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Abstract
Objective: Disorders of sexual development (DSD) are a heterogeneous group of genital defects affecting chromosomal, gonadal and 
anatomical sex. 46,XY DSD is a subset of DSD which covers a wide range of phenotypes in which 46,XY gonadal dysgenesis (GD) is 
the most severe form. In this study, we report on the clinical and molecular cytogenetic findings of a study on a Tunisian girl with the 
syndromic form of 46,XY DSD. 
Methods: This case was a phenotypic female patient having several congenital anomalies including growth retardation. Karyotype, 
fluorescence in situ hybridization and array Comparative Genome Hybridization (array CGH) were performed. 
Results: The proband exhibited a de-novo 46,X,der(Y) karyotype. Array CGH revealed a pathogenic 27.5Mb gain of an Xp21.2 chromosome 
segment leading to Xp functional disomy. No deletion was observed in the Y-chromosome. The duplicated region encompassed the 
NR0B1 (DAX1) and MAGEB genes, located within the dosage sensitive sex (DSS) reversal locus, known as promote genes responsible 

What this study adds?
We report the fourth case of Xp;Yp translocation with Xp21.2-pter duplication associated with XY GD. Molecular cytogenetic methods 
are still relevant for the characterization of the exact chromosomal mechanism responsible for severe clinical features including DSD at 
an early age. This may contribute to understanding the possible genetic cause of syndromic 46,XY DSD cases and provide special and 
personalized support for these cases.

What is already known on this topic?
Xp-Yp translocation, t(X;Y)(p21;p11.3), is a rarely occurring rearrangement resulting in pure functional disomy of Xp, including the 
dosage sensitive sex (DSS) reversal region and is associated with 46,XY gonadal dysgenesis (GD).
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Introduction

The type of the gonad of an individual is usually a testis or 
ovary governed by sex chromosomes. In 46,XY individuals, 
the presence of the Y chromosome testis-determining 
gene SRY (OMIM#601947) initiates the formation of the 
testis and inhibits the formation of the ovary. DSD are a 
set of rare congenital conditions in which the chromosomal, 
phenotypic, and anatomical sex are discordant and they 
can occur in isolated or syndromic forms (1). 

The subset 46,XY DSD, which includes gonadal dysgenesis 
(GD), disorders of androgens synthesis or action, or disorders 
of anti-Müllerian hormone (AMH) synthesis or action in XY 
GD, is the most prevalent etiology of this condition. It is 
characterized by an abnormal formation of the testis due to 
chromosomal imbalances or mutations involving key genes 
implicated in the formation of the gonad (2).

The emergence of next-generation sequencing technology 
has allowed for the identification of the genetic etiologies 
in 50% of DSD cases (3,4). Yet, we cannot ignore the role 
of banding and molecular cytogenetic techniques in the 
diagnosis of DSD in which the etiology has been determined 
in 20% of cases (5). 

Remarkably, a large proportion of DSD is caused by copy 
number variation (CNV) involving critical dosage-sensitive 
genes with a large spectrum of gonadal phenotypes.

Duplications of chromosomal regions containing Xp21, 
also termed Xp functional disomy, are known to cause 
syndromic 46,XY DSD and all reported patients presented 
with sex reversal as part of a complex phenotype which 
includes dysmorphic features and/or mental retardation 
(6,7). Notably, der(Y)t(X;Y)(p21.1;p11.3) is a rarely occurring 
rearrangement in which the translocation of the duplicated 
Xp segment to the Y chromosome results in a pure functional 
disomy of the Xp encompassing the dosage sensitive sex 
(DSS) locus. 

Only three cases with der(Y)t(X;Y)(p21.2;p11.3) have been 
reported as being raised as females even with the presence 
of an intact Y chromosome and SRY gene (6,7,8).

The duplicated DSS locus contains the melanoma antigen, 
Family B (MAGEB) genes and the nuclear receptor subfamily 
0, Group B NR0B1 gene, the most probable causes of XY GD, 
if overexpressed (6,7,8,9). 

