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Abstract: Murine micromass models have been extensively applied to study chondrogenesis 

and osteogenesis to elucidate pathways of endochondral bone formation. Here we provide 

a detailed comparative analysis of the differentiation potential of micromass cultures 

established from either BMP-2 overexpressing C3H10T1/2 cells or mouse embryonic limb 

bud-derived chondroprogenitor cells, using micromass cultures from untransfected 

C3H10T1/2 cells as controls. Although the BMP-2 overexpressing C3H10T1/2 cells failed 

to form chondrogenic nodules, cells of both models expressed mRNA transcripts for major 

cartilage-specific marker genes including Sox9, Acan, Col2a1, Snorc, and Hapln1 at 

similar temporal sequence, while notable lubricin expression was only detected in primary 

cultures. Furthermore, mRNA transcripts for markers of osteogenic differentiation 

including Runx2, Osterix, alkaline phosphatase, osteopontin and osteocalcin were detected 

in both models, along with matrix calcification. Although the adipogenic lineage-specific 

marker gene FABP4 was also expressed in micromass cultures, Oil Red O-positive cells 

along with PPARγ2 transcripts were only detected in C3H10T1/2-derived micromass 

cultures. Apart from lineage-specific marker genes, pluripotency factors (Nanog and Sox2) 

were also expressed in these models, reflecting on the presence of various mesenchymal 
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lineages as well as undifferentiated cells. This cellular heterogeneity has to be taken into 

consideration for the interpretation of data obtained by using these models. 

Keywords: chondrogenesis; osteogenesis; adipogenesis; pluripotency factors; marker gene 

expression; C3H10T1/2; high density culture 

 

Abbreviations: AP, alkaline phosphatase; BMP, bone morphogenic protein; CMF-PBS, calcium 

and magnesium free PBS; DMEM, Dulbecco’s modified essential medium; DMMB, dimethyl-methylene 

blue; dNTP, deoxy nucleotide triphosphate; ECM, extracellular matrix; EDTA, ethylene diamine  

tetra-acetic acid; ERK, extracellular signal-regulated kinase; ESC, embryonic stem cell; FABP, fatty 

acid binding protein; FCS, foetal calf serum; FGF, fibroblast growth factor; GDF, growth and 

differentiation factor; HD, high density; HDC, high density culture; HE, haematoxylin-eosin;  

hMSC, human mesenchymal stem cell; IGF, insulin-like growth factor; MAPK, mitogen activated 

protein kinase; N-CAM, neuronal cell adhesion molecule; OC, osteocalcin; OP, osteopontin; Osx, 

osterix; PBS, phosphate buffered saline; PPAR gamma, peroxisome proliferator-activated receptor 

gamma; RT-PCR, reverse transcription followed by polymerase chain reaction; TGF-β, transforming 

growth factor beta. 

1. Introduction 

The main events marking the formation of the embryonic skeleton are cell proliferation and 

condensation of undifferentiated mesenchymal cells, followed by differentiation into chondroblasts 

and chondrocytes that can undergo hypertrophy and contribute to tissue calcification, and eventually 

endochondral bone formation. This process largely depends on complex signalling that is facilitated 

through cell-cell and cell-matrix contacts, regulated by several adhesion molecules and extracellular 

components such as N-cadherin and N-CAM, as well as gap junctions [1,2]. It has been widely 

established that soluble factors including members of the transforming growth factor-β (TGF-β) 

superfamily, bone morphogenetic proteins (BMPs; BMP-2 in particular) and growth and differentiation 

factor-5 (GDF-5) play important roles in inducing chondrocyte-specific genes as they are known to 

upregulate type II collagen expression in mesenchymal cells [3]. Since abnormal regulation of this 

intricate process may lead to various conditions that affect cartilage and bone [4], studies aimed at 

elucidating the molecular steps of chondrogenesis and subsequent endochondral bone formation are of 

particular importance.  

Over the past decades, many in vitro model systems have been established and validated to study 

chondrogenesis and early phases of matrix calcification. Since the initial condensation of mesenchymal 

cells is a prerequisite to their subsequent differentiation, by mimicking these conditions in vitro, 

chondrogenesis can easily be studied. In this manner, high cellular density (HD) favours the formation 

of cellular interactions, and thus facilitates the chondrogenic differentiation of pluripotent 

mesenchymal cells. A well-known and easily reproducible avian experimental model to study hyaline 

cartilage formation in vitro was first described by Ahrens and colleagues [5]. In these high density cell 

cultures (HDC), the inherent capability of chicken limb bud-derived chondroprogenitor mesenchymal 
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cells to spontaneously differentiate to chondroblasts and chondrocytes on days 2 and 3 of culturing is 

exploited; a well-detectable amount of hyaline cartilage extracellular matrix (ECM) is produced by  

day 6. A significant advantage of this method over others is its cost-effectiveness and the relative ease 

by which sufficient amounts of cells can be yielded from embryos at the same developmental stage 

(Hamburger-Hamilton developmental stages 22–24) by synchronised incubation of fertilised eggs. 

However, although the main steps of chondro- and osteogenesis are largely conserved during the 

evolution of vertebrates, there is evidence that certain key signalling pathways are differentially 

regulated in the avian system; while the extracellular signal-related kinase ERK1/2, member of the 

mitogen-activated protein kinases (MAPKs), is a negative regulator of chondrogenesis in chicken limb 

bud-derived HDC [6], ERK-inhibition leads to decreased Sox9 levels in murine chondrocytes [7]. 

Conversely, ERK1/2 is a positive regulator of chondrogenesis in BMP-2 induced C3H10T1/2  

cultures [8]. Moreover, applications of the avian model are also restricted by the limited number of 

available antisera and published nucleotide sequences. Nonetheless, the significance of such avian 

models is underpinned by the fact that many basic processes of chondrogenesis were identified using 

this system [9–14]. 

Therefore, there is a need for mammalian models to overcome the limitations encountered for the 

avian system. Mouse embryonic limb bud-derived micromass cultures [15] certainly represent an 

option; however, they also exhibit certain disadvantages, such as the need of precisely timed 

pregnancies of multiple female mice to yield the required amount of chondrogenic cells; and the 

relatively high level of variations between experiments—an inherent feature of primary cell cultures. 

Nevertheless, one of the key merits of such primary systems is the possibility of using cells derived 

from transgenic and knockout animals. Mature chondrocytes isolated from articular or other cartilage 

using mild enzymatic digestion can also be applied with certain restrictions because chondrocytes 

deprived of their ECM rapidly lose their characteristic phenotype and tend to dedifferentiate under  

in vitro conditions owing to lack of physiological stimuli [16]. 

