stroke provokes asymmetries between the affected 
and spared hemisphere, with different functional consequences depending on which hemisphere is lesioned.   

1. Introduction 

Spontaneous brain activity is intrinsically organized into large-scale 
networks of correlated activity (Bullmore and Sporns, 2009; Dam
oiseaux et al., 2006; Fox et al., 2005), also known as resting-state net
works (RSNs). The functional organization of RSNs is altered in stroke 
(Corbetta et al., 2018; Corbetta et al., 2015). In fact, local ischemia, 
which damages cells and neural connections at the site of injury, pri
marily affects subcortical regions and white matter, thus altering long- 
range functional connectivity (FC) between cortical areas. Two types 
of large-scale FC alterations affect RSNs (Siegel et al., 2016a): i) a 
decrease of within-network interhemispheric FC (Carter et al., 2010; 
Golestani et al., 2013; He et al., 2007; New et al., 2015; Park et al., 2011; 
Ramsey et al., 2016; Siegel et al., 2016a; Tang et al., 2016); ii) an in
crease of between-network intra-hemispheric FC (Baldassarre et al., 

2014; Eldaief et al., 2017; Ramsey et al., 2016; Siegel et al., 2016a). As a 
consequence, within-RSN connections are weakened, while between- 
RSN connections are strengthened, which translates into an overall 
decrease of network modularity (Gratton et al., 2012). The presence of 
such common network-level perturbations explains why lesions in 
different locations in the brain produce remarkably similar behavioral 
deficits in different patients (Corbetta et al., 2018). 

FC alterations suggest that behavioral deficits are due to the 
perturbation of inter-areal information flow. However, FC analyses 
cannot reveal the directionality or time scale of the information flow, 
leaving several questions open: i) is the stroke-related decrease of 
interhemispheric FC associated with a symmetric or asymmetric 
decrease in information flow between the damaged and non-damaged 
hemisphere? ii) is the increase of between-network intra-hemispheric 
FC paralleled by a change in intra-hemispheric information flow? iii) to 
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which extent do changes in network-level information flows predict 
cognitive deficits? To address these questions, we performed 
covariance-based Granger Causality (GC) analyses (Brovelli et al., 2015) 
of resting-state fMRI data collected from stroke patients in the sub-acute 
phase (two weeks after stroke onset). Data were provided by the 
Washington university stroke database (Corbetta et al., 2015), and 
included structural lesions, resting-state fMRI, and neuropsychological 
scores for a large cohort of first-time stroke patients and age-matched 
control subjects. Analyses revealed that inter-hemispheric information 
transfer was significantly decreased in stroke patients with respect to 
healthy controls. In addition, pronounced inter-hemispheric imbalances 
in information transfer were observed in patients. Both anomalies were 
more prominent in resting-state networks related to attention and lan
guage, and they paralleled deficits in several behavioral domains. 

2. Materials & methods 

2.1. Brain imaging and behavioral measurements 

Details about participants, neuroimaging data acquisition and pre
processing, and brain lesion identification can be found in previous 
publications on the same data set (Corbetta et al., 2015; Siegel et al., 
2016b). Therefore, here we report only key information allowing for a 
self-contained reading of the paper. 

Subject Enrollment and Retention. Participants (n = 172) were pro
spectively recruited. First-time stroke patients with clinical evidence of 
motor, language, attention, visual, or memory deficits based on neuro
logical examination were included. One hundred and thirty-two patients 
met all inclusion criteria (for details see Corbetta et al., 2015) and 
completed the entire subacute protocol (mean age 52.8 years with range 
22–77, 119 right-handed, 63 females, 64 right hemisphere). Patients 
were excluded from analysis for poor quality imaging data (n = 5), <400 
frames remaining after motion scrubbing (n = 8), or excessive hemo
dynamic lags (see below, n = 6) leaving 113 subjects in the final anal
ysis. Demographically matched controls (n = 31) were recruited and 
underwent the same behavioral and imaging exams (mean age 55.7 
years, SD = 11.5, range 21–83) in two separate scanning sessions (time 
point 1 and time point 2). Controls were matched to the study popula
tion in age, gender, handedness, and level of education. Controls were 
excluded based on a low number of frames after motion scrubbing (n = 4 
at time point 1, n = 6 at time point 2), leaving 26 controls at time point 1 
and 25 controls at time point 2. 

Neuropsychological evaluation. Participants underwent a behavioral 
battery devised to assess motor, language, attention, memory, and visual 
function following each scanning session (details can be found in Siegel 
et al., 2016b). As described in Corbetta et al. 2015, principal compo
nents analysis was performed on all tests within a behavioral domain to 
produce a single score that predicted the highest percentage of variance 
across tasks. The left/right ‘Motor’ scores described left/right body 
motor performance that correlated across shoulder flexion, wrist 
extension/flexion, ankle flexion, hand dynamometer, nine-hole peg, 
action research arm test, timed walk, functional independence measure, 
and the lower extremity motricity index. The ‘Visual Field Attention’ 
score described contra-lesional attention biases in Posner, Mesulam, and 
behavioral inattention center-of-cancellation tasks. The ‘Sustained 
Attention’ score loaded on non-spatial measures of overall performance, 
reaction time, and accuracy on the same tests. The ‘Shifting Attention’ 
score loaded on tests indexing attention shifts, e.g. the difference in 
response times for attended versus unattended targets. The ‘Spatial 
Memory’ score loaded on the Brief Visuospatial Memory Test and spatial 
span. The ‘Verbal Memory’ score loaded on the Hopkins Verbal Learning 
Test. The ‘Language’ score loaded on tests devised to assess language 
comprehension (complex ideational material, commands, reading 
comprehension) and production (Boston naming, oral reading). The 
score of each of the seven factors for each patient was normalized using 
the mean and standard deviation of the corresponding factor scores in 

age-matched controls. 
Brain imaging acquisition. Patients were scanned two weeks (mean =

13.4 days, SD = 4.8 days) after stroke onset. Controls were scanned 
twice at an interval of 3-months. All imaging was performed using a 
Siemens 3 T Tim-Trio scanner at the Washington University School of 
Medicine (WUSM) and a standard 12-channel head coil. The MRI pro
tocol included structural, functional, pulsed arterial spin labeling 
(PASL), and diffusion tensor scans. Structural scans included: i) a sagitta 
l T1-weighted MP-RAGE (TR = 1950 msec, TE = 2.26 msec, flip angle =
90◦, voxel size = 1.0×1.0×1.0 mm); ii) a transverse T2-weighted turbo 
spin-echo (TR = 2500 msec, TE = 435msec, voxel- size = 1.0×1.0×1.0 
mm); and iii) sagittal FLAIR (fluid attenuated inversion recovery) with 
TR = 7500 msec, TE = 326 msec and voxel-size = 1.5 × 1.5 × 1.5 mm. 
Resting-state functional scans were acquired with a gradient echo EPI 
sequence (TR = 2000 msec, TE = 27 msec, 32 contiguous 4 mm slices, 
4×4 mm in-plane resolution) during which participants were instructed 
to fixate a small white cross centered on a screen with a black back
ground in a low luminance environment. Six to eight resting state fMRI 
runs, each including 128 volumes (for a total of 30 min) were acquired. 
A camera fixated on the eyes was used to determine when a subject’s 
eyes were open or closed during scans. Patients had eyes open on 65.6 ±
31.9% of frames and controls had eyes open on 76.8 ± 30.2% of frames 
(t (114) = -1.7, p = 0.091). 

Brain lesion masking. Lesions were manually segmented on individual 
structural MRI images (T1-weighted MP-RAGE, T2-weighted spin echo 
images, and FLAIR images obtained from 1 to 3 weeks post-stroke) using 
the Analyze biomedical imaging software system (www.mayo.edu; 
Robb and Hanson, 1991). Two board-certified neurologists (Dr. Maur
izio Corbetta and Dr. Alexandre Carter) reviewed all segmentations. In 
hemorrhagic strokes, edema was included in the lesion. A neurologist 
(MC) reviewed all segmentations a second time paying special attention 
to the borders of the lesions and degree of white matter disease. Atlas- 
registered segmented lesions ranged from 0.02 cm3 to 82.97 cm3 with 
a mean of 10.15 cm3 (SD = 13.94 cm3). Lesions were summed to display 
the number of patients with structural damage for each voxel. 

fMRI data preprocessing. Preprocessing of fMRI data included: i) 
compensation for asynchronous slice acquisition using sinc interpola
tion; ii) elimination of odd/even slice intensity differences resulting 
from interleaved acquisition; iii) whole brain intensity normalization to 
achieve a mode value of 1000; iv) removal of distortion using synthetic 
field map estimation and spatial realignment within and across fMRI 
runs; v) resampling to 3 mm cubic voxels in atlas space including 
realignment and atlas transformation in one resampling step. Cross- 
modal (e.g., T2-weighted to T1-weighted) image registration was 
accomplished by aligning image gradients. Cross-modal image regis
tration in patients was checked by comparing the optimized voxel 
similarity measure to the 97.5 percentile obtained in the control group. 
In some cases, structural images were substituted across sessions to 
improve the quality of registration. Following cross-modal registration, 
data were passed through three additional preprocessing steps. First, 
tissue-based regressors were computed based on FreeSurfer segmenta
tion (Fischl et al., 1999a). The following sources of spurious variance 
were removed by regression: i) six parameters obtained by rigid body 
correction of head motion; ii) the signal averaged over the whole brain; 
iii) signal from ventricles and CSF; iv) signal from white matter. For 
Undirected Functional Connectivity (UFC) computations, we addition
ally regressed v) the average signal for gray matter. This step, commonly 
called global signal regression (GSR) was not applied for Granger cau
sality (GC) computations. The rationale for this choice was to avoid any 
potential suppression of highly variable signals (Nalci et al., 2019) and 
distortion of information flow estimates using GC. Second, we per
formed temporal filtering retaining frequencies in the 0.009–0.08 Hz 
band. Third, we applied frame censoring meaning that the first four 
frames of each BOLD run were excluded. Frame censoring was imple
mented using frame wise displacement (Power et al., 2014) with a 
threshold of 1 mm. This frame-censoring criterion was uniformly 
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applied to all R-fMRI data (patients and controls). 
Cortical surface processing. Surface generation and processing of 

functional data followed procedures similar to Glasser et al. (Glasser 
et al., 2013), with additional consideration for cortical segmentation in 
stroke patients. First, anatomical surfaces were generated for each 
subject’s T1MRI using FreeSurfer automated segmentation (Fischl et al., 
1999b). This included brain extraction, segmentation, generation of 
white matter and pial surface, inflation of the surfaces to a sphere, and 
surface shape-based spherical registration to the subject’s “native” sur
face to the fs average surface. Segmentations were manually checked for 
accuracy. For patients in whom the stroke disrupted automated seg
mentation, or registration, values within lesioned voxels were filled with 
normal atlas values prior to segmentation, and then masked immedi
ately after (7 patients). The left and right hemispheres were then 
resampled to 164,000 vertices and registered to each other (Van Essen 
et al., 2001), and finally down-sampled to 10,242 vertices each (a 
combined total of 18,722 vertices after exclusion of the medial wall) for 
projection of functional data. Following preprocessing, BOLD data were 
sampled to each subject’s individual surface (between white matter and 
pial surface) using a ribbon-constrained sampling available in Con
nectome Workbench (Marcus et al., 2013). Voxels with a high coefficient 
of variation (0.5 standard deviations above the mean coefficient of 
variation of all voxels in a 5 mm sigma Gaussian neighborhood) were 
excluded from volume to surface mapping (Glasser et al., 2013). Time 
courses were then smoothed along the 10,242 vertex surface using a 3 
mm FWHM Gaussian kernel. All brain surface visualizations were 
generated using Connectome Workbench (Marcus et al., 2013). 

