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Tunis-Carthage, Tunisia

walid.barhoumi@enicarthage.rnu.tn

Abstract. Several methods of brain image registration have been pro-
posed in order to overcome the requirement of clinicians. In this paper,
we assess the performance of a hybrid method for brain image registra-
tion against the most used standard registration tools. Most traditional
registration tools use different methods for mono- and multi-modal regis-
tration, whereas the hybrid registration method is providing both mono
and multi-modal brain registration of PET, MRI and CT images. To
determine the appropriate registration method, we used two challenging
brain image datasets as well as two evaluation metrics. Results show that
the hybrid method outperforms all other standard registration tools and
has achieved promising accuracy for MRI/X brain image registration.

Keywords: MRI/X brain image registration · Hybrid method ·
Standard registration tools · Brain diagnosis

1 Introduction

Hundreds of millions of people worldwide suffer from neurological disorders, and
early detection coupled with appropriate treatment can generally cure these dis-
eases. In this context, Computer Aided Diagnosis (CAD) explains the need to
design automatic and semi-automatic tools to effectively process brain medical
imaging. This could help clinicians to detect affected organs in order to specify
appropriate treatments. However, there are still many challenges (e.g. noise, res-
olution, partial volume effect . . .) that need to be investigated. There are several
brain medical imaging modalities, and each of them has a different aspect of
anatomy and/or functionality. Anatomical medical imaging (e.g. Magnetic Res-
onance Imaging (MRI), Computed Tomography (CT) . . .) provides information
on the structure, the shape, the edge, and the contents of organs. Functional
medical imaging (e.g. Positron Emission Tomography (PET) . . .) focuses on
the function of organs, tissues or cells. In clinical routines, experts generally
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refer to both functional and structural aspects conjointly. In particular, MRI
is frequently coupled with CT, MRI atlas and PET. However, a registration
step is required in order to ensure effectively the complementarity of structural
and functional images. Research on registration process is driven either by the
type of attributes (geometric vs. iconic methods), the type of transformation
(rigid vs. non-rigid) or the involved images (monomodal vs. multimodal) (Fig. 1).
The principle of geometric registration methods consists in extracting geometric
primitives from the two images to be registered (e.g. points, curves, surfaces . . .),
whereas iconic registration methods operate directly on the intensities. Further-
more, the rigid registration methods aim to correct the geometric transforma-
tions, including translation, rotation, shear, and scaling, whereas the non-rigid
registration methods are carried out using localized stretch of the images. In this
type of transformation, all kinds of deformation fields can be used (e.g. splines,
B-spline, elastic model . . .) [1]. For the monomodal registration methods, the
two images are coming from the same modality (e.g. MRI scans, CT scans . . .),
whilst in the multimodal registration ones, the two images come from two differ-
ent modalities (e.g. MRI and PET, MRI and CT . . .) [2]. Generally, one of the
key challenges in brain image registration is its veracity. This is because of the
limitations in the registration methods, which are dependent on the quality of
MRI/X parameters as well as the inaccuracy on the non-linear transformations.
In addition to the registration errors, several registrations methods suffer from
the extensive computational cost. To circumvent these limits, atlas-based regis-
tration coupled with standard softwares (such as SPM, ITK . . . ) are commonly
used. Indeed, various studies are using this framework in order to investigate
Parkinson disease [3], brain tumors using CT/MRI [4] or PET/MRI [5], and
Alzheimer disease [6]. Additionally, challenges can arise where mono- and multi-
modal registration is required sequentially. To this end, we evaluate a hybrid
method that may handle mono- and multi-modal registration according to the
same technique. In fact, this paper is dedicated to determine the best tool for
mono- and multi-modal registration for MRI/X brain images, such that X refers
in our case to PET, CT and MRI atlas. We compare three widely brain image
registration tools (SPM, ITK-Snap, 3D Slicer) against an accurate hybrid regis-
tration method from the state-of-the-art.

The rest of this paper is organized as follows. Section 2 shows the studied
registration methods. Then, we present the clinical datasets and the evaluation
protocol in Sect. 3. We detail experimental results in Sect. 4. Finally, a conclusion
with some directions for future work are discussed in Sect. 5.