As an attempt to overcome such limitations posed by primary cultures, various cell lines with 

chondrogenic and osteogenic capabilities have been established over the past decades. Examples 

include the ATDC5 cell line originally isolated from a differentiating culture of murine AT805 

teratocarcinoma [17]; RCJ 3.1, a clonally derived cell population isolated from 21-day foetal rat 

calvaria [18]; or the murine embryonic multipotential mesenchymal cell line C3H10T1/2 [2]. Micromass 

cultures established from C3H10T1/2 cells are an attractive system to study in vitro chondrogenesis 

because these cells do not spontaneously differentiate under normal culture conditions. This, at the 

same time, is also a disadvantage because it necessitates administration of exogenous factors into the 

culture medium, such as BMP-2 or TGF-β [2,19]. To address this constraint, a plasmid containing the 

human BMP-2 has been transfected into C3H10T1/2 cells and the constitutive expression of this 

morphogen, as an autocrine-paracrine factor, drives in vitro chondrogenesis of this cell clone [20]. 

Although transition from using animal models to human cell line or mesenchymal stem cell 

(hMSC) based systems to study in vitro chondrogenesis is inevitable, many laboratories are still using 

these cost-effective and simple animal systems for various reasons; novel therapeutic targets for most 

of the diseases that affect the musculoskeletal system (i.e., osteoarthritis) are easier to identify using 

such models, and also because before clinical trials are initiated, the safety profile and efficacy of drug 

candidates are usually tested in these animal models. Although chondrogenic differentiation of the 
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C3H10T1/2 cell line and primary limb bud-derived micromass cultures has been extensively studied, 

no comprehensive report on the mRNA expression profiles of genes that mark differentiation towards 

various mesenchymal (i.e., chondro-, osteo- and adipogenic) lineages in these two murine models 

under identical HD culturing conditions has been published. In this study, therefore, by monitoring an 

array of marker genes we provide a detailed analysis of the differentiation potential of BMP-2 induced 

C3H10T1/2 micromass cultures and mouse embryonic limb bud-derived micromass cultures, with 

special emphasis on the osteo- and chondrogenic differentiation of these systems, to enable easier 

comparison of their differentiation potentials. 

2. Results 

2.1. BMP-2 Overexpressing C3H10T1/2-Derived and Embryonic Limb Bud-Derived Micromass 

Cultures Show Different Morphology 

Since condensation and precartilaginous nodule formation are the first visible signs of chondrogenesis 

from the embryonic connective tissue in vivo [21], we first looked at whether the two models 

investigated in this study recapitulated these processes in vitro. To this end, routine  

haematoxylin-eosin (HE) staining procedures were performed on day 3 of culturing to visualise the 

cellular morphology of the two different micromass cultures. As seen in Figure 1, the cell line-based 

colony exhibited a substantially different morphology than the primary model. Cells in the limb  

bud-derived HDC formed numerous nodules with multiple cell layers (marked by arrows), while 

cellular density remained low in the internodular areas. The fact that differentiation of 

chondroprogenitor cells into chondroblasts primarily occurs within these foci was confirmed by 

staining with DMMB: on day 3, metachromatic cartilage matrix could only be detected within the 

aggregates and no metachromasia was visible in the internodular areas (see Figure 2). By contrast, the 

central region of the C3H10T1/2-based culture was densely populated with complete lack of foci and 

internodular areas (Figure 1). Furthermore, cellular behaviour in terms of migratory characteristics was 

also different in the two models: although some cells have also migrated to the periphery of the 

primary HD culture, this area remained relatively sparse compared to the cell line-based HDC in which 

a very high number of cells have spread from the centre and they even formed dense, multiple cellular 

layers on the periphery. 
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Figure 1. Morphology of 3-day-old micromass cultures established from BMP-2 

overexpressing C3H10T1/2 and embryonic limb bud-derived mesenchymal cells after 

staining with HE. Original magnification was 2× (upper panels), 10× (middle panels), and 

20× (lower panels). Scale bars: 2 mm (upper panels), 200 µm (middle panels), and 100 µm 

(lower panels). In the upper panels, both the peripheral (left) and central (right) regions of 

micromass cultures are shown. Arrows point at precartilaginous nodules in primary 

embryonic limb bud-derived HDC. Representative photomicrographs of 3 independent 

experiments are shown. 
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Figure 2. Metachromatic cartilage matrix in micromass cultures on different days of 

culturing. Metachromatic cartilage areas in HDC were visualised with 0.1% DMMB 

dissolved in 3% acetic acid (pH 1.0). Original magnification was 40× for all 

photomicrographs. Scale bar, 50 µm. Metachromatic (purple) areas correspond to cartilage 

matrix rich in sulphated GAGs. Representative photomicrographs of 3 independent 

experiments are shown. 

 

2.2. Micromass Cultures Established from either BMP-2 Overexpressing C3H10T1/2 Cells or  

Primary Embryonic Limb Bud-Derived Cells Undergo Chondrogenic Differentiation 

To assess the amount of metachromatic cartilage matrix accumulation in micromass colonies at 

select days of culturing, acidic DMMB staining was used. This is a generally accepted approach to 

verify cartilage matrix formation, as the molecules that are responsible for this phenomenon  

(i.e., proteoglycans containing highly sulphated glycosaminoglycans) cannot be found at this large 

abundance in other tissue types. As seen in Figure 2, there is an increasing tendency in the amount of 

metachromatic ECM areas as differentiation proceeds. However, the temporal pattern of the 
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appearance of relatively large metachromatic territories differs between the examined models. While 

we observed extensive metachromatic areas within cartilaginous nodules (but not in the internodular 

areas) in 3-day-old primary HDC, mainly orthochromatic staining was visible in the cell line based 

models on the same culturing day. By days 6 and 10 of culturing the disparity became even more 

pronounced between primary HDC and the C3H10T1/2 models. Nonetheless, the BMP-2 overexpressing 

cell line-based cultures presented higher amounts of metachromatic ECM areas in comparison with the 

control ones. After 15 days of culturing, the ECM was exclusively metachromatic and enlarged, 

presumably hypertrophic chondrocytes were also visible in the primary HDC. The size of metachromatic 

matrix areas also increased in the BMP-2 overexpressing C3H10T1/2 colonies, but it failed to reach 

the amount detected for primary cultures of the same age. In contrast, no metachromatic territories 

could be identified in micromass cultures of control C3H10T1/2 cells even on day 15 of culturing. It is 

of note that the appearance of metachromatic territories in the embryonic limb bud-derived HDC and 

that in cultures established from the BMP-2 overexpressing variant of C3H10T1/2 was different after 

staining with DMMB; while the former model exhibited distinct, heavily metachromatic regions that 

corresponded to cartilaginous nodules, a weaker but relatively homogenous metachromasia was 

observed in the latter one. Furthermore, considerable orthochromatic territories were also visible 

throughout the culturing period in colonies of the BMP-2 overexpressing C3H10T1/2. 