Brain parcellation scheme. We used a cortical surface parcellation 
generated by Gordon & Laumann and colleagues (Gordon et al., 2016). 
The parcellation is based on R-fMRI boundary mapping and achieves full 
cortical coverage and optimal region homogeneity. The parcellation 
includes 324 regions of interest (159 left hemisphere, 165 right hemi
sphere). Note that the original parcellation includes 333 regions, while 
here all regions <20 vertices (approximately 50 mm2) were excluded. 
This cutoff was arbitrarily chosen based on the assumption that parcels 
below this size would have unreliable signal given 4 mm sampling of our 
functional data. Notably, the parcellation was generated on 120 young 
adults aged 18–33 and is applied here to adults aged 21–83. To generate 
parcel-wise connectivity matrices, time courses of all vertices within a 
parcel were averaged. For each ROI, we defined its center-of-mass co
ordinates (x, y, z) as the average of the (x,y,z) coordinates of all vertices 
in the ROI. For each ROI, identified the homologous regions as the ROI 
in having the lowest distance from (x, y, z) (i.e., the ROI closest to be 
symmetrically located in the opposite hemisphere). 

In addition to the 324 cortical parcels, we also defined a set of 19 sub- 
cortical and cerebellar regions based on the FreeSurfer segmentation: for 
each hemisphere 9 regions consisting of cerebellum, thalamus, caudate, 
putamen, pallidum, hippocampus, amygdala, accumbens and ventral 
dorsal caudate, plus brainstem (Fischl et al., 2002). 

2.2. Granger causality analysis and inter-areal information transfer 

Granger Causality (GC) framework. One of the most successful data- 
driven methods to quantify the degree of communication from statisti
cal dependencies between neural signals is based on the Wiener-Granger 
causality principle (Granger, 1980; Brovelli et al., 2004; Ding et al., 
2006; Bressler and Seth, 2011; Seth et al., 2015). In order to describe the 
Granger causality framework, let us consider two (discrete) time series 
X = {Xt}, Y = {Yt} representing the activity of two subsystems sampled 
at discrete times t={1,2,3,…,n} , where we assume that times are 
measured in units of the sampling time TR. Standard undirected func
tional connectivity (UFC) is classically computed as the Pearson’s cor
relation, defined as R =

σ(X,Y)
σ(X)σ(Y)where σ(X)and σ(Y) are respectively the 

standard deviations of Xt and Yt and σ2(X,Y) is their covariance within 
the selected time window. The UFC only considers dependencies 

between Xt and Yt for the same t. Information-theoretically, this type of 
dependency is quantified by the mutual information I(Xt ;Yt), which is a 
simple function of R for Gaussian data, I(Xt ;Yt) = − 1/2log(1 − R2). The 
UFC is insensitive to the temporal structure of correlation between X and 
Y, since it is invariant under permutation of t. On the other hand, the 
framework based on Granger causality (Granger, 1969; Granger, 1980) 
and further developed by Geweke (Geweke, 1982) considers de
pendencies between two time series and their “lagged” versions with 
different lags 1,2,… Let us assume that L is the maximum lag at which 
dependence is observed: in other words, Xt,Yt are not dependent on Xτ,

Yτ⋯for τ < t − L, i.e., he values of X and Y occurring before a time t − L in 
the past. One can thus restrict attention to dependencies between Xt,Yt 
and the L preceding values of the time series, 

X(L)
t− 1 ≡ Xt− 1,Xt− 2,⋯,Xt− L and Y (L)

t− 1 ≡ Yt− 1,Yt− 2,⋯,Yt− L (1) 

Interdependencies between the two time series reflected into the fact 
that the time series of Y contains information about Xt, and vice versa. 
The total amount of information about Xt contained in Y can be quan
tified by the mutual information between Xt and Y(present and past): 
I(Xt ;Yt ,Y(L)

t− 1). By virtue of the identity I(A;BC) = I(A;B) + I(A;C|B), this 
quantity can be decomposed into an “instantaneous” and a “lagged” 
term: 

I(Xt;Yt, Y(L)
t− 1) = I(Xt; Yt|Y(L)

t− 1)+ I(Xt;Y (L)
t− 1) (2) 

The conditioning on the instantaneous term implies that I(Xt ;Yt |Y(L)
t− 1)

measures information about Xt contained exclusively in Yt (and not 
already contained in Y(L)

t− 1). 
The basic idea of Granger causality is that Y contains exclusive in

formation about Xt , 
which is not already present in the time series ofX, i.e., in X(L)

t− 1. To 
obtain the “exclusive” information about Xt contained in Y one should 
further condition over X(L)

t− 1: 

I(Xt;Yt, Y(L)
t− 1|X

(L)
t− 1) (3) 

and again obtain an “instantaneous” and a “lagged” term: 

I(Xt;Yt, Y(L)
t− 1|X

(L)
t− 1) = I(Xt;Yt|X(L)

t− 1)+ I(Xt; Y (L)
t− 1|X

(L)
t− 1) (4) 

The first term is called instantaneous causality (IC) and usually 
indicated by FX⋅Y 

FX⋅Y ≡ I(Xt; Yt|X(L)
t− 1,Y

(L)
t− 1) (5) 

The second term is called directed causality (DC) from Y to X and 
usually indicated byFY→X 

FY→X ≡ I(Xt;Y
(L)
t− 1|X

(L)
t− 1) (6) 

Symmetrically, the exclusive information about Yt contained in X is 
measured by 

I(Yt;Xt,X(L)
t− 1|Y

(L)
t− 1) = I(Xt;Yt|X

(L)
t− 1,Y

(L)
t− 1)+ I(Yt;X

(L)
t− 1|Y

(L)
t− 1) (7) 

The first term coincides with FX⋅Y and the second one is the directed 
causality from X to Y, 

FX→Y ≡ I(Yt;X(L)
t− 1|Y

(L)
t− 1) (8) 

The measures FX→Y , FY→Xand FX⋅Y were proposed by Geweke 
(Geweke, 1982), who also defined the total interdependence between X 
and Y as the sum of all the three terms, 

FX,Y = FX→Y +FY→X +FX⋅Y (9) 

This is the “new” dependency between X andY”created” at each 
timet, indeed 

FX,Y = I(Xt,X(L)
t− 1;Yt,Y (L)

t− 1) − I(X(L)
t− 1;Y

(L)
t− 1) (10) 
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Thus, in the GC framework, the total interdependence between two 
signals can be split into three terms: two directed Granger causality (DC) 
terms and an instantaneous Granger causality (IC) term. The DC terms 
(FX→Y , FY→X) represent a directed flow of information from X to Y or vice 
versa, occurring over a timescale >1 TR (Fig. 1b). The IC term (FX⋅Y) 
represents information shared between X and Y “instantaneously”, i.e., 
in less than one TR, and it accounts for direct communication, or un
considered influences that may originate from common (e.g., subcor
tical) sources, occurring in less then one TR (Fig. 1a). 

Granger causality measures can therefore be formulated in 
completely information-theoretical terms (Barnett et al., 2009; Marko, 
1973; Rissanen and Wax, 1987; Schreiber, 2000). Information-theoretic 
measures based on the Wiener-Granger principle, such as Transfer En
tropy (Schreiber, 2000) and Directed Information (Massey, 1990), 
represent the most general measures of Wiener-Granger causality and 
capture any (linear and nonlinear) time-lagged conditional dependence 
between neural signals (Besserve et al., 2015; Vicente et al., 2011). 

Covariance-based Granger Causality. The GC measures FX→Y , FY→X and 
FX⋅Y capture statistical relations among the values of X,Y in a time 
window of length L + 1including the “present” values Xt , Yt , and the 
“past” valuesX(L)

t− 1, Y(L)
t− 1. Together, Xt ,Yt , X(L)

t− 1,Y
(L)
t− 1define a vector of 

length 2L+2 values. The GC measures can be ultimately expressed in 
terms of Shannon entropies involving the (2L + 2-variate) probability 
distribution P(Xt ,Yt ,X(L)

t− 1,Y
(L)
t− 1) and some of its marginals: 

FX→Y = H(Yt,Y
(L)
t− 1) − H(Y (L)

t− 1) − H(Yt,X
(L)
t− 1,Y

(L)
t− 1)+H(X(L)

t− 1,Y
(L)
t− 1) (11)  

FX⋅Y = H
(

Yt,X(L)
t− 1

)
+H

(
Xt,X(L)

t− 1,Y
(L)
t− 1

)
− H

(
X(L)

t− 1, Y(L)
t− 1

)
− H(Xt, Yt,X(L)

t− 1,Y
(L)
t− 1)

Assuming the distribution P(Xt ,Yt ,X(L)
t− 1,Y

(L)
t− 1) to be stationary, the 

classical method to compute entropies is the “binning method”. One 
considers T running windows of length L + 1, and for each window 
extracts the vector Xt ,Yt ,X(L)

t− 1,Y
(L)
t− 1, thus obtaining T samples of 2L + 2. 

Binning each univariate variable and collecting the bin counts, the joint 
probability distribution P(Xt ,Yt ,X(L)

t− 1,Y
(L)
t− 1) is approximated by (multi

dimensional) histogram (Beirlant et al., 1997; Treves and Panzeri, 
1995). If n bins are used for each univariate variable, the total number of 
multidimensional bins is n2(L+1). As a rule of thumb, to get at least a 
rough estimate of the bin counts one needs at least as many samples as 
bins, so T ≥ n2(L+1) points. Since L ≥ 1, this requires a large sample T ≥

n4 for estimation. In order to make the estimation feasible on short time 
windows, a common solution is to approximate the distribution with the 

first term of the Gram-Charlier expansion, i.e., by a Gaussian distribu
tion with the same second order moments (covariance matrix) as the 
given distribution. This approximation amounts to keeping only second 
order statistics, and neglecting higher-order terms, and is relatively ac
curate for fMRI data (Hlinka et al., 2011). In this approximation, the 
distribution P(Xt ,Yt ,X(L)

t− 1,Y
(L)
t− 1) and its marginals are effectively replaced 

by the covariance matrix Σ(Xt ,Yt ,X(L)
t− 1,Y

(L)
t− 1) and its submatrices. Esti

mating Σ requires only to estimate (2L + 2)2 parameters corresponding 
to the second moments of the distribution. Furthemore, entropies can be 
simply computed with the formula 

H(A) =
nA

2
log2πe+

1
2

log|Σ(A)| (12)  

where Σ(A) is the covariance matrix of A, nA the dimension of A, and |⋅| is 
the determinant. In this covariance-based approximation, GC measures 
are expressed in terms of determinants of submatrices of the covariance 
matrix of the data (Brovelli et al., 2015). For instance, 

FX→Y =
1
2

log|Σ(Yt,Y (L)
t− 1)|−

1
2

log|Σ(Yt) + | (13)  

−
1
2

log|Σ(Yt,X(L)
t− 1, Y(L)

t− 1)|+
1
2

log|Σ(X(L)
t− 1, Y(L)

t− 1))

The covariance-based GC estimation is equivalent to the parametric 
estimation of GC from an autoregressive model with Gaussian in
novations, i.e., the traditional way to estimate Granger causality. 