In this paper, we report on an additional case with 
syndromic 46,XY GD due to Xp functional disomy within 
Xp;Yp translocation. We underline the complementarity 
between the different cytogenetic techniques to 
characterize the duplication and translocation events and 
their contribution to the management of XY GD cases. 
Therefore, the Comparative Genome Hybridization (CGH) 
array can be considered as an efficient tool for the diagnosis 
of chromosomal aberrations, when investigating syndromic 
forms of DSD. 

Methods

Clinical Presentation of the Patient

The patient was a seven-month-old girl with dysmorphic 
features and profound failure to thrive.

She was referred to our department for genetic diagnosis. Written 
approval was obtained from the patient’s parents in order to 
perform genetic analyses and complementary studies, as 
well as to publish this data. 

The Local Ethics Board of the University Teaching 
Hospital Farhat Hached approved the present study (no: 
IRB00008931, date: 15.03.2022), written consent was 
taken from the parents for photo publication and consent 
for the genetic analysis and publication of the case were 
obtained from the parents.

Peripheral Blood Karyotype

Reverse Heat Giemsa banded karyotype was performed on 
the metaphase chromosome preparations obtained from 
peripheral blood lymphocytes of both the patient and her 
parents according to standard protocols (450-550 band 
level). Metaphase chromosome spreads were prepared 
from phytohemagglutinin-stimulated peripheral blood 
lymphocytes. Cell cultures were incubated for 72 hours. A 
minimum of 20 R-banded metaphase chromosomes were 

for human sex reversal and testis repression. The extra-dosage and interactions of these genes with different specific genes could result 
in the impairment of the male sex pathway. Over-dosage of KAL1 and IL1RAPL1 genes fall within the somatic features observed in the 
patient. 
Conclusion: To the best of our knowledge, we report on the fourth case of Xp21.2-pter duplication within Xp;Yp translocation associated 
with XY GD. Our findings suggest that when duplicated, the NR0B1 and MAGEB genes could be a major cause of XY GD. Therefore, we 
emphasize the usefulness of a combined cytogenetic approach in order to provide an accurate genetic diagnosis for those patients having 
syndromic XY DSD in a clinical setting. 
Keywords: Disorders of sexual development, dosage sensitive sex reversal locus, functional disomy Xp, 46,XY gonadal dysgenesis
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analyzed using Cytovision® Karyotyping software version 
4.0. Karyotypes were classified according to the International 
System of Human Cytogenomic Nomenclature (2020) (10). 

FISH Analysis

Fluorescence in situ hybridization (FISH) was carried out 
on metaphase chromosomes of the patient according to 
the standard protocol, using commercial probes (Kreatech 
Diagnostics): Whole chromosomes painting (WCPX,WCPY), 
centromeric probe for chromosome X (CENX), SHOX 
(Xp22.33 and Yp11.2), SRY (Yp11.3), XIST probes (Xq13.2) 
and STS (Xp22.31) were used as telomeric probes. Bac 
clone RP11-89I17 (NR0B1 gene), RP11-147O4 (KAL1 gene) 
and RP11-639O (primary Pseudoautosomal region) were 
also used. Probes were applied to metaphase slides and 
co-denaturized for 7 mins at 75 °C. After 24 hours of 
hybridization at 37 °C and washing, the chromosomes 
were counterstained with a 4.6 diamino-2-phenylindole and 
observed using an Axioskop Zeiss® fluorescent microscope. 
Images were captured with a CCD camera (Cytovision, 
Applied Imaging®). 

Array CGH 

CGH 4x44K micro-array was performed using the agilent 
platform as previously described (11,12). Agilent® 
oligonucleotide array was performed according to the 
manufacturer’s instructions (Agilent Human Genome CGH 
Microarray kit 44K®).

Statistical Analysis 

Percentile study rank level was used to generate the 
following: baby girl growth chart, infant boy growth chart, 
height, weight, body mass index and cranial perimeter 
(https://www.childgrowthcalculator.com/#grafica_longitud). 

Percentiles are given according to the World Health 
Organization data by comparing the growth chart of our 
patient with most of the children at her age. 