The mRNA expression profiles of specific ECM molecule genes that are associated with 

differentiation towards the chondrogenic lineage were also examined over the 15-day-long culturing 

period (Figures 3 and S1). Sox9, which encodes a transcription factor responsible for the expression of 

genes involved in cartilage matrix secretion and is therefore considered as the master gene of 

chondrogenesis, was found to be expressed at a constant level in both the primary and the BMP-2 

overexpressing C3H10T1/2 cultures from the beginning of their HD culturing. Interestingly, mRNA 

transcripts for Sox9 were also detected in control C3H10T1/2 micromass cultures, but they gradually 

decreased by culturing day 15. While Col2a1, the gene that codes for the alpha-1 chain of type II 

collagen, exhibited a constant level of expression in all three micromass cultures (including control 

C3H10T1/2 colonies that did not produce abundant cartilage ECM), Acan, which encodes the core 

protein of aggrecan, one of the main components of cartilage-specific ECM, only showed strong levels 

of expression in the embryonic limb bud-derived micromass cultures, and remained at a relatively 

lower level in the BMP-2 overexpressing C3H10T1/2 colonies. mRNA expression of the gene Hapln1 

coding for the hyaluronan and proteoglycan link protein that connects proteoglycan core proteins to 

hyaluronan scaffolds was strong in the primary and in the BMP-2 overexpressing model, but only 

weak signals were detected in the control C3H10T1/2 cultures. The mRNA expression of Snorc, a 

cartilage-specific small transmembrane proteoglycan in differentiating and articular chondrocytes, was 

confirmed in both the primary and in the BMP-2 overexpressing C3H10T1/2 models commencing 

from day 3, when cartilage matrix producing chondroblasts have formed. Finally, in the case of the 

secreted protein lubricin (Prg4), which is specifically expressed by chondrocytes in the superficial 

zone of articular cartilage and by synoviocytes of the joint capsule, strong signals were only detectable 

in the embryonic limb bud-derived HDC and only from day 6 of culturing. This observation suggests 

that the molecular composition of cartilage produced in this model better mimics articular cartilage 

compared to that in colonies established from the C3H10T1/2 cell line. Col10a1, the marker gene that 

codes for the alpha-1 chain of type X collagen expressed by hypertrophic chondrocytes, showed an 



Int. J. Mol. Sci. 2013, 14 16148 

 

 

almost constant level of expression throughout the entire culturing period in the primary  

cultures, while signals without any specific temporal pattern could be detected in the  

C3H10T1/2-based colonies. 

Figure 3. mRNA expression of chondrogenic marker genes in cells of micromass cultures 

on various days of culturing. Sox9 codes for the main chondrogenic transcription factor; 

Acan and Col2a1 are cartilage-specific ECM components; Hapln1 codes for the 

hyaluronan and proteoglycan link protein; Snorc is a novel cartilage-specific membrane 

proteoglycan in chondrocytes; Prg4 is specifically expressed by chondrocytes in the 

superficial zone of articular cartilage; Col10a1 is a marker gene for hypertrophic 

chondrocytes. GAPDH was used as a control. Numbers below gel images represent 

integrated densities of signals determined using ImageJ 1.46; data were normalized to the 

value detectable on the earliest day of culturing, day 0 (1.0) where applicable. 

Representative data of 3 independent experiments. Graphs representing mean values of 

relative optical densities of PCR results are shown in the Figure S1. 
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2.3. Matrix Calcification and Osteogenic Differentiation of C3H10T1/2 Cell Line or  

Primary Embryonic Limb Bud-Derived Micromass Cultures 

Alizarin Red staining procedure was applied on various days of culturing to assess calcified matrix 

accumulation in both embryonic limb bud-derived and C3H10T1/2-based micromass cultures. While 

no specific staining could be observed in the control C3H10T1/2 colonies, a very strong positivity was 

detected in HDC from the BMP-2 overexpressing C3H10T1/2 cells even from day 6 (Figure 4).  

By contrast, we could only detect stronger staining for calcified matrix from day 10 in the primary 

micromass cultures primarily within the cartilaginous nodules. These results suggest that both 

micromass cultures undergo matrix calcification and presumably hypertrophic transformation of 

chondrocytes, which precedes endochondral ossification. 

Figure 4. Visualisation of calcified ECM production in HDC on different culturing days. 

Matrix calcification was detected with Alizarin Red staining. Original magnification was 

40× for all photomicrographs. Scale bar, 50 µm. Orange-red areas correspond to 

extracellular matrix rich in calcium deposits. Representative photomicrographs of  

3 independent experiments are shown. 
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Figure 5. mRNA expression patterns of osteogenic marker genes in cells of micromass 

cultures on various days of culturing. Runx2 and Osx code for major osteogenic 

transcription factors; Col1a1 encodes the alpha-1 chain of type I collagen; osteocalcin 

(OC) and osteopontin (OP) are markers of late stages of osteogenesis;  

alkaline phosphatase (AP) is a marker for osteoblast activity. GAPDH was used as a 

control. Numbers below gel images represent integrated densities of signals determined 

using ImageJ 1.46; data were normalized to the value detectable on the earliest day of 

culturing, day 0 (1.0) where applicable. Data is representative of 3 independent 

experiments. Graphs representing mean values of relative optical densities of PCR results 

are shown in the Figure S2. 

 

To this end, differentiation towards the osteogenic lineage was also monitored using conventional 

RT-PCR analysis of lineage-specific genes. The Runt-related transcription factor-2 (Runx2; also 

known as Cbfa-1), the key transcription factor associated with osteoblast differentiation, exhibited a 

constant expression in the two differentiating micromass cultures but gradually decreased in the 

control C3H10T1/2 colonies. In contrast, mRNA transcripts for Osterix (Osx), another important 

osteoblast-specific transcription factor downstream of Runx2 and essentially required for bone 

formation and osteoblast differentiation, were only found to be expressed in a constant manner in the 

primary and the BMP-2 overexpressing C3H10T1/2 colonies with stronger signals from culturing  

day 3 (Figures 5 and S2). Although Osx mRNA expression could also be detected in control 

C3H10T1/2 colonies on certain days, it followed a rather irregular pattern. The mRNA expression of 

Col1a1 (that encodes the alpha-1 chain of type I collagen) followed a very similar pattern to what has 

been observed for Runx2: a steady but strong expression was seen in the BMP-2 induced C3H10T1/2 
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and in the primary cultures, whereas a decline was detected in the control C3H10T1/2 colonies. 

mRNAs for osteocalcin (OC) and osteopontin (OP), markers of late stages of osteogenesis, however, 

exhibited expression sequences similar to those of Osx: both markers showed stronger signals towards 

the end of the 15-day-long culturing period and could mainly be detected in the BMP-2 overexpressing 

C3H10T1/2 and in the limb bud-derived micromass cultures. Alkaline phosphatase (AP), another 

important marker for osteoblast activity, was also only expressed in the BMP-induced and the primary 

micromass cultures, with a very strong upregulation by day 15 in the latter model. 