Gaussian-copula-based estimation of GC. The GC measures FX→Y , 
FY→Xand FX⋅Y can all be written as appropriate sums of mutual infor
mation (MI) terms. For instance, 

FX→Y = I(Yt;X(L)
t− 1|Y

(L)
t− 1) = I(Yt;X(L)

t− 1,Y
(L)
t− 1) − I(Yt;Y (L)

t− 1) (14) 

The MI is invariant under monotonic transformations of the mar
ginals, and this fact can be exploited to relax the assumption of Gaus
sianity. In particular, one can replace the assumption of Gaussianity 
with the weaker assumption of a Gaussian copula (Ince et al., 2017): that 
the joint distribution of the variables can be rendered Gaussian by means 
of local transformations on the marginals. Formally, consider the 
transformations 

X = t(X),Y = u(Y) (14)  

where t, u are monotonic functions. The Gaussian copula assumption is 
equivalent to the existence of t, u such that P(X,Y) is Gaussian. While 
Gaussianity imposes a linear dependence between variables, the 

Fig. 1. Interpretation of instantaneous and directed Granger causality in terms of information flows between two areas.  
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Gaussian copula assumption allows for more general monotonic 
dependence (Ince et al., 2017). Under the Gaussian copula assumption, 
there is a simple way to compute the MI. Since the MI is invariant under 
monotonic transformations of the marginals, I(X;Y) = I(X :), and since 
there exist X,Y such that P(X,Y) is Gaussian, it is sufficient to find X,
Yand compute I(X;Y) with the covariance-based formula (12), which is 
exact for X,Y. 

Finding X,Y is easy. Consider two random variables X,Y with joint 
cumulative distribution function (CDF) H(X,Y) and marginal CDFs F(X), 
G(X). Consider 

t(X) = Φ− 1(F(X) ), u(Y) = Φ− 1(G(Y)) (16)  

where Φ is the CDF of a standard normal variable. One can immediately 
show that X = t(X), Y = u(Y) are standard normal variables, i.e., F(X) =

Φ(X), G(Y) = Φ(Y). Applying the covariance-based approach to the 
transformed variables, one has I(X;Y) = 1

2 log |ΣX ||ΣY |

|ΣXY |
, and by virtue of the 

invariance I(X;Y) = I(X;Y). 
The Gaussian copula evaluation of the MI is not exact. In general, 

even though the marginal distribution of X,Y are Gaussian, the joint 
distribution is not perfectly a bivariate Gaussian. This is true only if the 
copula, i.e., the part of the distribution specifying the dependence be
tween the two variables, is Gaussian (see Ince et al. 2017 for a definition 
of copula and discussion of this point). However, for many distributions 
the Gaussian copula assumption is approximately met. In summary, one 
obtains the following algorithm to compute the MI: i) given samples {Xi,

Yi}, approximate F(X), G(Y) with the empirical CDFs F(Xi) =

rank(Xi)/N, G(Yi) = rank(Yi)/N and compute t(Xi) = Φ− 1(rank(Xi)/N), 
u(Yi) = Φ− 1(rank(Yi)/N). t(Xi) and u(Yi) are normally distributed and 
have the same MI asXi,Yi ii) compute the MI from the samples {t(Xi),

u(Yi)} with the covariance-based method. In our work, we have 
computed all GC measures by expressing them in terms of sums of MIs 
and then applying the Gaussian-copula-based estimation to each term in 
the sum. 

Relation between linear correlation and covariance-based Granger cau
sality measures. Standard undirected functional connectivity (UFC) is 
classically computed as the Pearson’s correlation, defined as R(X,Y) =

σ(X,Y)
σ(X)σ(Y)where σ(X), σ(Y) are the standard deviations of Xt and Yt and 
σ2(X,Y) is their covariance within the selected time window. The UFC 
only considers dependencies between Xt and Yt for the same t. UFC and 
covariance-based Granger causality measures share common properties. 
Linear correlation and total interdependence are undirected measures 
quantifying static and dynamic dependencies, respectively. Although 
these measures are not related by a mathematical decomposition, there 
is a strong relationship between the existence of both types of de
pendencies. A lack of total interdependence implies a lack of linear 
correlation; and, if we assume that the future of X and Y causally de
pends on their own past, respectively, the opposite relation is also true. 
This occurs because linear correlation is related to the covariance-based 
approximation of the mutual information, I(Xt ;Yt) = − 1/2log(1 − R2), 
and because conditioning on the past cannot create new dependencies 
(Chicharro and Ledberg, 2012). It is also clear the directed and instan
taneous Granger measures are smaller than the total interdependence. 
Thus, null total interdependence implies the absence of Granger cau
sality measures because they constitute non-negative contributions to 
the total interdependence. In other words, Granger causality is present 
if, and only if, both linear correlation and total Granger in
terdependencies are not zero. 

The FC and GC quality-based exclusion criteria. In order to ensure 
good-quality FC and GC estimates, we excluded from analysis all sub
jects with <400 usable frames after motion scrubbing. Furthermore, for 
each subject, we computed a lag between homologous ROIs as in (Siegel 
et al., 2016b). In brief, for any integer lag l = − 4, − 3,⋯, 3,4 we 
computed the lagged cross-correlation Cl = < XtYt+l >between the 

BOLD signals X,Y of the homologous ROIs; the homotopic lag between 
the ROIs was identified by finding l0 = argmin(Cl), performing a para
bolic interpolation on Cl0 − 1,Cl0 ,Cl0+1, and computing the minimum of 
the parabola. An average homotopic lag between the left and right 
hemisphere was computed by averaging over all homptipic lags between 
left ROIs and the homologous right ROIs. Anomalously large homotopic 
lags are a likely indication of the presence of lags of hemodynamic 
origin, due to disruption of the standard hemodynamic response in the 
vicinity of the lesion. Therefore, we excluded from analysis all subjects 
with severe homotopic lags (>1 s inter-hemispheric difference). After 
motion and lag exclusion, 113 patients were included at two weeks, 27 
controls at time point one, and 25 at time point two. 

2.3. Outline of the analyses 

Our main goal is to characterize the main changes in inter- and intra- 
hemispheric communication in stroke. The analyses are designed to 
optimally highlight such changes at the group level, and at the level of 
resting-state networks (i.e., not at the single-subject, single-region 
level). 

Resting state networks. As in Gordon et al., 2016, each of the 343 re
gions considered can be labeled as belonging to one of twelve cortical 
resting state networks (RSNs), or to the set of subcortical regions, or to 
the set of cortical regions with no network affiliation (“None” affiliation 
in Gordon et al., 2016). To simplify the analysis, we excluded from 
analysis those cortical regions belonging to either small networks (with 
<5 nodes) or to no network (the (“None” affiliation in Gordon et al., 
2016, which mostly comprises ventral regions belonging to the limbic 
system). We thus considered the following nine RSNs: the visual network 
(VIS), sensorimotor dorsal network (SMD), sensorimotor ventral 
network (SMV), auditory network (AUD), cingulo-opercular network 
(CON), ventral attention network (VAN), dorsal attention network 
(DAN), default mode network (DMN), fronto-parietal network (FPN). In 
addition, we considered 19 subcortical and cerebellar regions (SUB). 
The following cortical networks were left out of analysis: retrosplenial 
network (5 nodes), cingulo-parietal network (4 nodes), salience network 
(5 nodes). 

Network-wise measures of inter- and intra-hemispheric connectivity. We 
will first evaluate undirected functional connectivity (UFC), instanta
neous Granger Causality (IC) and directed Granger Causality (DC) at the 
level of single subjects, single regions, obtaining individual 343×343 
connectivity matrices. For analysis, however, we will focus on summary 
measures quantifying inter- and intra-hemispheric connectivity at the 
network level: 

To assess inter-hemispheric connectivity, we will focus on homotopic 
connections linking homologous ROIs located symmetrically in opposite 
hemispheres. We will thus compute the UFC R(X,Y), the IC FX⋅Y and the 
DC FX→Y , FY→X where X and Y are homologous ROIs. For convenience, 
we will choose X in the healthy hemisphere and Y the homologous ROI 
in the lesioned hemisphere, so that FX→Y , FY→X will represent connec
tivity from the healthy to the lesioned hemisphere and from the lesioned 
to the healthy hemisphere, respectively. For healthy subjects, the 
healthy and lesioned hemisphere will be replaced by the left (dominant) 
and right (non-dominant) hemisphere. Once UFC, IC and DC have been 
computed for all homotopic pairs, we will average over all pairs 
belonging to each of the 10 considered networks. Thus, for each subject, 
we will have 10×1 arrays of network-wise homotopic UFC, IC and DC. 
As for DC we will have two arrays, one from the healthy to the lesioned 
hemisphere, and one from the lesioned to the healthy hemisphere. 

To assess intra-hemispheric connectivity, we will compute the 
UFCR(X,Y), the IC FX⋅Y and the DC FX→Y , FY→X where X and Y are regions 
located in the same hemisphere (healthy/lesioned for patients, left/right 
for controls). Once UFC, IC and DC have been computed for all intra- 
hemispheric pairs, we compute network-wise measures by considering 
all pairs of nodes where either X or Y belongs to the given network and 
averaging. Thus, for each network we considered the sum of its con
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nections with all networks. For each subject, we will have 10×1 arrays 
of network-wise intrahemispheric UFC, IC and DC, one for the lesioned 
hemisphere and one for the healthy hemisphere. 

Statistical analyses. We will compare results at the group level. 
Mainly, we will compare healthy participants (n = 26) and stroke pa
tients (n = 113). We will also compare patients with left hemisphere 
lesions (LH, n = 60) and right hemisphere lesions (RH, n = 53). Statis
tical comparisons will be systematically performed with ANOVAs with 
group and RSN as factors, and hemisphere (lesioned/healthy) as a third 
factor when appropriate. When network is a significant factor (or yields 
significant network × group, network × hemisphere interactions) we 
will additionally perform post-hoc T-tests to highlight the effect of 
specific RSNs. In particular, we will perform the following analyses: 

Two-way ANOVA on homotopic UFC with RSN and group (patients/ 
controls) as factors. Same for homotopic IC. 

Three-way ANOVA on homotopic DC with RSN, group (patients vs. 
controls) and hemisphere (lesioned to healthy vs. healthy to lesiones) as 
factors. 

Three-way ANOVA on intrahemispheric UFC with RSN, group (pa
tients vs. controls) and hemisphere (lesioned vs. healthy) as factors. 
Same for intrahemispheric IC, DC. 

Once significant effects distinguishing patients from controls are 
found, we will focus on the group of patients, investigating whether LH 
and RH patients present differences in the magnitude of the observed 
effects. 

Finally, we will analyze the relation between connectivity measures 
and behavioral impairment. Once effects distinguishing patients and 
controls at a group level are identified, we will consider the corre
sponding measures at an individual level and correlate them with 
behavioral scores. We will use eight behavioral scores identified in a 
previous work (Corbetta et al., 2015), corresponding to the eight 
strongest principal components explaining a large fraction of variance in 
behavioral tests covering language, memory, motion and attention 
function. For example, if we find that homotopic IC is reduced in the 
group of patients compared to controls, we will correlate the individual 
homotopic UFC with individual behavioral scores, to investigate 
whether the functional anomaly is related to behavioral impairment. 