2 Registration Methods

ITK-Snap. Insight Segmentation and Registration Toolkit (ITK-Snap) is a pop-
ular tool for segmenting and registering medical images such as MRI, PET and
CT [7]. It is an open source software widely used by clinicians and non-computer
researchers. ITK-Snap allows manual and automatic medical image registration.
This software groups several methods of registration based on the intensity. For
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Fig. 1. MRI/X brain image registration: (a) mono-modal MRI/MRI atlas (from left
to right: MRI image, MRI atlas and superposed images), (b) multi-modal MRI/PET
(from left to right: MRI image, PET image and superposed images).

the automatic registration, the similarity measures included in ITK-Snap are
mutual information, cross-correlation, and intensity difference. The transforma-
tion model included is affine and rigid transformation. This tool helps the users
to locally find optimal rigid and affine transformations dynamically. For the
manual registration, it is enough to determine the values of x, y, and z for the
translation, rotation, and scaling. In our case, we used the same settings as [8].

SPM. Statistical Parametric Mapping (SPM) is an open source software for
analysing functional brain imaging data (e.g. fMRI, PET, SPECT . . .). It uses
several setting options, which are referred to the Powell optimization algo-
rithm. These options are: objective function, separation, tolerance and histogram
smoothing. For the objective function, SPM uses either mutual information, nor-
malized mutual information, or entropy correlation coefficient for multimodal
registration, and normalised cross-correlation for monomodal registration. Sep-
aration, which is the average distance between sampled points, is of 8 mm for
fMRI and 12 mm for PET [9]. SPM applies Gaussian smoothing to the 256×256
joint histogram. For similarity measurement, SPM includes the Nearest Neigh-
bor, trilinear, and B-spline interpolation, and trilinear interpolation proved to
be the most adequate for MRI and PET. For monomodal registration, SPM
presents other parameters for estimating deformations (e.g. bias regularisation).
Also, a mutual information-based affine registration with the tissue probability
maps is used to obtain approximate alignment, with a smoothness value of 0 mm.

3D Slicer. 3D Slicer [10] supports rigid, affine and deformable registra-
tion. It includes point-surface and intensity-based registration. In fact, individ-
ual intensity-based registration modules depend on the used similarity metric
(mutual information and cross-correlation) and flexibility of the transformation
settings (rigid, affine, B-spline and dense deformation fields) [11]. The choice
of algorithms depends on the organs’ anatomy (e.g. brain, lungs . . .), modality
(multimodal vs. monomodal), performance (robustness vs. speed), and level of
interaction. Besides, 3D Slicer uses parametric maps in order to align anatomi-
cal volumes. The registration process consists of three steps (Fig. 2). Firstly, it
allows to align subject B: T2 according to the MRI mode T1 of the same subject.
Secondly, it aligns subject A: T2 according to A: T1. Lastly, the registration is
performed between the registered subject B: T1 and the fixed subject A: T1.
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Fig. 2. Flowchart of 3D Slicer.

Fig. 3. Flowchart of the hybrid method.

Hybrid Method. The hybrid method is a unified tool for mono- and multi-
modal 3D brain image registration. In fact, we extended the multi-modal 2D
brain image registration work of [2]. The method is composed of five steps (Fig. 3)
and its main contribution lies in adopting adaptive mutual information based
on curvelet coefficients. Firstly, an anisotropic diffusion filter [12] denoises the
moving image. Secondly, an affine transformation is applied on the moving image
using transformation matrices (translation, rotation, scaling and shear). Thirdly,
features from the two images are extracted using curvelet transform [13], and
the Gaussian probability density function [14,15] is used to model the distribu-
tion of curvelet coefficients. Then, an adaptive mutual information, based on a
conditional entropy between the coefficients of curvelet, aligns the images, and
mutual information parameters are optimized using the maximum likelihood [16].
Finally, to align the moving image on the reference one, an affine transformation
is adapted in order to deal with common distortions.

3 Materials

In this section, we present the used 3D medical image datasets and the evaluation
protocol that we adopted in order to evaluate the compared registration methods.
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Clinical Datasets. To compare the performance of the studied methods, two
datasets were investigated. The first dataset, from the Retrospective Image Reg-
istration Evaluation (RIRE) project [17], consists of eight 3D triplets of PET,
MRI and CT images of brain. The MRI voxel size is of 1.25, 1.28 and 4 mm in
the x, y and z directions, respectively. The PET voxel size is (2.59 mm, 8 mm,
8 mm) in (x, y, z). MR images have been obtained using a Siemens SP 1.5 T
scanner, and the PET ones with a Siemens/CTI ECAT 933/0816 scanner. The
CT voxel size is equal to (0.65 mm, 0.65 mm, 4.0 mm) in (x, y, z). CT images
have been acquired using a Siemens Somatom Plus scanner. The second dataset
is provided by the Center for Addiction and Mental Health of Canada (CAMH).
It includes a collection of nine 3D images. For fixed MRI images, voxel dimen-
sions along the x, y, and z axes are 0.86, 0.86, and 3 mm, respectively. These
images are captured by a Signa 1.5-T scanner from General Electric Medical
System. PET images are captured by a Scanditronix PET scanning system, GE
2048-15B, with x, y and z voxel dimensions equal to 2 mm, 2 mm and 6.5 mm,
respectively.