2.4. Differentiation towards the Adipogenic Lineage Is also Characteristic of the Micromass  

Models Studied 

As C3H10T1/2 is a multipotent mesenchymal cell line, pathways of differentiation other than 

chondro- and osteogenesis are necessary to consider. To identify whether cells in the two different 

models applied in this study underwent differentiation towards the adipogenic lineage and acquired an 

adipocyte-like phenotype, lipid droplet-specific Oil Red O staining procedures were performed on 

select days of culturing. Haematoxylin nuclear staining was also applied on cultures to facilitate 

identification of cells. As seen in Figure 6, cells in the embryonic limb bud-derived micromass cultures 

did not exhibit large lipid droplets even at later stages (day 15); only small lipid droplets that are 

structural components of chondrocytes were visible [22]. In contrast to complete lack of  

adipocyte-like cells in primary HDC, C3H10T1/2-based cultures (both the control and the BMP-2 

overexpressing variant) showed cells with strong Oil Red O-positive lipid droplets especially at later 

time points (days 10 and 15). Interestingly, many adipocyte-like cells could be identified even in the 

control C3H10T1/2-based micromass cultures (Figure 6). The number of large cells with multiple lipid 

droplets that can be considered as precursors of white adipocytes further increased at later stages: by 

day 25 of culturing, these cells virtually outnumbered other cell types at the periphery and in the 

superficial layer over the centre of the cell line based micromass culture. This phenomenon could not 

be observed in the embryonic limb bud-derived HDC (data not shown). 

The mRNA expression patterns of genes that mark differentiation towards the adipogenic lineage 

were analysed by RT-PCR. mRNA transcripts of the adipocyte-specific fatty acid binding protein-4 

FABP4 (adipocyte protein-2) could be detected in all three micromass cultures with a strong 

upregulation in both the BMP-2 overexpressing variant of the C3H10T1/2 cultures and in the primary 

HDC at later stages of culturing (Figures 7 and S3). By contrast, stronger signals of the peroxisome 

proliferator-activated receptor gamma 2 (PPARγ2), an adipocyte-specific nuclear hormone receptor 

and key regulator of adipocyte differentiation, could only be detected in the BMP-2 overexpressing 

C3H10T1/2 derived HDC and only at later developmental stages, which further supports our 

observations based on Oil Red O staining procedures. 
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Figure 6. Analysis of adipogenesis in micromass cultures established from C3H10T1/2 

cell line (control and BMP-2 overexpressing variants) and embryonic limb bud-derived 

mesenchymal cells on select days of culturing. Oil Red O was applied to selectively stain 

cytoplasmic lipid droplets (red). Nuclei were counterstained with haematoxylin (blue). 

Original magnification was 100× for all photomicrographs. Scale bar, 20 µm. 

Representative photomicrographs of 3 independent experiments are shown. 
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Figure 7. Expression patterns of mRNAs for adipogenic marker genes in cells of 

micromass cultures on various days of culturing. FABP4 is an adipocyte-specific marker; 

PPARγ2 codes for an adipocyte-specific nuclear hormone receptor and key regulator of 

adipocyte differentiation. GAPDH was used as a control. Numbers below gel images 

represent integrated densities of signals determined using ImageJ 1.46; data were 

normalized to the value detectable on the earliest day of culturing, day 0 (1.0) where 

applicable. Data is representative of 3 independent experiments are shown Graphs 

representing mean values of relative optical densities of PCR results are shown in the 

Figure S3. 

 

2.5. mRNA Transcripts of Pluripotency Factors Are Detectable Even at Later Stages in  

Micromass Cultures 

Another aspect we were interested in is whether some of the cells maintained a pluripotent state in 

HDC. Therefore, mRNA expression patterns of key genes (Nanog, Sox2 and Oct-4) expressed in 

embryonic stem cells (ESCs) were analysed in all three micromass cultures (Figures 8 and S4). While 

no mRNA transcripts for Oct-4, a homeodomain transcription factor that is essential to maintain  

self-renewal of ECSs, were detectable in any of the models, Nanog and Sox2 were identifiable in all 

cultures, although with varied expression patterns. Nanog exhibited a strong upregulation in the  

BMP-2 overexpressing cultures and also in the primary HDC from day 3, whereas Sox2 showed a 

relatively stronger expression at the beginning of culturing for both models and became downregulated 

as differentiation progressed with slight elevation in 15-day-old primary HDC. No clear pattern could 

be established for these two markers in the unstimulated C3H10T1/2 cultures. 



Int. J. Mol. Sci. 2013, 14 16154 

 

 

Figure 8. Effect of micromass culturing conditions on mRNA expression of pluripotency 

markers. Nanog, Sox2 and Oct-4 are key genes that are essential to maintain pluripotency 

and self-renewal of ESCs. GAPDH was used as a control. Numbers below gel images 

represent integrated densities of signals determined using ImageJ 1.46; data were 

normalized to the value detected on day 0 (1.0). Representative data of 3 independent 

experiments. Graphs representing mean values of relative optical densities of PCR results 

are shown in the Figure S4. 

 

3. Discussion 

This study provides a detailed comparative analysis of osteo-, chondro- and adipogenic 

differentiation potential of widely applied murine micromass models, viz. a primary, embryonic limb 

bud-derived system vs. a multipotent mesenchymal cell line-based one. For the latter model used in 

particular study, C3H10T1/2 cells contain a plasmid that maintains a constant BMP-2 overexpression 

and secretion into the culture medium that is independent of external sources [20]. These model 

systems have been extensively used to study various steps of chondrogenesis (both early and late 

stages) [2,19,20,23,24]; however, a comparative study to elucidate the extent and quality of 

differentiation potential into various cell types of mesenchymal origin has not been performed. 

Although mRNA expression profiles of several chondrogenic and osteogenic marker genes have been 

explored in both models, a direct comparison of a wide array of genes under identical culture 

conditions and sampling intervals was lacking.  

A number of signalling pathways were demonstrated to play essential roles in the complex process 

of cartilage formation prior to endochondral ossification at various developmental stages. These 

include the Notch and Wnt signalling pathways during mesenchymal condensation, and utilise several 

secreted factors (morphogens) such as TGF-β, BMP, insulin-like growth factor (IGF), and fibroblast 

growth factor (FGF) to modulate proliferation and differentiation of chondroprogenitor cells, 

chondrocyte maturation and hypertrophy [25]. The BMP pathway has been indicated to enhance in vitro 

differentiation of mesenchymal cells towards various lineages (mainly bone and cartilage) [26]. 

Among BMPs, BMP-2 is specifically expressed in the condensing mesenchyme of the embryonic limb 

and vertebrae and is believed to play a critical role in the patterning and formation of the skeleton [27]. 
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Depending on a set of factors and culturing conditions, BMP-2 in particular can induce differentiation 

of C3H10T1/2 and 3T3 cells towards different mesenchymal lineages, such as adipocytes, osteoblasts, 

or chondrocytes [28].  

In our study, one of the most obvious differences between the embryonic limb bud-derived and the 

C3H10T1/2 cell line-based micromass cultures was the presence or absence of distinct prechondrogenic 

nodules. It is probably the high number of intercellular connections (primarily N-cadherins) between 

differentiating chondroprogenitor cells in primary micromass cultures [1] that creates a more  

tissue-like environment, which may resemble the one that characterises in vivo chondrogenesis. 