3. Results 

We analyzed resting-state fMRI data recorded from acute stroke 
patients (n = 113) and healthy participants (n = 26). Our analysis tested 
the hypothesis that post-stroke FC alterations are tightly intertwined 
with information flow deficits occurring both inter-hemispherically and 
intra-hemispherically. To address this issue, we performed covariance- 
based Granger causality (GC) analyses (Brovelli et al., 2015) of 
resting-state fMRI data and compared inter-areal information flow an
alyses with standard FC approaches. The comparison was performed by 
means of the notion of total interdependence between signals (Geweke, 
1982). In the GC framework, the total interdependence (TI) between two 
signals can be split into three terms: two directed Granger causality (DC) 
terms and an instantaneous Granger causality (IC) term. The DC terms 
(FX→Y , FY→X) represent a directed flow of information from X to Y or vice 
versa, occurring over a timescale >1TR (Fig. 1b). The IC term (FX⋅Y) 
represents information shared between X and Y “instantaneously”, i.e., 
in less than one TR, and it accounts for rapid direct communication, or 
unconsidered influences that may originate from common (e.g., 
subcortical) sources (Fig. 1a). Functional MRI data were computed for 
324 parcels of the Gordon-Laumann cortical parcellation (Gordon et al., 
2016) and 19 sub-cortical and cerebellar parcels from the FreeSurfer 
atlas (Fischl, 2012). For each subject and for each pair of parcels, or 
regions-of-interest (ROIs), we evaluated the undirected functional con
nectivity (UFC, z-transformed Pearson correlation), the instantaneous 
Granger causality (IC) and the directed Granger causality in both di
rections (DC). For healthy controls, the DC, IC and UFC matrices ob
tained in two independent sessions were averaged for subjects (n = 24) 

for which they were both available. 

3.1. Consistency of UFC and GC measures 

We first tested the reliability of our results by verifying the consis
tency of the UFC and GC measures obtained for control participants in 
two separate sessions (Fig. 2a). Consistency was defined as the Pearson 
correlation between the (upper-triangular parts of the) corresponding 
matrices in the two sessions. The UFC matrices were moderately 
consistent (r = 0.65 ± 0.03, average and standard error over subjects). 
The same result was obtained for IC matrices (r = 0.73 ± 0.02). The DC 
matrices, instead, were poorly consistent (r = 0.22 ± 0.02). We obtained 
reduced network-wise (28×28) matrices by averaging over ROIs in the 
same network and hemisphere. We considered thirteen cortical resting- 
state networks as in (Gordon et al., 2016), plus subcortical ROIs. Con
sistency improved for UFC (r = 0.80 ± 0.03), IC (r = 0.87 ± 0.03), and 
DC (r = 0.41 ± 0.03). The UFC and IC results are thus reliable at the 
single-subject level, especially if network-averaged results are consid
ered. As for the DC, due to the poor level of consistency obtained in the 
full (343×343) DC matrix, we cannot expect reliable results at the level 
of single subject, single ROI. Also at the network level individual results 
are not completely reliable. To assess the reliability of group results, we 
computed the consistency of group-averaged FC matrices for random 
groups of n participants (Fig. 2b). The group consistency is significantly 
stronger than the individual consistency. When considering groups of 5 
subjects, the DC consistency rises to 0.4 (0.7 for network-wise matrices), 
and for 10 subjects it rises to 0.5 (0.8 for network-wise matrices). This 
result implies that while individual DC results are affected by a very 
large noise, DC results at the group-level are reliable. In summary, UFC 
and IC matrices were highly consistent both at the individual and group 
level, while DC matrices were consistent only at the group level. 

To better understand the relation between the degree of consistency 
across sessions and the variance explained by each metric, we computed 
the fraction of TI due to the IC and DC. In Fig. 2c, we show the pro
portion over the TI averaged across links for each individual subject. 
Overall, the IC accounts for a large fraction (mean: 70%, s.d.: 10%) of 
the TI. This fraction is even higher if we compute the mean over 
homotopic links, which are the strongest functional links, connecting 
homologous ROIs located symmetrically in opposite hemispheres 
(mean: 80%, s.d.: 4%). Another class of strong functional links is given 
by intra-hemispheric links within the same resting state network: also in 
this case, the largest fraction of the TI is due to the IC (mean: 71%, s.d.: 
6%). If we consider weak functional links connecting different resting 
state networks, the fraction of TI due to the IC decreases, but remains 
well above 50% (mean: 61%, s.d. 8%). These results imply that most of 
the correlation between the time series of different ROIs is due to in
teractions occurring within the time resolution of fMIR (1TR = 2 s). This 
limits the detectability of directed interactions (DC), and consequently 
also the resolvability of directionality. 

Finally, we note that in our data set we do not have multiple sessions 
for each patient at a single clinical phase, so we cannot repeat the 
replicability analysis done on controls. In principle, however, the 
replicability of results across sessions recorded in identical conditions 
(such as the sessions recorded at TP1 and TP2 for controls) should 
depend only on the details of the recording (e.g., machine and TR) and 
the specific measures computed, so we would expect a similar degree of 
individual between-session consistency also for patients. Of course, the 
group consistency of patients could be significantly lower, as patients 
constitute a more heterogeneous sample than healthy controls. While we 
cannot estimate the group consistency across sessions for patients, we 
can assess the group consistency of results as a function of group size by 
comparing group results obtained with random samples of equal size 
(Fig. 2d). The across-group consistency of UFC, IC and DC for patients is 
generally comparable to the across-session group consistency obtained 
for healthy controls, implying that the group results for patients enjoy 
the same degree of reliability. 
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3.2. Interhemispheric homotopic undirected functional connectivity and 
Granger causality analyses 

Previous studies have shown that stroke patients present a reduced 
interhemispheric UFC with respect to healthy controls (Carter et al., 
2010; Golestani et al., 2013; He et al., 2007; New et al., 2015; Park et al., 
2011; Ramsey et al., 2016; Siegel et al., 2016b; Tang et al., 2016). This 
effect is strongest for interhemispheric homotopic connections, which 
link homologous ROIs located symmetrically in opposite hemispheres. 
We computed UFC, IC, and DC between pairs of homologous ROIs and 
compared healthy controls (C, n = 26) with stroke patients (P, n = 113) 
in the subacute phase. 

Network-wise measures of homotopic connectivity were obtained by 
averaging over pairs of homotopic ROIs belonging to the same resting 
state network (RSNs, see Methods for details). Fig. 3a shows the 

distribution of the homotopic UFC, averaged over all homotopic pairs 
belonging to each RSN. Controls had significantly higher UFC than pa
tients in most networks, but the magnitude of the gap differed, with 
strongest effects in VIS, SMD, and subcortical regions (two-way repeated- 
measures ANOVA with group and network as factors; effect of group F 
(1,1233) = 11.9, p = 0.0007; group × network interaction: F(9,1233) =
2.8, p = 0.003; post-hoc T-tests controls vs patients for each network: p < 
0.05 in all networks except VAN, p < 0.005 for VIS, SMD, SUB, FDR- 
corrected for 10 comparisons). Analogous results were already obtained 
in previous analyses (Siegel et al., 2016a). 

The analysis of homotopic UFC in patients showed that the activity of 
homologous regions is less synchronized than in healthy controls, sug
gesting a reduced interaction between the hemispheres. Granger cau
sality (GC) analyses were performed to characterize instantaneous (IC) 
and directional (DC) interactions between homologous regions. Fig. 3b 

Fig. 2. (a-b) Consistency of FC measures in two separate sessions. We computed 343 × 343 FC (DC, IC and UFC) matrices for the two separate sessions of control 
subjects. Between-session consistency was measured by the Pearson correlation between the (upper-triangular part of the) corresponding FC matrices in the two 
sessions. We also evaluated consistency between the 28 × 28 FC matrices obtained by averaging over all pairs of ROIs belonging to the same RSN (13 cortical resting 
state systems + subcortical ROIs). In panel (a) we show the distribution of consistency for the individual results of each subject. In panel (b), we assess consistency of 
group averages. For each n, we randomly select n subjects and average the FC matrices over subjects. We then show the average (over random choices of n subjects) 
consistency of the group-averaged matrices as a function of n. (c) average fraction of the total interdependence (TI) accounted for by the instantaneous causality (IC) 
and directed causality (DC), for each subject and different classes of links: all links (all), homotopic links (homo), within-hemisphere within-RSN links (WH, WN), 
within-hemisphere across-RSN links (WH, AN) links. It is apparent that IC accounts for a large fraction of the TI, especially for homotopic links (~80%). (d) We 
assessed group consistency between the FC results of samples of patients of different sizes. For each n, we randomly selected two disjoint groups of n subjects and 
separately averaged the FC matrices over subjects in the two groups. We show the average (over random choices of n subjects) consistency of the group-averaged 
matrices as a function of n. 
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depicts the distribution of the instantaneous causality (IC), averaged 
over all homotopic pairs of ROIs belonging to each RSN. Controls had 
significantly higher IC than both patients in all networks, but the 
magnitude of the gap differed, with the strongest differences in the VIS, 
SMD/SMV, and subcortical regions (like for UFC) but also in CON, DAN 
(two-way repeated-measures ANOVA with groups ad network as factors, 
group: F(1,1233) = 25.7, p = 1⋅10− 6; group × network interaction: F 
(9,1360) = 6.3, p = 1.0⋅10− 8; post-hoc T tests controls vs patients for each 
network, p < 0.05 in all networks, p < 0.001 for VIS, SMD, SMV, CON, 
DAN, SUB, FDR-corrected for 10 comparisons). In summary, the IC results 
were in qualitative agreement with those of UFC, but the discrepancy 
between patients and controls was more pronounced (as mirrored in a 
larger group effect and more pronounced network-wise differences). 

We then analyzed directional Granger causality measures between 
homologous regions. The DC potentially allows revealing asymmetries 
between the hemispheres: we conjectured that, due to lesions in pa
tients, homotopic information flow from the healthy to the lesioned 
hemisphere could be different than in the opposite direction. We ana
lysed separately homotopic DC terms FX→Y , FY→X where X is a ROI in the 
healthy hemisphere and Y the homologous ROI in the lesioned hemi
sphere. For controls, we replaced the healthy hemisphere with the left 
(dominant) hemisphere. Fig. 3d shows the distribution of the homotopic 
DC from the lesioned to the healthy hemisphere, averaged over homo
topic pairs of ROIs belonging to each RSN. Fig. 3e shows the distribution 
of homotopic DC from the healthy to the lesioned hemisphere. Overall, 
the homotopic information flow was reduced in patients compared to 
controls (three-way ANOVA with group, network and directionality as fac
tors on homotopic DC: effect of group F(1,137) = 4.0, p = 0.04). Moreover, 
the homotopic flow from the healthy to the lesioned hemisphere was 

higher than the reverse (effect of directionality F(1,2603) = 64.4, p < 
10− 10), with a stronger asymmetry in patients compared to controls 
(group × directionality interaction F(9,2584) = 8.7, p = 0.003). These 
effects can be more easily visualized by computing the bidirectional 
homotopic DC, defined as the sum of DC estimates in both directions, 
SX ↔ Y = FX→Y + FY→X, as well as the total DC asymmetry 
GX→Y = FX→Y − FY→X where X is a ROI in the healthy hemisphere and Y 
the homologous ROI in the lesioned hemisphere. GX→Y larger than zero 
implies a net information flow from the healthy to the lesioned hemi
sphere, and vice versa for GX→Y smaller than zero. For controls, we 
computed the asymmetry GX→Y = FX→Y − FY→X where X is a ROI in the 
left hemisphere and Ythe homologous ROI in the right hemisphere. The 
bidirectional information flow was higher in controls than patients 
(Fig. 3c) (Two-way ANOVA on bidirectional DC with group and network as 
factors: effect of group, F(1,137) = 4.0, p = 0.04). Furthermore, both 
patients and controls presented a homotopic DC asymmetry (Fig. 3f). In 
patients, the flow was preferentially from the healthy to the lesioned 
hemisphere. In healthy participants, the flow was preferentially from the 
left (dominant) towards the right (non-dominant) hemisphere. The 
asymmetry was more consistent in patients, who had a higher effect than 
controls especially in VIS and AUD networks (Two-way ANOVA on 
bidirectional DC with group and network as factors: effect of group, F(1,137) 
= 2.0, p = 0.2, group × network interaction F(9,137) = 2.0, p = 0.03; post- 
hoc T tests patients vs controls for each network, p < 0.05 in VIS, AUD, FDR- 
corrected for 10 comparisons). 