Results

Clinical Report

The investigated case was the first child of an apparently 
healthy consanguineous Tunisian couple (second-degree 
relatives). Her birth weight was 2.350 kg (percentile=1.8). 
Her height was 49 cm (percentile=46), and her head 
circumference was 33 cm (percentile=21.2). At the age 
of seven months, she was referred to our department for 
exploration of dysmorphic features associated with profound 
failure to thrive. The anthropometric measurements were 
below the 3rd percentile. The child’s length percentile was 1.4; 
and her weight and cranial perimeter percentiles were 0.3. 
She had craniofacial dysmorphic features including long 
face, exophthalmos, hypertelorism, ogival palate, a relatively 
short and flat philtrum and strabismus (Figure 1). Moreover, 
she had exhibited a remarkable weight stagnation since the 
age of 2 months with marked hypotonia. The family history 
was unremarkable.

At the age of 11 months, she continued to have mild 
generalized hypotonia, and was still unable to hold her head 
up. She had severely retarded psychomotor development. 
Her anthropometric measurements continued to be below 
the 3rd percentile. An abdominal ultrasound study was 
performed and revealed small kidneys, invisible uterine or 
ovarian structure. Supplementary investigations with pelvic 
magnetic resonance imaging (MRI) showed an absence of 
internal female organs. 

An echocardiogram showed an inter-atrial communication 
(IAC) heart defect. When last assessed at the age of 16 
months, she was still unable to sit independently with a 
marked axial hypotonia and nystagmus. Anthropometric 
measurements continued to be below the 3rd percentile, and 
the IAC diameter increased (Figure 2). 

At the age of eight years, the patient still had severe growth 
delay and was operated on for a percutaneous closure 
of IAC. At this age, her hormonal profile was as follows: 

Figure 1. Photographs of face (a, b) and profile picture (c, d) of the patient at 7 months
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luteinizing hormone (0.1 IU/L; reference range: 1.1-10), 
follicle-stimulating hormone (1.2 IU/L; reference range: 
1.3-11), AMH (0.67 ng/µL; reference range: 1.43-11.6) and 
estradiol (10 pg/mL; reference range: <30).

Genetic Results

Cytogenetic analysis revealed a 46,X,der(Y) karyotype in all 
metaphase cells from the proband (Figure 3). The parent’s 
karyotypes were normal (data not shown).

The extra material was a de novo rearrangement and was 
identified as a der(Y). FISH using whole-chromosome X and 
Y painting probes showed labeling along the entire length of 
the normal X chromosome and on the terminal segment of 
the short arm of the der(Y) chromosome (Figure 4D).

FISH analysis with specific loci probes showed the presence 
of the SRY gene on the short arm of the Y chromosome 
and the presence of the SHOX gene on each of the sex 
chromosomes. The XIST probe was present on the long arm 
of the X chromosome (Figure 4A, 4B, 4C). Specific locus 

probes of the X chromosome, NR0B1 (Xp21.2) and KAL1 
(Xp22.31), were present in double copies on the normal X 
chromosome and the other on the der(Y) respectively (Figure 
5A, 5B). Using the STS gene probe, one signal was detected 
on the X and der(Y) chromosomes telomeres (Figure 5B). 
Array CGH displayed a gain of genetic material on the 
short arm of chromosome X encompassing approximately 
27.5Mb mapping from 2,710,316 to 30,248,793 according 
to the Genome reference Consortium Human build 36 
assembly (hg18/NCBI36) (Figure 6). 

Figure 3. RHG banded-karyotype showing a marker chromosome 
(red circle)

Figure 4. FISH analysis. A) FISH results using SHOX probe, two 
red spots were detected. B) FISH results using SRY probe, one red 
spot was detected. C) FISH results using XIST probe, one red spot 
was detected. D) FISH analysis using WCPX/WCPY showed the 
presence of a part from chromosome X on the Y chromosome

FISH: fluorescence in situ hybridization

Figure 2. Photographs of face of the patient at 16 months
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No other chromosomal rearrangement was detected, 
particularly within the Y chromosome. 