However, these same types of intercellular connections have also been shown in C3H10T1/2-derived 

micromass cultures [29]. Moreover, cells of the three types of cultures were also different from each 

other in terms of migratory potentials: while the embryonic limb bud-derived cells stayed together in 

the initial spot cultures, the control C3H10T1/2 cells migrated so intensely that the initial spot culture 

was not identifiable after a few days of culturing. The BMP-2 overexpressing C3H10T1/2 cells were 

also motile, although only cells at the periphery of the spot cultures were characterised by higher 

migratory potentials and cellular density remained high at the centre. This observation is supported by 

the results of Haas and Tuan according to which induction by BMP-2 is required for the upregulation 

of N-cadherin expression [29]. The observed difference in migratory features can also account for the 

varied morphology of micromass cultures. 

Since the primary aim of this study was to analyse the extent and quality of chondrogenic 

differentiation, we first compared the mRNA expression profiles of chondrocyte-specific marker 

genes. Both the BMP-2 overexpressing C3H10T1/2 cell line-based and the primary micromass models 

showed a constant mRNA expression profile for most of the basic chondrocyte-specific genes (i.e., 

Sox9, Acan, Col2a1, and Hapln1); furthermore Snorc, a novel chondrocyte-specific transmembrane 

chondroitin sulphate proteoglycan [30] exhibited strong mRNA expression in both models. However, 

Prg4 that encodes the glycoprotein lubricin (superficial zone protein) and is a hallmark of 

chondrocytes in the superficial layer of articular cartilage [31], was only found to be heavily expressed 

in embryonic limb bud-derived primary micromass cultures, suggesting that the cartilage matrix 

produced in these cultures more closely resembles that of native cartilage of limb primordia. This was 

also confirmed by analysis of metachromatic cartilage ECM morphology, distribution and quality. 

Moreover Col10a1, which is primarily expressed by hypertrophic chondrocytes, was observed 

throughout the entire culturing period in the primary cultures vs. a relatively weaker expression pattern 

in the cell line-based model. It is of note, however, that collagen type X is reported to be a natural 

structural supporting component of mouse articular cartilage throughout development and growth [32].  

Since in general, type X collagen is considered as a marker of chondrocyte maturation and 

hypertrophy during endochondral ossification [33], we also performed a more detailed comparative 

analysis of osteogenic marker genes in the two models investigated. Interestingly, mRNA transcripts of 

the major osteogenic transcription factors (Runx2 and Osx) that are both necessary for osteoblast 

differentiation [34] were readily identifiable in the transcriptome of both differentiating models even 

on day 0 of culturing (whilst being rapidly downregulated in the unstimulated control C3H10T1/2 

cultures), suggesting that differentiation towards the osteogenic lineage was present even at the 

beginning of HD culturing. The presence of osteoprogenitor cells has been confirmed by earlier studies 

in both primary micromass cultures [35] and in BMP-2 induced C3H10T1/2-based HDC [36]. The 
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observation that osteogenesis commenced at relatively early time points in these cultures was further 

supported by the fact that mRNA expressions of some markers (Col1a1 and AP) could also be readily 

detected even at the beginning of culturing, with a very strong upregulation of the latter gene in the 

primary HDC, probably owing to increased Osx activity. Upregulation of AP transcripts towards later 

stages of culturing was also observed by another group using the same model [24]. Nonetheless, late 

osteogenic markers (OC and OP) generally only showed stronger signals towards the end of the  

15-day-long culturing period. For OC, these data are also in a good correlation with results gained 

earlier using primary micromass cultures [24,35] and in BMP-2 and BMP-7 induced C3H10T1/2 

cultures [37]. Interestingly, however, mRNA transcript levels in C3H10T1/2 cultures differentially 

responded to treatments with various BMPs; BMP-7 resulted in a biphasic mRNA expression, whereas 

BMP-2 caused OP upregulation only at later time points [37], which coincides well with our own 

observations. At the same time, OP mRNA expression patterns have not been investigated earlier in 

primary murine embryonic limb bud-derived HDC. Nevertheless, our results regarding OC and OP 

transcript expression in the BMP-2 overexpressing C3H10T1/2 micromass model are in a perfect 

correlation with the findings of Ahrens and colleagues using the same model system [20]. 

The above results indicate that cells in both the primary and the BMP-2 overexpressing C3H10T1/2 

model system express mRNA transcripts for the same osteogenic markers at almost identical temporal 

patterns. This, taken together with data drawn from visualising ECM calcification with Alizarin Red 

staining, implies that both model systems recapitulate embryonic endochondral bone formation at 

approximately the same pace and via the same pathway. Noteworthy, however, that the expression of 

markers that are hallmarks of articular cartilage (i.e., Snorc and lubricin) coincided with bone markers 

(e.g., OC and OP), which suggests that chondro- and osteogenesis occurred simultaneously, rather than 

sequentially, in these models. Nevertheless, interpretation of data concerning the mRNA expression of 

these markers should be performed with caution as Runx2, Osx and even OC have also been reported 

to be amongst the main regulators of late chondrocyte differentiation and are also expressed in 

prehypertrophic and hypertrophic chondrocytes [35]. Furthermore, the fact that the cells expressing 

mRNA transcripts for OC were mainly located in the internodular areas of primary limb bud-derived 

micromass cultures and were thus functionally distinct from differentiating chondrocytes within 

cartilaginous aggregates should also be taken into account [35].  

Since C3H10T1/2 cells are reported to differentiate towards the adipogenic lineage and as BMPs 

are also known to induce adipogenic differentiation [20], we also looked at whether cells in the models 

investigated in this study showed signs of adipogenesis. For this, we examined the expression of 

mRNA transcripts of the adipocyte-specific factors FABP4 and PPARγ2. Fatty acid binding proteins 

(FABP) are lipid transporters expressed in multiple tissues; however, FABP4 (also known as adipocyte 

protein-2) is known to be specific to adipocytes and is also a marker for adipocyte precursors [38].  

We found that FABP4 could be detected in all three micromass cultures with a strong upregulation in 

both the BMP-2 overexpressing C3H10T1/2-based micromass cultures and in the primary HDC at later 

stages of culturing. This finding shows a good correlation with results gained with Oil Red O  

staining protocols that confirmed the presence of lipid droplet-containing adipocytes in  

both C3H10T1/2-derived HDC models. In contrast, transcripts for PPARγ2, which is a key  

regulator of adipocyte differentiation [39], could only be detected in the BMP-2 overexpressing  

C3H10T1/2-derived HDC and only at later developmental stages, suggesting that adipogenesis should 
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only be considered in these cultures. Indeed, on day 25 of culturing, a massive number of single, large 

lipid droplet-containing cells (probably adipocytes) were observed both at the periphery and in the 

superficial layer over the centre of micromass cultures. It is of note that accumulation of lipid droplets 

could also be detected in cells of the unstimulated C3H10T1/2 cultures. In cells of primary micromass 

cultures, cells with small and sparse lipid droplets were observable; these are probably mature 

chondrocytes that contain lipid droplets under physiological circumstances [22]. 