In summary, patients presented a reduced homotopic information 
flow, with most of the effect stemming from a reduction of homotopic 
DC from the lesioned to the healthy hemisphere. Accordingly, stroke 
patients presented an asymmetric interhemispheric information flow, 

Fig. 3. Average homotopic UFC, IC and DC in acute phase. Column heights represent averages over subjects, error bars standard errors over subjects. Stars indicate 
networks for which comparison between patients and controls is significant (two-sample T-test, p < 0.05 FDR corrected for 10 comparisons). (a-c) We show group 
averages of homotopic UFC, IC, bidirectional DC by resting-state network. At a group level, the average homotopic UFC, IC and DC are higher for controls than 
patients. (d-f) We show group averages of homotopic DC from the healthy to the lesioned hemisphere and vice versa, as well as the net asymmetry. For controls, the 
healthy and lesioned hemisphere are replaced with the left and right hemisphere respectively. DC from the healthy to the lesioned hemisphere is generally higher 
than the opposite way around, leading to a positive asymmetry. 
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with a stronger flow from the healthy to the lesioned hemisphere. While 
controls also presented an asymmetric interhemispheric information 
flow (from the left to the right hemisphere), the asymmetry was weaker 
than the one observed in patients. 

3.3. Intra-hemispheric undirected functional connectivity and Granger 
causality analyses 

We then investigated intra-hemispheric UFC, IC, and DC. Previous 
studies reported a bilateral increase of specific intra-hemispheric UFC 
links (Baldassarre et al., 2014; Eldaief et al., 2017; Ramsey et al., 2016; 
Siegel et al., 2016b). As shown in Fig. 4a and b, overall we observed only 
a weak (nonsignificant) increase of intra-hemispheric UFC in patients 
(three-way ANOVA with group, network and hemisphere as factors on 
intrahemispheric UFC; effect of group F(1,137) = 3.1, p = 0.07). However, 
the UFC was higher in the healthy hemisphere than the lesioned one for 

patients (effect of hemisphere F(1,2603) = 12.2, p = 5⋅10− 4; group ×
hemisphere interaction F(9,2584) = 10.8, p = 0.001), such that patients 
presented a higher UFC in the healthy hemisphere compared to controls. 
The effect was concentrated in the CON, VAN, DAN, DMN (network ×
hemisphere interaction F(9,2584) = 5.1, p = 5⋅10− 7, network × hemisphere 
× group interaction F(9,2584) = 2.6, p = 0.004; post-hoc T tests patients vs 
controls on healthy hemisphere UFC for each network, p < 0.05 in CON, 
DAN, VAN, DMN, FDR-corrected for 10 comparisons). Thus, if we define 
an imbalance in intra-hemispheric UFC as the difference in intra- 
hemispheric UFC between the healthy and the lesioned hemisphere 
(left and right for controls), patients, but not controls, presented an 
imbalance (Fig. 4c). The imbalance was highest in AUD, CON, SUB (two- 
way ANOVA on intra-hemispheric UFC imbalance with network and group as 
factors, effect of group: F(1,137) = 4.45, p = 0.04; network × group 
interaction F(9,137) = 4.0, p = 4⋅10− 5; post-hoc T tests patients vs controls 
on intrahemispheric UFC imbalance for each network, p < 0.05 in AUD, 

Fig. 4. Average intra-hemispheric  UFC, IC and DC in acute phase. For each subject, we have computed the average intra-hemispheric UFC, IC and DC within the 
healthy and lesioned hemisphere (left and right hemisphere for controls). Column heights represent averages over subjects, error bars standard errors over subjects. 
Stars indicate networks for which comparison between patients and controls is significant (two-sample T-test, p < 0.05 FDR corrected for 10 comparisons). (a-c) the 
average intra-hemispheric UFC is higher in the healthy hemisphere for patients, who present an imbalance in intra-hemispheric UFC between the healthy and 
lesioned hemisphere. (d-f) the average intra-hemispheric IC is lower in the lesioned hemisphere for patients, who present an imbalance in intra-hemispheric IC 
between the healthy and lesioned hemisphere. (g-j) both patients and controls present an imbalance in intra-hemispheric DC, which is lower in the lesioned 
(right) hemisphere. 
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CON, SUB, FDR-corrected for 10 comparisons). 
The average intra-hemispheric IC was reduced in patients as 

compared to controls (three-way ANOVA with group, network and hemi
sphere as factors on intrahemispheric IC; effect of group F(1,137) = 5.1, p =
0.02). Much of the effect comes from a reduction of IC in the lesioned 
hemisphere in patients (effect of hemisphere F(1,2603) = 116.2, p < 
10− 10, group × hemisphere interaction F(9,2584) = 13.2, p = 2⋅10− 4). The 
effect was present in most networks (post-hoc T tests controls vs patients on 
lesioned intra-hemispheric IC, p < 0.05 in all networks except VAN, FPN, 
SUB). Thus, if we define an imbalance in intra-hemispheric IC as the 
difference in intra-hemispheric IC between the healthy and the lesioned 
hemisphere (left and right for controls), patients, but not controls, pre
sented an imbalance (Fig. 4f). The imbalance was significant in most 
networks (two-way ANOVA on intra-hemispheric IC imbalance with 
network and group as factors, effect of group: F(1,137) = 4.45, p = 0.04; 
network × group interaction F(9,137) = 4.0, p = 4⋅10− 5; post-hoc T tests 
patients vs controls on intrahemispheric IC imbalance for each network, p < 
0.05 in all networks except VAN, FPN, SUB, FDR-corrected for 10 
comparisons). 

Finally, we analyzed DC within each hemisphere. The average intra- 
hemispheric DC was not significantly changed in patients as compared 
to controls (three-way ANOVA with group, network and hemisphere as 
factors on intrahemispheric DC; effect of group F(1,137) = 0.8, p = 0.37). 
Both patients and controls presented a difference between hemispheres 
(effect of hemisphere F(1,2603) = 116.2, p < 10− 10, group × hemisphere 
interaction F(9,2584) = 0.8, p = 0.37), with a higher DC in the healthy 
hemisphere compared to the lesioned one (left and right for controls). 
Fig. 4j shows the distribution of the intra-hemispheric DC imbalance 
(difference between the average intra-hemispheric DC in the healthy 
and lesioned hemisphere) for patients and controls. Both patients and 
controls present an imbalance. 

3.4. Differences between patients with left and right lesions 

In the preceding section, we identified a reduction in the strength of 
inter-hemispheric coupling, as well as imbalances between the healthy 
and lesioned hemisphere for patients. We now focus with more detail on 
the group of patients, analyzing possible differences in the strength of 
the effects between patients with LH and RH lesions (Fig. 5). When 
comparing homotopic information flow, effect sizes were comparable 
for LH and RH patients. The two groups presented comparable values of 
homotopic UFC, IC, and bidirectional DC (Two-way ANOVA with groups 
and network as factors on homotopic UFC: group F(1,111) = 0.8, p = 0.37, 
group × network interaction F(9,111) = 1.2, p = 0.28; Two-way ANOVA 
with groups and network as factors on homotopic IC: group F(1,111) = 1.3, 
p = 0.26, group × network interaction F(9,111) = 2.0, p = 0.04; Two-way 
ANOVA with groups and network as factors on bidirectional homotopic DC: 
group F(1,111) = 3.1, p = 0.08, group × network interaction F(9,111) =
1.5, p = 0.13). When comparing inter-hemispheric imbalances, we 
observed a tendency for imbalances to be stronger for RH patients. The 
homotopic DC asymmetry was marginally higher in RH than LH patients 
(Two-way ANOVA with groups and network as factors on homotopic DC 
asymmetry: group F(1,111) = 3.3, p = 0.07, group × network interaction F 
(9,111) = 1.2, p = 0.28). The intra-hemispheric IC imbalance was 
significantly stronger in RH than LH patients (Two-way ANOVA with 
groups and network as factors on intrahemispheric IC imbalance: group F 
(1,111) = 9.4, p = 0.002, group × network interaction F(9,111) = 3.3, p =
0.0005). The intrahemispheric DC imbalance was comparable for the 
two groups (Two-way ANOVA with groups and network as factors on 
intrahemispheric DC imbalance: group F(1,111) = 0.4, p = 0.49, group ×
network interaction F(9,111) = 2.2, p = 0.02). 

Fig. 5. Differences between LH and RH patients. Column heights represent averages over subjects, error bars standard errors over subjects. Stars indicate networks 
for which comparison between LH and RH patients is significant (two-sample T-test, p < 0.05 FDR corrected for 10 comparisons). (a-c) the average homotopic UFC, 
IC and bidirectional DC are comparable between LH and RH patients. (d-f) imbalances between the healthy and lesioned hemisphere were generally more pro
nounced for RH patients than LH patients. 
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3.5. Global FC and GC summary measures and stroke-related behavioral 
deficits 

To correlate functional effects with behavioral deficits, we will use 
summary measures capturing the main effects identified in the preced
ing analysis of functional connectivity and Granger causality in stroke 
patients. Each summary measure will be computed at an individual 
level, and correlated with behavioral scores. 

Three summary measures are related to the total level of homotopic 
connectivity: 1) UFChomo: average homotopic UFC over all networks; 2) 
IChomo: average homotopic IC over all networks; 3) ΣDChomo: average 
bidirectional homotopic DC (contralesional to ipsilesional plus ipsile
sional to contralesional) over all networks. Patients, as a group, pre
sented a reduced UFChomo, IChomo and ΣDChomo. Three additional 
measures capture imbalances between the lesioned and the healthy 
hemisphere: 4) ΔDChomo: average homotopic DC asymmetry (lesioned to 
healthy minus healthy to lesioned) over all networks; 5) ΔICintra: 
average imbalance in intra-hemispheric IC (healthy minus lesioned) 
over all networks; 6) ΔDCintra: : average imbalance in intra-hemispheric 

DC (healthy minus lesioned). Patients present an enhanced ΔDChomo and 
ΔICintra in comparison to healthy subjects. 