Evaluation Metrics. To quantify the accuracy of the studied methods, we
measured Normalized Cross-Correlation Coefficient (NCCC) (1) and Normalized
Mutual Information (NMI) (2) scores. NCCC evaluates the degree of similarity
between two medical images. In fact, cross correlation is less sensitive to linear
changes in amplitude and illumination in the images to be compared. A high
value of NCCC shows the high accuracy of the registration. Furthermore, NMI,
which is a measure of the quality of the registration, is defined in terms of the
entropy H of the image. It measures the proximity between the fixed source
image If and the moving one Im. The more the value of normalized mutual
information is, the more the accuracy of the registration process is.

NCCC =
∑x=1

X

∑y=1
Y (Im(x,y)−Im)(If (x,y)−If)

√∑x=1
X

∑y=1
Y (Im(x,y)−Im)2(If (x,y)−If)2

, (1)

NMI = 2(H(If )+H(Im))
H(If )+H(Im)+H(If |Im)+H(Im|If ) , (2)

where, H( ) and H ( | ) denote marginal and conditional entropies, respectively.

4 Results

We compare qualitatively and quantitatively the studied hybrid method against
the other aforementioned softwares for MRI/MRI, MRI/CT, and MRI/PET
images.

Qualitative Evaluation. Figures 4 and 5 show some samples of 3D slices before
and after mono- and multi-modal registrations. For the multimodal case, PET
and CT refer to the moving image and the MRI image is the fixed one. Obtained
results prove the performance of the Hybrid Method (HM) comparatively to
SPM, ITK-Snap and 3D Slicer (Fig. 4). Monomodal registration is similar to
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multimodal registration, in except for the modality of the moving image (Tem-
plate MRI image), which is the same of the source image (Fig. 5). We conclude
that the registered images by the hybrid method show a slight improvement in
the accuracy of image registration and sharpness, since that contours in these
images are better represented than those of registered images using SPM, ITK-
Snap and 3D Slicer. Indeed, the representative cases of the superposition of
the source image and the registered one based on the hybrid method allow good
boundary estimation. The visual evaluations of the outputs show that the hybrid
method allows a reliable registration of MRI/PET, MRI/CT or MRI/MRI scans.
This can be explained by many reasons. In fact, the use of an anisotropic dif-
fusion filtering ensures the maximization of PET image homogeneity and the
minimization of the diffusion at the edges. Furthermore, the aim behind the use
of a multi-scale and multidirectional geometric transform, which is the curvelet
transform, is the optimal sparse representation of smooth objects with disconti-
nuities along curves. Then, adaptive mutual information coupled with curvelet
coefficients ensures the insensitivity to the permutations of intensity while han-
dling simultaneously the positive and negative intensity correlations.

Fig. 4. Examples of MRI/X multimodal registration: (a) MRI image, (b) X image,
superposed images using (c) HM, (d) SPM (e) ITK-Snap, and (f) 3D Slicer.

Fig. 5. Example of MRI/MRI monomodal registration: (a) MRI image, (b) MRI atlas
image, registered images using (c) HM, (d) SPM, (e) ITK-Snap, and (f) 3D Slicer.
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Quantitative Evaluation. The average NCCC and NMI values resulting from
the analysis of different mono- and multi-modal registration methods of MRI
brain images from the CAHM dataset are summarized in Table 1, whilst Table 2
illustrates MRI(T1)/PET registration results using the RIRE dataset. It is clear
that both NMI and NCCC values given by the HM for the mono- and multi-
modal registrations are better than those given by the other three widely used
tools. The superiority of HM is confirmed by the boxplots of the four compared
methods for registering MRI/CT and MRI(PD)/PET scans (Fig. 6). It should be
pointed out that the nature of the images to be aligned can be very diverse and
it affects considerably the choice of the registration method to be adopted. The
hybrid method allows to align effectively images from the same modality as well
as from different modalities. The nature of the modalities considered, as well as
the type of the imaged organ, also influences the choice of the method. Likewise,
the dimensionality of the input images could also be taken into consideration.
Although no available registration method is perfect, research is being done to
improve the results, while reducing the rate of registration error. This could
increase the diagnosis confidence by improving the diagnosis accuracy.