Apart from the well-established differentiated phenotypes, we also aimed to determine whether 

certain cells in micromass cultures maintained an undifferentiated (pluripotent) state. To this end, 

mRNA transcripts of the hallmarks of pluripotency (Nanog, Sox2 and Oct-4) were analysed in all three 

micromass cultures. Nanog is a homeodomain transcription factor; Sox2 (SRY2) is a high mobility 

group box-containing transcription factor; and Oct-4 (POU5F1) is a homeodomain transcription factor 

of the POU family; they are all critically involved in self-renewal of undifferentiated ESCs [40].  

Of these genes, Nanog and Sox2 were identifiable in all models, although with opposite expression 

patterns: Nanog exhibited a strong upregulation from day 3, whereas Sox2 showed a relatively stronger 

expression at the beginning of culturing and became downregulated as differentiation progressed. 

Interestingly, no mRNA transcripts for Oct-4 were detected in these models. These findings suggest 

that some cells remain undifferentiated in the models investigated and not all cells undergo terminal 

differentiation towards any of the lineages discussed above. 

4. Experimental Section  

4.1. Cell Culturing 

4.1.1. Micromass Cultures Established from C3H10T1/2 Cells 

The murine mesenchymal cell line C3H10T1/2 was purchased from the American Type Culture 

Collection (ATCC; Rockville, MD, USA). The BMP-2 overexpressing C3H10T1/2 cell line, which 

was permanently transfected with cDNA encoding the human bone morphogenic protein BMP-2 

cloned into the eukaryotic expression vector pMBC-2T-fl, was established in the laboratory of G. 

Gross and was a kind gift from that research group. Constitutive transcription of the construct was 

achieved by the long terminal repeat (LTR) promoter of the myeloproliferative sarcoma virus (MPSV) 

and terminated by a poly(A) site from SV40; selection of clones was performed by cotransfection with 

pBSpAC∆p plasmid that confers resistance against puromycin [20]. Monolayer cultures of the BMP-2 

overexpressing and control C3H10T1/2 cells were routinely maintained in standard 75 cm
2
 cell culture 

flasks, or to obtain high cell numbers, in 150 cm
2
 polystyrene tissue culture dishes (Orange 

Scientifique, Braine-l’Alleud, Belgium). Cells were cultured in high glucose (4.5 g·L
−1

) Dulbecco’s 

modified Eagle’s medium (DMEM; Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% 

(v/v) foetal calf serum (FCS; Gibco, Gaithersburg, MD, USA), 0.5 mM alanyl-glutamine (Ala-Gln) as 

a substitute for L-glutamine (Sigma-Aldrich), 6.6 µg·mL
−1

 ampicillin and 100 µg·mL
−1

 streptomycin 

(TEVA, Debrecen, Hungary). The culture medium of the BMP-2 overexpressing cells contained 

additional 5 µg·mL
−1

 puromycin (Sigma-Aldrich). Cultures were incubated in a humidified CO2 

incubator at 37 °C. Cells were passaged with 0.25% trypsin-EDTA (Sigma-Aldrich) dissolved in 

phosphate buffered saline (PBS) for 2 min at 37 °C when they reached ~80% confluency.  



Int. J. Mol. Sci. 2013, 14 16158 

 

 

To establish micromass cell cultures from BMP-2 overexpressing and control C3H10T1/2, cells 

were harvested by brief centrifugation (at 800 × g for 10 min) following trypsinisation. The number of 

cells was determined using a haemocytometer, and cellular density was set to 1.5 × 10
7
 cells·mL

−1
 in 

DMEM supplemented with 10% FCS. 30 or 100 µL droplets of the cell suspension were inoculated 

into 35 mm plastic tissue culture dishes (Orange Scientifique). The cells were allowed to attach to the 

surface at 37 °C and 5% CO2 for 2 h, and then the dishes were flooded with the culture medium, which 

was changed on every second day. Day of inoculation was considered as day 0 of culturing. 

Micromass cultures were maintained for up to 15 days. 

4.1.2. Primary Embryonic Mesenchymal Micromass Cultures 

Mouse embryonic limb bud-derived mesenchymal cell cultures were established according to the 

standard protocol used by our laboratory on chicken high density cultures [41] with minor modifications 

for mice. NMRI laboratory mice were mated overnight and mating was confirmed by the presence of a 

vaginal plug (considered as day 0 of gestation). On day 11.5 of gestation, pregnant female mice were 

sacrificed by cervical dislocation, according to the regulations defined in the licence obtained from the 

University of Debrecen Committee of Animal Research (11/2010/DE MÁB). For each animal, the 

uterus was removed and washed in sterile calcium and magnesium-free PBS (CMF-PBS), pre-heated 

to 37 °C. E11.5 embryos were then isolated from the uterus, pooled and washed several times  

in CMF-PBS.  

To establish primary micromass cultures, distal parts of fore and hind limb buds of embryos were 

removed under a dissecting microscope using two pairs of sharp forceps and pooled in CMF-PBS. 

Once all limb buds have been collected, they were transferred into 0.25% trypsin-EDTA  

(Sigma-Aldrich) and incubated at 37 °C in a CO2 incubator (5% CO2 and 80% humidity) for 1 h. The 

enzymatic digestion was terminated by the addition of equal volume of FCS (Gibco). Limb buds were 

disaggregated by gentle aspiration using 5 mL plastic pipette tips until no clumps remained and cells 

were filtered through a 20-μm pore size plastic filter unit (Millipore, Billerica, MA, USA) to yield a 

single cell suspension of mesenchymal cells. After a brief centrifugation (at 800× g for 10 min), cell 

pellet was resuspended in Ham’s F12 medium (Sigma-Aldrich) supplemented with 10% FCS at a 

concentration of 1.5 × 10
7
 cells mL

−1
 and 30 or 100 μL droplets were inoculated into 35 mm plastic 

tissue culture dishes (Orange Scientifique). After allowing the cells to attach to the surface for 2 h at  

37 °C in a CO2 incubator, 2 mL of Ham’s F12 culture medium supplemented with 10% FCS,  

0.5 mM alanyl-glutamine (Ala-Gln) as a substitute for L-glutamine (Sigma-Aldrich), and 

antibiotics/antimicotics (penicillin, 50 U·mL
−1

; streptomycin, 50 μg·mL
−1

; fungizone, 1.25 μg·mL
−1

; 

TEVA, Debrecen, Hungary) was added. Day of inoculation was considered as day 0 of culturing. High 

density cultures were maintained at 37 °C in a CO2 incubator for 15 days. The medium was changed 

on every second day. 

4.2. mRNA Expression Analysis Using Reverse Transcription Followed by PCR 

On various days of culturing (i.e., on days 0, 3, 6, 10 and 15), micromass cultures established from 

100 µL droplets of either C3H10T1/2 or limb bud-derived mesenchymal cells were washed three times 

with RNase-free physiological NaCl, then the cultures were snap-frozen in liquid nitrogen and stored 
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at −70 °C. Cell cultures were dissolved in TRIzol (Applied Biosystems, Foster City, CA, USA), and 

following addition of 20% RNase-free chloroform (Sigma-Aldrich) samples were centrifuged at 

10,000× g for 15 min at 4 °C. Total RNA-containing samples were incubated in 500 μL RNase-free 

isopropanol at −20 °C for 1 h, total RNA was dissolved in nuclease-free water (Promega, Madison, 

WI, USA) and stored at −70 °C.  