In order to study whether these global summary measures were 
correlated among each other, we computed the partial Spearman cor
relation values between pairs of measures for all patients, controlling for 
lesion volume. Results are shown in Fig. 6a. We observed that the 
measures split into three groups. The first group included UFChomo, 
IChomo and ΣDChomo, which were all strongly correlated. These three 
measures quantified the strength of inter-hemispheric (homotopic) 
connectivity. The second group included ΔDChomo, ΔICintra and ΔDCintra, 
which were mutually correlated and uncorrelated with the homotopic 
measures. These three measures quantified homotopic imbalance. A 
PCA with oblique factors on the (z-scored) summary measures identified 
two principal components explaining 37% and 33% of the total variance 
respectively (Fig. 6b), henceforth indicated as the principal components 
PC1 and PC2. The PC1 loaded on UFChomo, IChomo and ΣDChomo, whereas 
the PC2 on ΔDChomo, ΔICintra and ΔDCintra. Intuitively, PC1 summarized 
the inter-hemispheric functional integration (Fig. 6b, left panel), 
whereas PC2 the inter-hemispheric imbalance (Fig. 6b, right panel). We 

Fig. 6. Global FC and GC summary measures. Our analysis identified several global correlates of stroke, or summary measures, based on functional connectivity and 
Granger causality analyses. (a) Looking at the correlation (partial Spearman correlation correcting for lesion volume) between each pair of measures, one can 
immediately notice two separate groups of correlated measures, one including UFChomo, IChomo, ΣDChomo, the other including ΔDChomo, ΔICintra, ΔDCintra. (b) A PCA 
on the seven measures revealed two PCs explaining >32% and 30% of the total variance across patients. The first component (PC1) loaded on UFChomo, IChomo, 
ΣDChomo, the second component (PC2) on ΔDChomo, ΔICintra, ΔDCintra. This is summarized in the two brain plots showing intuitively the main effects captured by PC1 
and PC2 in the healthy and lesioned hemisphere. (c) PC1 correlates negatively with lesion volume (d) the modulus of PC2 correlates positively with lesion volume. 
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investigated whether PC1 and PC2 were related to the structural lesions. 
As shown in Fig. 6c, PC1 was negatively correlated with lesion volume 
(Spearman r = -0.47, p 〈10− 6): the larger the lesion, the lower the 
functional integration between the hemispheres (Fig. 6c). Concerning 
PC2, we found that the modulus of PC2 was positively correlated with 
lesion volume (Spearman r = 0.51, p 〈10− 6): the larger the lesion, the 
larger the asymmetry between the hemispheres (Fig. 6d). In this regard, 
we should note that the value PC2 reflected the direction of the asym
metry (left-ward or right-ward), while its modulus reflected the 
magnitude of the asymmetry. 

In a previous work (Corbetta et al., 2015), eight behavioral scores 
were identified, corresponding to the eight strongest principal compo
nents explaining a large fraction of variance in behavioral tests covering 
language, memory, motion and attention function. The eight factors 
were associated with language, left body motion, right body motion, 
spatial attention (hemispatial neglect), sustained attention, shifting 
attention, spatial memory, verbal memory. Higher scores signify better 
performance. Right body motion, language, verbal memory and shifting 
attention scores tend to be lower for LH patients, sustained attention 
scores show no hemispheric bias, while left body motion and spatial 
memory scores tend to be lower for RH patients. 

We then quantified to which extent the first two principal compo
nents (PC1 and PC2) were predictive of the observed behavioral deficits. 
To do so, we computed the Spearman correlation between the two PCs 
and behavioral scores (Fig. 7a). We had two general predictions. First, 
we expected a positive correlation between performance and inter- 
hemispheric integration (Carter 2010, Siegel 2016, Corbetta 2018). 
Consequently, we expected PC1 to correlate positively with behavioral 
scores. Second, we expected that a decrease of connectivity within and 
from the lesioned hemisphere would have been generally detrimental 
for performance. Hence, behavioral scores were expected to correlate 
negatively with PC2. These expectations were partially met. PC1 
correlated positively with all scores for both LH and RH patients (LHP: 
Spearman r > 0.30 for all scores except Mot L, Sp Att; RHP: Spearman r >
0.20 for all scores except Shift Att). It is noteworthy that different corre
lations were significant in LH and RH patients. For LH patients, effects 
were stronger for scores related to verbal function, general attention, 
and contralesional motion (r > 0.30, p < 0.05 for Lang, Ver Mem, Shift 
Att, Mot L, FDR-corrected for 8 comparisons). For RH patients, effects were 
stronger for scores related to spatial processing and motion (r > 0.45, p 
< 0.05 for Sp Mem, Sp Att, Mot L, Mot R, FDR-corrected for 8 compari
sons). PC2 correlated negatively for LH patients (Spearman r < -0.17, p 

Fig. 7. Correlation with behavioral scores. (a) Spearman correlation between behavioral scores and the two principal components (PC) summarizing FC and GC 
stroke summary measures (b) partial Spearman correlation between behavioral scores and the two principal components, correcting for lesion volume (c) scatter plot 
of PC1/PC2 versus language scores for LH patients (d) scatter plot of PC1/PC2 vs verbal memory scores for RH patients (e) scatter plot of PC1/PC2 vs spatial attention 
scores for RH patients (f) scatter plot of PC1/PC2 versus left body motion scores for RH patients. 
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< 0.27 uncorrected for all scores except Shift Att), and was significant for 
scores associated with language (r < -0.43, p < 0.05 for Lang, Ver Mem, 
FDR-corrected for 8 comparisons), while correlations were weaker, 
ambiguous in sign, and not significant for RH patients (p > 0.05 for all 
scores, FDR-corrected for 8 comparisons); the strongest observed effect 
was a positive correlation between PC2 and language-related scores (r =
0.16, p = 0.26 for Lang; r = 0.36, p = 0.02 uncorrected for Ver mem). In 
summary, a lower PC1 (lower inter-hemispheric integration) was asso
ciated with significantly worse performance in several behavioral do
mains, different for LH and RH patients. A higher PC2 (higher inter- 
hemispheric imbalance) was associated with worse performance in 
language-related domains for LH patients, and with better performance 
in RH patients. 

3.6. Control analyses 

Part of the observed differences between LH and RH patients may be 
due to the influence of lesion volume. Both the homotopic UFC and the 
homotopic IC appeared to be higher for RH than LH patients (Fig. 3). In 
both cases the difference could be largely explained by differences in 
lesion volume (UFC: one-way ANOVA with group as factor, after linearly 
regressing logarithm of lesion volume lesion: F(1,1110) = 1.5, p = 0.2; IC: 
one-way ANOVA with group as factor, after linearly regressing logarithm of 
lesion volume lesion: F(1,1110) = 3.4, p = 0.06). Moreover, since PC1 and 
PC2 correlate with lesion volume, part of the observed correlation with 
behavioral scores may be explained by lesion volume. A larger lesion 
volume is causally related to more widespread structural disconnections 
(Griffis et al., 2019), which are at the root of functional connectivity 
alterations captured by PC1, PC2. However, a larger lesion volume is 
also causally associated with a larger local damage to cortical area. 
Thus, a correlation between the PCs and behavioral scores does not 
provide sufficient evidence that the functional anomalies captured by 
the PCs have a specific role in the genesis of the deficits, more than other 
functional perturbations such as impaired activity in the locally 
damaged area. We computed the partial Spearman correlation between 
the two PCs and behavioral scores, controlling for the effect of lesion 
volume (Fig. 7b). As for PC1, we still observed a positive correlation 
with behavioral scores (LHP: Spearman r > 0.13 

for all scores except Sp Att; RHP: r > 0.26, for all scores except Shift Att). 
Surprisingly, while effects were generally reduced and no longer sig
nificant for LH patients (p > 0.05 for all scores, FDR-corrected for 8 
comparisons), correlations remained significant for RH patients (r >
0.36, p < 0.05 Mot R, Sp Mem, Sp Att, Mot L, FDR-corrected for 8 com
parisons). For PC2, we still observed a generally negative correlation for 
LH patients (Spearman r < -0.08, for all scores except Shift Att), but 
correlations were no longer significant (p > 0.05 for all scores, FDR- 
corrected for 8 comparisons). Correlations were still not significant for 
RH patients (p > 0.05 for all scores, FDR-corrected for 10 comparisons). 

We finally performed control analyses to investigate potential con
founding effects associated with nuisance sources and hemodynamic 
lags. GC analyses were performed on preprocessed BOLD signals without 
global signal regression (GSR) removal. The rationale for this choice was 
that GSR may effectively work as a “temporal filter” (Liu et al., 2017), 
suppressing the contribution of time points associated with low global 
signal, potentially distorting the estimation of information flows in GC. 
While standardly adopted for UFC estimation, GSR is a contentious step 
(Saad et al., 2012), particularly when one compares healthy subjects 
with neurological or psychiatric patients (Hahamy et al., 2014; Yang 
et al., 2014). Indeed, the global signal can reflect extended correlation of 
neural origin (Scholvinck et al., 2010), possibly differing between pa
tients and control subjects. By applying GSR to our data, homotopic 
information transfer (homotopic IC and bidirectional DC) presented 
similar effects to those found without GSR, including the asymmetry in 
homotopic DC (Fig. 8a). However, results on intra-hemispheric GC 
differed: no clear imbalance was observed in intra-hemispheric DC or IC. 
Thus, GSR significantly attenuates the hemispheric imbalances. 

However, due to the high network specificity of the observed imbal
ances, it appears unlikely that such imbalances represent metabolic, 
movement, breathing-rate, cardiovascular or vigilance effects. It is more 
likely that differences in global signal between the hemispheres repre
sent alterations in the excitation/inhibition balance within each hemi
sphere (Yang et al., 2014), which are obscured by GSR. 

Hemodynamic lags represent an additional potential confound for 
our results. In fact, stroke can cause a pathologic delay in the hemody
namic response in the perilesional area, or in a wider area subserved by 
the occluded artery (Siegel et al., 2016b). This delay may introduce 
spurious “lags” of non-neural origin between regions in this area and 
homologous regions in the intact hemisphere, thus contributing to the 
observed homotopic DC asymmetry. We checked whether the observed 
global homotopic DC asymmetry could be linked to asymmetries in the 
perilesional area. We considered each region X in the lesioned hemi
sphere and computed the DC asymmetry GY→X = FY→X − FX→Y where Y is 
the homologous area in the intact hemisphere. We thus obtained brain- 
wide maps of homotopic DC asymmetry that overlayed with the lesion 
maps (to produce the homotopic DC maps, we assigned the value GY→X 
to all voxels within a radius of 10 mm around the center of each ROI X, 
and then applied 10 mm Gaussian smoothing). In Fig. 8d, we show the 
results for a representative subject. The strongest DC asymmetries were 
observed far from the lesions location in the brain. In order to have a 
more quantitative control, we repeated our analyses excluding all re
gions at a distance <4 cm from the lesioned area. As shown in Fig. 8b, 
the homotopic DC asymmetry is still present after this removal, while 
the intra-hemispheric IC and DC imbalance appear to be even 
strengthened. This showed that the observed effects are not due to 
anomalous hemodynamic lags in the vicinity of the lesion. 