Table 1. Average NMI and NCCC values resulting from the studied mono and multi-
modal registration methods using the CAHM dataset (best values are in bold).

NMI NCCC

Image

pair
HM SPM ITK 3D Slicer HM SPM ITK 3D Slicer

Monomodal 1 0.0344 0.0087 0.0089 0.0630 0.2666 0.2226 0.0050 0.2623

2 0.0085 0.0047 0.0032 0.0072 0.2010 0.1718 0.0215 0.1995

3 0.0561 0.0075 0.0064 0.0495 0.2609 0.0259 0.0054 0.2520

4 0.0887 0.0093 0.0081 0.0802 0.2381 0.0103 0.0078 0.2358

5 0.0930 0.0075 0.0063 0.0912 0.2567 0.0505 0.0126 0.2468

6 0.1333 0.0526 0.0526 0.1140 0.2518 0.0430 0.2318 0.2566

7 0.1102 0.0351 0.0281 0.1021 0.2135 0.1270 0.0512 0.2048

8 0.1011 0.0513 0.0426 0.0977 0.2017 0.0334 0.1882 0.1975

9 0.0284 0.0476 0.0440 0.0469 0.2543 0.1345 0.1567 0.2491

Multimodal 1 0.0766 0.0578 0.0598 0.0690 0.2408 0.2329 0.2395 0.2343

2 0.0331 0.0161 0.0165 0.0122 0.2682 0.1839 0.1858 0.1561

3 0.0972 0.0728 0.0741 0.0641 0.2486 0.2373 0.2301 0.2362

4 0.0603 0.0356 0.0344 0.0323 0.2580 0.2115 0.1884 0.1777

5 0.0823 0.0794 0.0774 0.0783 0.2351 0.2264 0.2287 0.2279

6 0.0963 0.0831 0.0813 0.0602 0.2483 0.2405 0.2462 0.2444

7 0.0719 0.0623 0.0619 0.0457 0.2556 0.1627 0.2310 0.2131

8 0.0845 0.0674 0.0678 0.0678 0.2381 0.1376 0.2115 0.2099

9 0.0643 0.0439 0.0511 0.0589 0.2467 0.1873 0.2098 0.2125



Relevant Methods for MRI/X Brain Image Registration 345

Table 2. Average NMI and NCCC values resulting from the different multimodal
registration methods using the RIRE dataset (best values are in bold).

NMI NCCC

Image

pair
HM SPM ITK 3D Slicer HM SPM ITK 3D Slicer

1 0.0830 0.0798 0.0740 0.0790 0.2473 0.2255 0.2363 0.2457

2 0.0780 0.0723 0.0671 0.0723 0.2651 0.2451 0.2478 0.2537

3 0.0498 0.0387 0.0352 0.0405 0.2726 0.2343 0.2275 0.2336

4 0.0391 0.0288 0.0266 0.0340 0.2139 0.1799 0.1554 0.2066

5 0.0643 0.0459 0.0406 0.0591 0.2401 0.2246 0.1965 0.2251

6 0.0765 0.0576 0.0520 0.0657 0.2542 0.2394 0.2378 0.2474

7 0.0605 0.0553 0.0510 0.0515 0.2726 0.2419 0.2539 0.2522

8 0.0763 0.0698 0.0631 0.0607 0.2642 0.2446 0.2487 0.2542

Fig. 6. Comparing boxplot distributions of the four studied methods for the registra-
tion of MRI(PD)/PET and MRI/CT brain images from the RIRE dataset.

5 Conclusion

In this work, a comparative study of a hybrid registration method with stan-
dard registration tools is investigated for 3D brain images. The hybrid method
uses mutual information based on conditional entropy for the detection of the
similarity criteria, while ensuring mono- as well as multi-modal registrations.
However, the standard tools use different methods to align different brain image
modalities. Qualitative and quantitative evaluations show the effectiveness of the
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hybrid method against all other studied methods. For the brain case, rigid reg-
istration is sufficient, but for other organs, non-rigid registration is required. For
that, we plan to test the hybrid method on other organs using diverse medical
imaging tools while comparing it with non-rigid registration tools.
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