The composition of the assay mixture (20 μL) for reverse transcriptase (RT) reactions was as 

follows: 1000 ng total RNA; 0.25 μL RNase inhibitor; 2 μL random primers; 0.8 μL dNTP Mix  

(4 mM); 50 units (1 μL) of MultiScribe™ RT in 1× RT buffer (High Capacity RT kit; Applied 

Biosystems, Foster City, CA, USA). cDNA was transcribed at 37 °C for 2 h.  

Amplifications of specific cDNA sequences were carried out using specific primer pairs that were 

designed by Primer Premier 5.0 software (Premier Biosoft, Palo Alto, CA, USA) based on murine 

nucleotide sequences published in GenBank and purchased from Integrated DNA Technologies, Inc. 

(IDT; Coralville, IA, USA). The specificity of custom-designed primer pairs was confirmed in silico 

by using the Primer-BLAST service of NCBI. Nucleotide sequences of forward and reverse primers 

and reaction conditions are shown in Table 1. PCR reactions were carried out in a final volume of  

25 μL containing 1 μL forward and 1 μL reverse primers (10 μM), 0.5 μL cDNA, 0.5 μL dNTP Mix  

(200 μM), and 1 unit (0.2 μL) of GoTaq
®

 DNA polymerase in 1× Green GoTaq
®

 Reaction Buffer 

(Promega) in a programmable thermal cycler (Labnet MultiGene™ 96-well Gradient Thermal Cycler; 

Labnet International, Edison, NJ, USA) with the following protocol: 2 min at 95 °C for initial 

denaturation followed by 35 repeated cycles of denaturation at 94 °C for 30 s, primer annealing for  

45 s at an optimised temperature for each primer pair (see Table 1), and extension at 72 °C for 90 s. 

After the final cycle, further extension was allowed to proceed for another 7 min at 72 °C. PCR 

products were analysed using horizontal gel electrophoresis in 1.2% agarose gels containing ethidium 

bromide at 90 V constant voltage. Optical density of PCR product signals was determined by using 

ImageJ freeware (Image Processing and Analysis in Java) version 1.46 [42]. 
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Table 1. Nucleotide sequences, amplification sites, GenBank accession numbers, amplicon sizes and PCR reaction conditions for each primer 

pair are shown. 

Gene Primer Nucleotide sequence (5'→3') GenBank 

Accession No. 

Annealing 

temperature 

Amplicon 

size (bp) 

1. Chondrogenic marker genes    

Sox9 sense GTA CCC GCA TCT GCA CAA CG (378–397) NM_011448 62 °C 521 

antisense GTG GCA AGT ATT GGT CAA ACT CAT T (874–898)   

Aggrecan core protein 

(Acan) 

sense CGG GAA GGT TGC TAT GGT G (782–800) NM_007424.2 59 °C 359 

antisense CCT GTC TGG TTG GCG TGT A (1122–1140)   

Collagen II (Col2A1) sense AAA GAC GGT GAG ACG GGA GC (1900–1919) NM_0011135

15 

63 °C 289 

antisense GAC CAT CAG TAC CAG GAG TGC C (2167–2188)   

Hapln1 sense GGC TCA GGA ATC CAC AAA (217–234) BC066853 55 °C 284 

antisense GGA AAG TAA GGG AAC ACC A (482–500)   

Lubricin  

(Prg4) 

sense CGA GGT CAT TAT TTC TGG (64–81) NM_021400 51 °C 340 

antisense TCA TTG GCT CCT GTT TAT (386–403)   

Snorc sense CCC TGT GGA ACG AGC CTA T (101–119) NM_028473 58 °C 165 

antisense CAA GCG ATC CTC CAT CCT G (247–265)   

2. Osteogenic marker genes    

Alkaline phosphatase 

(ALPL) 

sense GAA GTC CGT GGG CAT CGT (474–491) NM_007431 59 °C 346 

antisense CAG TGC GGT TCC AGA CAT AG (801–820)   

Collagen I (Col1A1) sense GGG CGA GTG CTG TGC TTT (237–254) BC050014 62 °C 388 

antisense GGG ACC CAT TGG ACC TGA A (606–624)   

Collagen X (Col10A1) sense TTC TGG GAT GCC GCT TGT C (1602–1620) NM_009925 61 °C 263 

antisense TCG TAG GCG TGC CGT TCT T (1846–1864)   

Osteocalcin sense AGC AGG AGG GCA ATA AGG (110–127) NM_007541 57 °C 165 

antisense CGT AGA TGC GTT TGT AGG C (256–274)   

Osteopontin sense GCT GAA GCC TGA CCC ATC T (126–144) X51834 59 °C 494 

antisense TCC CGT TGC TGT CCT GAT (602–619)   



Int. J. Mol. Sci. 2013, 14 16161 

 

 

Table 1. Cont. 

Gene Primer Nucleotide sequence (5'→3') GenBank 

Accession No. 

Annealing 

temperature 

Amplicon 

size (bp) 

2. Osteogenic marker genes    

Osterix sense CCC TTC CCT CAC TCA TTT CC (271–290) AF184902 59 °C 424 

antisense CAA CCG CCT TGG GCT TAT (677–694)   

Runx2 sense GGA CGA GGC AAG AGT TTC A (595–613) NM_0011460

38 

58 °C 249 

antisense TGG TGC AGA GTT CAG GGA G (825–843)   

3. Adipogenic marker genes    

Pparg2 sense TGC CTA TGA GCA CTT CAC (62–79) AY208183 52 °C 258 

antisense TGA TCG CAC TTT GGT ATT (302–319)   

FABP4 sense AAA GAA GTG GGA GTG GGC (64–81) NM_024406 58 °C 173 

antisense CTG TCG TCT GCG GTG ATT (219–236)   

4. Pluripotency factors    

Nanog sense GCC CTG ATT CTT CTA CCA (194–211) AY278951 54 °C 383 

antisense AGA TGC GTT CAC CAG ATA G (558–576)   

OCT4 (Pou5f1) sense GCA CGA GTG GAA AGC AAC (286–303) NM_013633 56 °C 453 

antisense CGG GCA CTT CAG AAA CAT (721–738)   

Sox2 sense AAC CAG CGC ATG GAC AGC (466–483) U31967 63 °C 281 

antisense TCG GAC TTG ACC ACA GAG CC (727–746)   

5. Control gene     

GAPDH sense TGG CAA AGT GGA GAT TGT TG (69–88) NM_008084 60 °C 486 

antisense GTC TTC TGG GTG GCA GTG AT (535–554)   
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4.3. Histological Analysis of Micromass Cultures 

4.3.1. Investigation of Cellular Morphology of Micromass Cultures by Conventional Haematoxylin 

and Eosin Staining 

Micromass cell cultures established from 30 µL droplets of the cell suspensions were cultured on 

the surface of round 30 mm coverglasses (Menzel-Gläser, Menzel GmbH, Braunschweig, Germany) 

placed into 35 mm plastic culture dishes. On day 3 of culturing, after washing with PBS, cultures were 

fixed with a 4:1 mixture of absolute ethanol and 40% formaldehyde. After rehydration in a descending 

series of ethanol cells were stained with Gill’s haematoxylin No. 2 and eosin Y (1% aqueous solution; 

Bio Optica Milano S.p.A., Italy). Briefly, cultures were first immersed in haematoxylin for 20 s, rinsed 

in running tap water for 5 min, and after washing in distilled water, eosin was applied for 2 min. Eosin 

was washed and cultures were dehydrated in ascending series of alcohol, and after a final wash in 

xylene, colonies were mounted onto glass slides using DPX mounting medium (Sigma-Aldrich). 