To further verify whether the asymmetries may be driven by general 
differences in the hemodynamic response between the healthy and 
lesioned hemisphere, we estimated the hemodynamic response at each 
region by the “blind deconvolution” approach described in (Wu et al., 
2013), which is the only existing approach to characterize the hemo
dynamic response in resting state fMRI. Assuming that the neural signal 
underlying the BOLD is generated by a point process (a rather strong 
assumption), peaks of the BOLD signal correspond to neural “events” 
convolved with the hemodynamic response function (HRF), which al
lows estimating the HRF. This method may be quite inaccurate with our 
data, given the low temporal resolution at hand (TR = 2). Despite its 
limitations, the method may capture large differences in the shape of 
between the healthy and lesioned hemisphere. We used the software 
provided by the authors of the approach (https://pypi. 
org/project/rsHRF/, with default parameters, using the gamma esti
mation method, and using Wiener deconvolution. For each region, we 
extracted the HRF, whose shape can be summarized by 3 parameters 
corresponding to the amplitude, time-to-peak and FWHM of each re
gion’s HRF (Wu et al. 2013). Larger time-to-peak and FWHM correspond 
to slower responses. For each subject, we computed the average HRF 
amplitude, time-to-peak and FWHM in the healthy and lesioned hemi
sphere separately, and considered the difference, obtaining indexes of 
hemispheric imbalances in the HRF amplitude (Δamp), time-to-peak 
(ΔTTP) and FWHM (ΔFWHM). In Fig. 3c, we show the average HRF 
imbalances for patients. We did not observe significant global HRF im
balances. In Fig. 8e, we overlay the homotopic DC asymmetry map with 
a map of the homotopic imbalance in HRF parameters (for each region, 
we computed the difference in amplitude, time-to-peak and FWHM 
asymmetry with the corresponding homologous region). The strongest 
DC asymmetries were not in close correspondence with the homotopic 
asymmetries in the FWHM of the HRF (the parameter most likely asso
ciated to longer hemodynamic responses). 

4. Discussion 

Previous research, including previous work on the Washington 
stroke database (Siegel et al., 2016a, Corbetta et al., 2018, Griffis et al. 
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Fig. 8. Control for possible confounds. (a) We checked the effect of GSR on the found inter-hemispheric imbalances. We show the average imbalances in homotopic 
DC, intra-hemispheric IC, and intra-hemispheric DC before and after GSR (for each column, results have been rescaled to the average results without GSR for 
visualization purposes). GSR has no effect on the homotopic DC asymmetry, while it removes the imbalance in intra-hemispheric IC and DC. (b) We show the average 
imbalances in homotopic DC, intra-hemispheric IC, and intra-hemispheric DC with or without removing from analysis all regions at a distance <4 cm form the lesion 
(for each column, results have been rescaled to the average results without GSR for visualization purposes). Such removal has no effect on the homotopic DC 
asymmetry, while it strengthens the imbalance observed in intra-hemispheric IC and DC. (c) We show the average hemispheric asymmetry in the estimated HRF 
parameters. Patients did not present significant asymmetries in HRF between the healthy and the lesioned hemisphere (d) We show a map of the homotopic DC 
asymmetry for one representative subject, together with the lesion location (in blue). Strongest homotopic DC asymmetries are found far from the lesion (e) We show 
a map of the homotopic DC asymmetry for the same subject as in (d), together with the asymmetry in the FWHM of the estimated hemodynamic response. Strongest 
homotopic DC asymmetries are not in correspondence with asymmetries in the FWHM of the hemodynamic response. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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2019), has made extensive use of resting-state fMRI to investigate 
functional connectivity in stroke patients. The results of these studies 
suggest a view of stroke as a network dysfunction syndrome. Stroke is 
accompanied by widespread alterations of functional connectivity, with 
common patterns observed across patients independently of lesion 
location. In particular, most patients present a loss of inter-hemispheric 
FC (Corbetta et al., 2018; Golestani et al., 2013; Siegel et al., 2016a; 
Tang et al., 2016). Anomalies of long-range FC are paralleled by per
turbations of monosynaptic (Griffis et al. 2019) and polysynaptic (Griffis 
et al. 2020) structural connections. While sensorimotor deficits are 
reasonably well explained by local damage, cognitive deficits are better 
explained by network dysfunction (Siegel et al., 2016b). 

However, it was still unclear whether stroke produces functional 
asymmetries in long-range brain interactions. Being symmetric, stan
dard functional connectivity (UFC) and structural connectivity (SC) 
measures are not suited to address this question. In our work, we used 
Granger causality (GC) measures to investigate alterations of long-range 
directional interactions in the brain after stroke. By exhaustively looking 
at temporal dependencies between the BOLD signals of two regions, GC 
measures can yield information about the directionality and time scale 
of interactions, which is missing from UFC analyses. Our analyses 
revealed several stroke-related asymmetries between the hemispheres, 
which further allowed us to better highlight major differences between 
patients with left- or right-hemisphere lesions which had not been spe
cifically addressed in previous analyses. 

4.1. Stroke-related modulations in inter- and intra-hemispheric coupling 
revealed by Granger causality analyses 

One of the major functional effects of stroke is a loss of inter- 
hemispheric integration associated with a decrease of homotopic UFC. 
It is still relatively unknown to which extent the UFC decrease corre
sponds to a decrease of direct interactions (supported by homotopic 
connections crossing the corpus callosum (Schmahmann et al., 2009)) or 
indirect interactions through subcortical structures. Our results from 
GC-based analyses show that UFC decrease (Fig. 3a) is strongly associ
ated with a loss of inter-hemispheric interactions captured by the 
homotopic IC and DC (Fig. 3b and c). IC captured cortico-cortical in
teractions unfolding within 1 TR, while DC captured lagged cortico- 
cortical interactions occurring on a time scale longer than 1 TR. Clas
sically, IC are interpreted as originating from external common inputs 
(Ding et al., 2006). Since a large part of the total interdependence be
tween the signals of homotopic areas is due to the IC (Fig. 2c), our results 
suggest that a component of stroke-related alterations in cortico-cortical 
coupling emerges from disrupted common inputs from regions that 
project symmetrically to cortical areas, such as subcortical structures. 
This hypothesis is supported by structural analyses that locate stroke 
lesions primarily in subcortical areas, such as the thalamus (Corbetta 
et al. 2015), as well as by recent experimental work showing that 
subcortical structures can play a large role in maintaining FC between 
cortical regions when direct influences are impaired (Canella et al. 
2020). However, given the slow sampling rate of our data (TR = 2 s), an 
IC decrease cannot be uniquely attributed to a loss of common input, as 
it may also result from a decrease of fast directed interactions occurring 
on timescale shorter than 2 s. To which extent subcortical structures 
contribute in re-modulating cortical interaction remains a relevant topic 
for further investigation. 

Importantly, even though IC rather than DC dominates homotopic 
interdependence, DC analysis is precious as it hints at strong inter
hemispheric communication asymmetries. Our results on homotopic DC 
showed that stroke impacts the inter-hemispheric information flow 
asymmetrically, with a spared information flow from the healthy to the 
lesioned hemisphere and a reduced flow in the opposite direction 
(Fig. 3d–f). This asymmetric effect is not immediately explained by 
structural lesions, since there is no evidence that ischemia would affect 
selectively fibers from the ipsilesional to the contralesional hemisphere 

rather than in the opposite direction. The homotopic asymmetry we 
measured is in line with recent work (Wang et al., 2019) showing that 
time series in the lesioned hemisphere are “lagged” with respect to the 
homologous areas in the healthy hemisphere. To which extent this effect 
may stem from non-neural, hemodynamic causes – a systematic alter
ation of the hemodynamic response in the lesioned hemisphere – re
mains an open question. In our control analysis (Fig. 8) we excluded the 
possibility that the effect be trivially related to the well-known presence 
of large hemodynamic lags in the perilesional area (Siegel et al., 2016b). 
Thus, the measured asymmetry, if caused by hemodynamic effects, 
would imply wide alterations of the hemodynamic response far from the 
lesion. In future work, this issue may be specifically addressed by 
applying deconvolution prior to GC analysis, building on “blind 
deconvolution” techniques that allow retrieving the hemodynamic 
response from resting-state data (Wu et al., 2013). Such analysis is 
beyond the scope of the current study. Since deconvolution techniques 
for resting-state fMRI remain exploratory, it is still unclear whether 
these methods are accurate in presence of anomalous distortions of the 
hemodynamic response potentially arising in pathological conditions 
such as stroke. 

The relevance of the observed homotopic GC asymmetry is 
strengthened by our analysis of intra-hemispheric GC, which revealed 
another functional imbalance between the hemispheres in stroke pa
tients: intra-hemispheric IC and DC are higher in the intact hemisphere 
than the lesioned one (Fig. 4f and j). Our results are not conclusive 
regarding the relation between the homotopic DC asymmetry (Fig. 3f) 
and the imbalance in intra-hemispheric IC and DC (Fig. 4f and j). 
However, we provided evidence that the intra-hemispheric and inter- 
hemispheric imbalances are correlated (Fig. 6), which suggests that 
the two results are not independent and may have a common cause. We 
speculate that both effects could stem from structural disconnection 
within the lesioned hemisphere, causing a loss of inter-areal excitatory 
influences. Since stroke can damage structural connections between 
ipsilesional areas, we could generally expect a loss of excitatory in
fluences, and hence general activity decrease, within the lesioned 
hemisphere (Grefkes and Fink, 2014). This, in turn, would also imply 
that the lesioned hemisphere would exert less excitation on the healthy 
one. This picture would explain both the decrease of ipsilesional DC and 
IC, and the decrease of DC from the lesioned to the healthy hemisphere. 
Further support to this interpretation comes from the fact that all 
imbalance measures (ΔDChomo, ΔICintra, ΔDCintra) correlate negatively 
with lesion volume (i.e., the stronger the lesion, the higher the intra- and 
inter-hemispheric functional imbalances). 

Post-stroke inter-hemispheric imbalances in effective connectivity 
were widely reported in the motor system, as reviewed in (Grefkes and 
Fink, 2014). During motor tasks, excitatory influences within the 
lesioned hemisphere are reduced, contributing to a general decrease of 
ipsilesional brain activity (Grefkes and Fink, 2014; Rehme and Grefkes, 
2013). As for inter-hemispheric connectivity, several studies on the 
motor system after stroke indicate an anomalous influence of the con
tralesional hemisphere onto the lesioned one during motor tasks (Rehme 
and Grefkes, 2013, Grefkes et al., 2010, Grefkes and Fink, 2014). 
Whether the contralesional influence is inhibitory (hence detrimental to 
motor performance), or excitatory (hence supportive of performance) 
seems to depend on several factors, including time after stroke and 
severity of the lesions (Pino et al., 2014). Our results instead showed a 
decrease of influence of the damaged hemisphere on the normal one. 
However, we are wary of a direct comparison, since our whole-brain 
results were obtained with a resting-state paradigm, hence without 
any specific involvement of the motor cortex. In order to further clarify 
inter-hemispheric balance after stroke, future whole-brain studies 
should discriminate between excitatory and inhibitory influences, which 
is not possible in the current GC analysis. 

Hemispheric functional imbalance and stroke-related behavioral 
deficits 

Previous behavioral analyses on this cohort (Corbetta et al., 2015; 
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Ramsey et al., 2016) identified sets of correlated deficits for left and 
right lesions respectively, largely agreeing with lateralization maps 
described in healthy subjects (Karolis et al., 2019). Right body motion, 
language, verbal memory and shifting attention scores tend to be lower 
for LH patients, sustained attention scores show no hemispheric bias, 
while left body motion, spatial attention and spatial memory scores tend 
to be lower for RH patients. Here, we systematically addressed for the 
first time the functional basis of LH/RH patient differences. 