Based on these results, the final karyotype of our patient 
was designated as: 

46,X,der(Y)t(X;Y)(p21.2;p11.3).arr[NCBI36]Xp21.2-p22.3 
(2,710,316_30,248,793)x2 dn

Discussion

Sex determination is a complex process that implicates 
specific genes required for the progressive development of 
the undifferentiated gonad. An adequate dosage of these 
genes is required for proper gonadal development. CNV 

consistent with deletions or duplications of the genomic 
area including these genes may lead to DSD (13). 

In this study, the patient investigated represents one of a 
small number of reported Xp;Yp translocation cases and the 
first reported Xp functional disomy case from Tunisia due to 
a large duplication on the Xp chromosome (Table 1). 

The proband presented a 46,X,der(Y) male karyotype. The 
rearranged Y chromosome was the product of a translocation 
between sex chromosomes resulting from a non-allelic 
homologous recombination (NAHR) during paternal meiosis 
or in the early stages of embryogenesis. The parental 
karyotypes were normal, indicating a  de  novo  origin of 
the unbalanced chromosome translocation. Array CGH was 
performed and it showed a gain of nearly 27 Mb on the 
Xp21 chromosome with a log-ratio equal to 0.58. 

Based on the clinical and phenotypical criteria, biochemical 
assays, and genetic investigations, we can confirm that 
our patient presents with the syndromic form of 46,XY 
GD (OMIM≠300018) including a range of extra-gonadal 
abnormalities (growth delay, mental retardation, hypotonia, 
dysmorphic features and IAC). Remarkably, our patient had 
a complete Y-chromosome within an intact SRY gene and is 
a female. This reveals that the male sex development process 
is relatively complex and further factors are necessary for 
early testis formation with adequate dosage.

Thus, the duplicated region covers several genes, namely 
the NR0B1, MAGEB, KAL1 and IL1RAPL1 genes, resulting 
in ectopic expression and causing a disturbance in several 
developmental systems.

NR0B1, also called dosage-sensitive sex reversal gene 
(DAX1;OMIM#300018), is located in the DSS region at 
Xp21.2. When duplicated, NR0B1 is considered to be the 
most likely factor for 46,XY GD (19,20,21,22). 

NR0B1 is an orphan nuclear receptor which acts in a 
mutually antagonist pathway to ensure testis determination. 
Its expression has been shown in different tissues (adrenal 
cortex, gonad, anterior pituitary, and hypothalamus, and 
also in adult adrenal cortex, Sertoli and Leydig cells in the 
testis, theca, granulosa, and interstitial cells in the ovary), 
highlighting its pleiotropic function (20,21,22). The link 
between NR0B1 and the sex development process has been 
established by several studies. Previously, the NR0B1 gene 
was known to be a dosage-sensitive ovarian determining 
gene. It is in fact down-regulated in the developing testis 
and persists in the ovary in mice (16,21). Conversely, 
in the last five years, numerous studies have shown that 
NR0B1 plays an important role in male gonadogenesis and 
acts as an anti-testis factor within a critical window of sex 
development (23,24). 

Figure 5. FISH analysis using specific probes: A) NR0B1 probe 
showed its presence on both sex chromosomes (white arrows); 
B) KAL1 and STS probes showed their presence on both sex 
chromosomes

FISH: fluorescence in situ hybridization

Figure 6. 4×44K Agilent Technologies oligonucleotides 
array profile of our patient showing Xp21.1 duplication of 
approximately 27.5 Mb
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In normal XY males, a single copy of NR0B1 is required 
for normal testis cord formation and testicular hormone 
synthesis (25,26,27). When NR0B1 is overexpressed in 
46,XY individuals, as in Xp duplication, it inhibits SOX9 
gene expression and antagonizes the synergy between SF1 
and SOX9 by inactivating the AMH gene promoter. The 
inactivation of the AMH promoter gene blocks the regression 
of the Müllerian ducts. Thus, testicular formation is disrupted 
and a female pathway is followed (23,24,28). However, no 
uterus or gonad were observed in this case. Non-visualized 
uterus and gonad on MRI do not exclude the possibility of a 
GD diagnosis, which was confirmed by our genetic finding, 
since the structures may be too small to be detected at the 
time of examination. Small-sized structures could lead to 
suboptimal signal or resolution of the MRIs or suboptimal 
visualization and subsequently misinterpretation (29).