Photomicrographs of the cultures were taken using an Olympus DP72 camera on a Nikon Eclipse E800 

microscope (Nikon Corporation, Tokyo, Japan). Images were acquired using cellSense Entry 1.5 

software (Olympus, Shinjuku, Tokyo, Japan). 

4.3.2. Assessment of Chondrogenic Differentiation by Low-pH Metachromatic Staining with 

Dimethyl-Methylene Blue 

On various days of culturing (see above), cultures seeded from 30 µL droplets of the cell 

suspensions cultured on the surface of round coverglasses were rinsed with PBS and fixed in a 4:1 

mixture of absolute ethanol and 40% formaldehyde and following rehydration in a descending series of 

ethanol cells were stained with 0.1% (w/v) 1,9-dimethyl-methylene blue (DMMB, Sigma-Aldrich) 

dissolved in 3% acetic acid (pH 1.0). Surplus dye was washed in acetic acid and cultures were 

mounted in gum arabic. Photomicrographs of the cultures were taken using an Olympus DP72 camera 

on a Nikon Eclipse E800 microscope. 

4.3.3. Assessment of Matrix Mineralisation by Alizarin Red S Staining 

To demonstrate the extent of matrix calcification, micromass cultures established from 30 µL 

droplets of the cell suspensions onto 30 mm round coverglasses were used. Cultures were fixed with 

the same fixative as above on various days of culturing, and then stained with 2% (w/v) Alizarin Red S 

(Sigma-Aldrich) dissolved in distilled water (pH 4.2; adjusted with 10% ammonium hydroxide) for  

2 min. Excess dye was removed with aspiration, coverslips were blotted and were dipped into  

acetone (20 times) for dehydration, and then into acetone-xylene (1:1) mixture (another 20 times). 

Coverglasses were finally mounted onto glass slides using DPX mounting medium (Sigma-Aldrich). 

Photomicrographs of the cultures were taken as described above. 

4.3.4. Assessment of Lipid Accumulation by Staining with Oil Red O 

To assay adipogenic differentiation and lipid accumulation in micromass cultures established from 

30 µL of the cell suspensions from either C3H10T1/2 or primary mouse embryonic limb bud-derived 
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cells, Oil Red O staining procedure was performed on respective days of culturing (see above). 

Cultures were fixed in 10% formalin for 60 min at room temperature. Formalin was washed with 

distilled water, and cultures were rinsed in 60% isopropanol for 5 min. Isopropanol was removed from 

cultures with aspiration, followed by addition of 2 mL of Oil Red O working solution (prepared as 

follows: 0.3% (w/v) Oil Red O (Sigma-Aldrich) stock solution was made using 99% isopropanol; Oil 

Red O working solution was prepared by mixing 3 volumes of Oil Red O stock solution with  

2 volumes of distilled water) for 5 min at room temperature. After the incubation, the working solution 

was discarded, surplus dye was removed with tap water, and then Gill’s haematoxylin No. 2 was 

applied for 20 s to provide nuclear background staining. Haematoxylin was rinsed with tap water, 

followed by mounting the cultures with gum arabic. Photomicrographs of the cultures stained with Oil 

Red O and haematoxylin were taken as described above. 

5. Conclusions  

We can conclude that in the two differentiating micromass cultures studied, all three major 

differentiation pathways (i.e., chondrogenic, osteogenic and adipogenic), along with undifferentiated 

cells that maintain the mRNA expression of key pluripotency factors, could be confirmed at both 

mRNA and morphological levels. In this way, commitment and differentiation towards these distinct 

lineages occur in a parallel fashion, rather than sequentially, in these cultures. Furthermore, mRNAs of 

the key lineage-specific transcription factors (i.e., Sox9; Runx2 and Osx; and PPARγ2) could be readily 

identified as early as day 0 of culturing; whereas towards day 15, transcripts of marker genes for all 

three lineages (i.e., Snorc and PRG4 for ―good quality‖ cartilage; AP, OC and OP for bone; and 

FABP4 for adipocytes) were found to be upregulated. The heterogeneity of these cultures, therefore, 

has to be taken into account during data interpretation. Furthermore, it is of note that apart from the 

lineage-specific transcription factors themselves, neither chondrogenic nor osteogenic marker genes 

could be detected in the transcriptome of unstimulated C3H10T1/2-derived micromass cultures (the 

only exception being Col2a1), suggesting that the inductive effect of autocrine/paracrine secreted 

factors (primarily BMP-2) is indispensable for lineage-specific differentiation to take place. Moreover, 

adipogenesis occured by day 15 even in unstimulated C3H10T1/2 cultures without the administration 

of any factors, which was further enhanced in the BMP-2 overexpressing C3H10T1/2 model, 

suggesting that formation of adipocytes might be a default pathway for this cell line at the given 

cellular density.  

In fact, heterogeneity is a general problem also encountered in the field of mesenchymal stem cell 

research. In particular, the stem cell niche in cartilage is not yet characterised in great detail, albeit 

progenitor cells with the potential to differentiate into secretory cells have already been described in 

both healthy and diseased cartilage tissue. Consequently, despite the efforts that have been made, 

establishing a chondrogenic mesenchymal stem cell line that forms functional hyaline cartilage in vivo 

has still been the Holy Grail in cartilage research [43]. Nevertheless, these data taken together with the 

morphology of primary micromass cultures and the presence of hypertrophic chondrocytes at later time 

points gives further evidence in support of the observation that the embryonic limb bud-derived model 

more closely recapitulates embryonic cartilage formation followed by endochondral bone formation. 

This is consistent with the observations of other research groups [24], and can therefore still be 
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considered as a valid tool to study in vitro chondrogenesis. However, we found that although these 

models provide a powerful tool to assess the temporal and functional relationship among various 

signalling pathways and important modulators of mesenchymal differentiation, the results gained by 

using these specific experimental approaches to assess in vitro differentiation of mesenchymal cells 

towards distinct lineages must be interpreted with considerable caution. Since the transcriptome of 

micromass cultures does not necessarily reflect the actual proteome, further studies are needed to better 

characterise differentiation into these lineages at the protein level. 
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