In LH patients, the amount of inter-hemispheric communication 
(summarized by PC1) correlated positively with behavior for domains 
that are specific to the left hemisphere (language, verbal memory, 
attention shifting), with the exception of right motion. The correlation 
between PC1 and behavioral scores was significantly lower if lesion 
volume was regressed, and presently we cannot discriminate the specific 
impact of inter-hemispheric communication loss on behavioral function 
from other possible effects resulting from the lesion. The imbalance 
between the hemispheres (summarized by PC2) correlated negatively 
with behavioral scores, significantly for behaviors that were affected by 
left hemisphere lesions (language, verbal memory) and could be largely 
explained by lesion volume, suggesting that it reflects the extent of intra- 
hemispheric LH damage. 

In RH patients PC1 correlated with behavior for domains more 
associated with the right hemisphere (motor function, spatial and sus
tained attention, and spatial memory). Correlations were robust to 
regression of lesion volume, which suggests a specific impact of inter- 
hemispheric communication loss on behavior. This hypothesis agrees 
with previous studies showing that deficits that were affected by right 
lesions were more associated with inter-hemispheric rather than intra- 
hemispheric functional disconnection (Baldassarre et al., 2016a; Bal
dassarre et al., 2016b; Siegel et al., 2016b). We speculate that input from 
the LH may be more critical for functional integrity of the RH than the 
other way around, congruently with studies reporting that the left 
hemisphere presents more central or indispensable regions for the 
whole-brain structural network (Iturria-Medina et al., 2011), and that 
the right hemisphere depends more heavily on integration with the left 
one than the other way around (Gotts et al., 2013). In RH patients we did 
not observe a negative correlation between scores and PC2, suggesting 
that intra-hemispheric damage has a lesser impact on behavior. Instead, 
we observed a positive correlation between PC2 and verbal memory 
scores, which suggests a supportive role of the left (contralesional) 
hemisphere for a left-lateralized function in the case of right lesions. 

In both LH and RH patients, sustained attention scores had a sig
nificant positive correlation with PC1, and a negative correlation with 
PC2. This is consistent with previous literature suggesting that higher 
scores are associated with a higher inter-hemispheric integration and a 
higher intra-hemispheric integration in the lesioned hemisphere (Cor
betta et al. 2005, He et al. 2007, Corbetta and Shulman 2011), but a 
large part of the correlation observed in this work could be explained by 
lesion volume, hence at present we cannot know to which extent the 
effect is causally related to functional connectivity anomalies. 

4.2. Methodological considerations on Granger causality analyses: 
Advantages and limitations 

The efficacy of bivariate GC as a data-driven analysis method rests on 
its ability to uncover global patterns of information flow and differences 
in information flows between groups or experimental conditions in a 
completely unsupervised way (Faes et al., 2017; Friston et al., 2013; 
Roebroeck et al., 2011; Roebroeck et al., 2005). Our choice of bivariate 
GC, instead of multivariate GC (Barnett and Seth, 2014), had several 
motivations. The first motivation was that we wanted to compare results 
obtained with a Granger causality approach with previous results ob
tained with (undirected) functional connectivity. We thus designed the 
analyses with the aim of using the same 343 ROI atlas used in previous 
UFC studies. Multivariate approaches present several difficulties when 
applied to large networks. In standard multivariate analyses, a direct 

link between two regions is obtained by conditioning on all remaining 
variables. When the whole network is large, there may be numerical 
issues, and this is why multivariate GC is usually applied to smaller 
networks (of the order of 100 nodes) (Tang et al., 2012; Stramaglia et al., 
2016). Moreover, even when numerical problems may be bypassed, full 
conditioning is conceptually problematic when there are subgroups of 
regions with similar signals (redundancy). In this case, conditioning 
leads to underestimating true connections (Stramaglia et al. 2014). One 
solution would be to group regions sharing similar information content 
before estimating GC, as proposed by Barrett 2010 and Angelini et al. 
(2010). However, such analysis is still problematic in the current set
tings, because there currently exist no established and accepted methods 
to find a good partition of regions into groups for large networks. This is 
why whole-brain studies commonly use bivariate GC to uncover global 
patterns of information flow (see e.g., Deco et al. 2021). The second 
motivation is that our goal was to study network-level FC measures, 
rather than direct interaction between a specific pair of brain regions. 
Pair-wise analysis is limited if one wishes to infer the direct interaction 
between a specific pair of brain regions, but it is not much of a limitation 
within our analysis, where we always average GC over many pairs of 
regions to infer network- or even hemisphere-level GC measures, and we 
are less concerned about the possibility that single connections may 
include indirect effects. A third motivation to use bivariate GC is its 
estimability from short signals. This property allows us to estimate GC 
from BOLD time series of 400–800 time points, i.e., the time series of 
single subjects. Thus, we do not need to concatenate several subjects to 
perform the estimation, and we can obtain individual estimates. 

The main limitation of our analysis is the uncertainty affecting GC 
estimates at different levels, from single-session to single-subject 
(Fig. 2). For each GC-based stroke summary measure (e.g., the total 
homotopic IC), we obtained a large group variance, and consequently a 
large overlap between the distributions of patients and controls, so that 
we could not robustly classify an individual as patient or control based 
on his/her value of the summary measure. It is likely that part of this 
variance reflects estimation error, rather than true interindividual 
variability. Analogously, the uncertainty affecting single-subject esti
mates also implies a difficulty in relating individual GC results with 
individual behavioral scores. Thus, estimation error limits the use of GC 
for the development of personalized biomarkers predictive of clinical 
condition and behavioral performance at the single-patient level. This 
limitation is not inherent in GC per se, but depends on the relative 
paucity of functional data available for each patient, and the poor 
temporal resolution implied by TR = 2 s. By taking longer recordings or 
repeating recording sessions, we could obtain much more accurate GC 
estimates. Improved GC estimates may also be obtained by using a lower 
TR. Using a TR = 0.67 s (as in the Human Connectome Project database 
(van Essen et al., 2013)) would triple the number of points for estimation 
and offer a significantly improved time resolution, allowing for a more 
precise characterization of directionality effects (we predict that by 
using a shorter TR, a part of the total interdependence that is seen as IC 
in this study would appear as DC). In our opinion, the main limitation of 
GC in this study is due to intrinsic properties of the data, rather than the 
specific approach used for calculating DC – bivariate and covariance- 
based. We are skeptical that more sophisticated approaches for GC 
estimation would yield radically improved results. In particular, for 
several reasons we do not believe that a multivariate approach (Barnett 
and Seth, 2014), which in principle gives cleaner results by eliminating 
indirect network effects, would particularly contribute to our study. 
Since we have a large number of areas, conditioning would impair 
estimation, especially because of many redundancies (Stramaglia et al. 
2016). Moreover, since our main results are based on large averages 
over many pairs of regions, they are largely indifferent to whether single 
links are affected by indirect contributions. 
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4.3. Limitations due to possible confounders 

An important limitation of our work is that our analyses are 
completely based on the BOLD, an indirect measure of neural activity. 
While the BOLD at rest has a substantial neural component (Scholvinck 
et al., 2010), the signal is strongly affected by a multitude of con
founders, mostly of neurovascular origin. 

The first of these confounders is the hemodynamic response function 
(HRF), which is known to be non-uniform throughout the brain (Aguirre 
et al., 1998). In principle, one should deconvolve the HRF from the 
BOLD of each area to obtain the corresponding “neural” time series. 
However, there is no established method to retrieve the HRF from 
resting-state data: contrary to task fMRI, where neural activation is time- 
locked to external events, the underlying neural events are unknown. A 
possible approach to deal with this issue is to assume that spontaneous 
events follow a point process (Wu et al., 2013), which allows retrieving 
the HRF from the large fluctuations of the BOLD. Using this method, we 
characterized the HRF of each region for patients and controls. A quite 
surprising result was that patients did not exhibit anomalous or non- 
canonical HRF shapes. In particular, we might have expected retarded 
or slowed-down responses in the lesioned hemisphere of patients (Siegel 
et al 2016b), which may explain part of the observed inter-hemispheric 
imbalances. This result does not imply that the HRF is normal in pa
tients: quite on the contrary, it may just signify a limited power of blind 
deconvolution with the limited temporal resolution or our data (TR = 2). 
To what extent non-uniformities of the HRF throughout the brain may 
contribute to the observed effects, in particular inter-hemispheric im
balances, thus remains an open question. To better address this issue, we 
may need to rely on a better acquisition protocol with lower TR. 

Another relevant neurovascular confounder comes from in
homogeneities of the blood arrival time in the brain. Erdoğan et al. 
(2016) argued that the global fMRI signal is to a large proportion due to 
systemic low frequency oscillations propagating with cerebral blood 
circulation throughout the brain, and impacting the BOLD signal of 
different areas with different delays. Then, they proposed to regress a 
locally time-shifted version of the global fMRI time signal to remove 
these fluctuations. In future work, advanced methods to correct for time 
delays such as that proposed by Erdogan et al. could be applied to 
further clean the signal. This would require significant effort, as possibly 
complex interactions between anomalies of blood circulation and 
anomalies of the HRF may emerge, needing a dedicated study. 

Finally, another possible confounder is provided by cardiac and 
respiration effects. An optimal method to correct for cardiac and respi
ratory effects is to rely on external measurements (Caballero-Gaudes and 
Reynolds, 2017). Since our acquisition protocol did not include these 
measurements, this strategy could not be applied to our data. 

To date, it is still a matter of investigation how hemodynamic, blood 
flow, cardiac and respiration artifacts, and the related correction tech
niques, may impact on GC or effective connectivity estimates. This 
precludes any quantitative assessment of the role of these artifacts, and 
correction techniques on FC/GC analyses. For this reason, we adopted a 
standard preprocessing pipeline instead of including advanced pre
processing steps whose validity and effects are yet to be established. Our 
preprocessing pipeline included a rather aggressive nuisance regression 
(we regressed the signal of more than twenty many areas including lo
cations in the white matter, ventricles and extra-axial CSF), but it is 
unclear whether this preprocessing step suffices to eliminate or sub
stantially limit cardiac, respiration and blood flow effects. The possible 
presence of these artifacts certainly limits the interpretation of the 
observed differences in FC and GC, which may be significantly impacted 
by non-neural confounders. We therefore stress that the neurobiological 
causes of the observed difference in GC/UFC are yet to be clarified, and 
remain a relevant subject for future work. 

5. Conclusions 

To conclude, the Granger causality (GC) analysis of inter-areal in
teractions after stroke highlighted two broad pathological features. 
First, a decrease of homotopic GC, suggesting a large decrease of inter
hemispheric communication, either direct or mediated by subcortical 
structures. Second, an inter-hemispheric imbalance, revealed by an 
asymmetry in homotopic GC, as well as a right-left difference in intra- 
hemispheric GC, suggesting a decrease of communication within and 
from the lesioned hemisphere. These results show that previously 
observed FC alterations in stroke are related to broad changes in inter- 
areal communication. Furthermore, our analysis confirms and general
izes previous findings about post-stroke inter-hemispheric imbalances in 
the motor and attention system. The observed GC anomalies highlighted 
a different impact of lesion on behavior depending on which hemisphere 
was lesioned. Left-lateralized behavior was strongly affected by loss of 
intra-hemispheric communication in patients with left hemisphere le
sions. Right-lateralized behavior was strongly affected by loss of inter- 
hemispheric communication in patients with right hemisphere lesions. 
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