In addition to the NR0B1 gene, the duplicated region 
contained testis expressed genes, called MAGEB genes 
located within the DSS locus (20). Recently, it has been 
speculated that overexpression of these genes could be 
involved in male to female sex reversal and may have a 
role in maintaining fetal testicular identity (14,28). Also, 
the MAGEB (1,2,3) genes seem to be functionally required 
for X chromosome inactivation mediated by XIST (30). 
Interestingly, the deletion of the same region containing 
NR0B1 and MAGEB has been reported to be responsible 
for the opposite phenotype in a 46,XX SRY-negative 
ovotesticular DSD (28). So far, an adequate dosage of 
both NR0B1 and MAGEB genes is needed for both male 
and female sex development and most likely these genes 
belong to overlapping complex molecular cascades in the 
testicular/ovarian tissue (i.e. from sex determination to sex 
differentiation). 

Hence, a breakage within the DSS region may interfere with 
the spatiotemporal expression pattern resulting in ectopic 
expression, and incomplete stimulation/repression of male 
or female sex development, leading to different stages of 
sexual ambiguity. All these disorders can be responsible for 
infertility in adulthood. 

Additionally, the duplicated region, in addition to the 
NR0B1 gene, included several other genes which may be 
responsible for the patient’s phenotype.

The KAL1 gene (OMIM#308700) encodes a secreted 
heparin-binding protein (KAL or anosmin-1) which plays an 
important role in the embryonic development of the kidneys 
and human central nervous system. KAL1 stimulates the 
signaling activity of the fibroblast growth factor receptor 
(FGFR1), which is involved in a variety of developmental 
processes including the formation, growth and shaping of G
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different tissues and organs (31). The overexpression of KAL1 
may interfere with FGFR1 signaling activity, which may be 
indirectly responsible for developmental and speech delay, 
intellectual disability and genital abnormalities (32,33).

The duplicated region also encompassed the gene encoding 
the IL1 receptor accessory protein-like1 gene (IL1RAPL1, 
#OMIM;300143), a protein with high levels of expression in 
hippocampal neurons known to be involved in the memory 
system. Deletions and mutations in this gene were found in 
patients with mental retardation, which suggests a specific 
role in the physiological processes underlying memory 
and learning abilities (14). Within large Xp21 duplications, 
disruption of this gene could explain mental retardation. 

To summarize, cytogenetic techniques are still as important 
as ever in the detection of chromosomal rearrangements, 
especially when the clinical manifestations are highly 
evocative of a known syndrome.

In fact, in a review of 116 patients with idiopathic DSD, array 
CGH was able to detect clinically relevant CNV in 21.5% of 
the patients (34). In another study of a cohort of 87 patients, 
array CGH identified CNV in 31.25% of syndromic DSD 
cases and in 29.57% of non-syndromic DSD cases (17). This 
justifies its relative contribution to the identification of CNV 
related to different DSD phenotypes by characterizing the 
exact size, and breakpoints as well as the expansion of the 
pool of candidate genes in disease pathogenesis in a single 
step. The discovery of new genomic analysis tools such as 
Hi-C technology may provide new insights into the physical 
genomic interactions and support the hypothesis that a 
common genomic region can be bound by both pro-testis 
and pro-ovarian transcription factors and genes (35,36). 

Study Limitations

A possible limitation of the present study may be that we 
reported on a single case which may not be that conclusive. 
The number of patients presenting with GD resulting from 
Xp;Yp translocation is also limited due to the rarity of this 
rearrangement.

Conclusion

The results presented in this study illustrate the first Tunisian 
case having 46,XY GD due to a large duplication within the 
Xp21.2 DSS locus and associated with an X;Y translocation 
event. 

Such DSD cases are very rare and require a careful, 
systematic, and sensitive approach to diagnose. Together, 
the karyotype, FISH and array CGH can prove useful in 
delivering a conclusive genetic diagnosis for those patients 

with the syndromic form of DSD by identifying chromosome 
abnormalities associated with dosage changes in genes, 
such as NR0B1, which play a pivotal role in human sex 
development.
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