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Abstract

The capacity to identify the unique functional architecture of an individual’s brain is a critical step 

towards personalized medicine and understanding the neural basis of variations in human 

cognition and behavior. Here, we developed a novel cortical parcellation approach to accurately 

map functional organization at the individual level using resting-state fMRI. A population-based 

functional atlas and a map of inter-individual variability were employed to guide the iterative 

search for functional networks in individual subjects. Functional networks mapped by this 

approach were highly reproducible within subjects and effectively captured the variability across 

subjects, including individual differences in brain lateralization. The algorithm performed well 

across different subject populations and data types including task fMRI data. The approach was 

then validated by invasive cortical stimulation mapping in surgical patients, suggesting great 

potential for use in clinical applications.
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INTRODUCTION

The human cerebral cortex is organized into areas based on distinct features such as 

cytoarchitecture or topography (e.g., 
1–4

). These brain areas contribute specialized functions 

that interact as part of distributed networks 
1, 5–7

. Recent advances in non-invasive 

neuroimaging techniques, especially the emergence of functional connectivity MRI 
8, 9, have 

made it possible to explore the functional organization of regions and networks in the living 

human brain 
10–15

. Initial work has revealed a number of complexities including aspects of 

organization that respect traditional notions of brain areas, as well as network organization 

that has organizational properties that span and split areas. Further, there are individual 

differences in organization that are distributed non-uniformly across the cortex. Obtaining 

functional atlases at the level of the individual person is a critical step towards understanding 

the anatomy-function association in the human brain and the stability of this relationship 

across individuals
16

.

The capacity to identify the unique functional architecture of an individual’s brain is 

particularly important for personalized medicine. Clinical and imaging studies, including 

those employing invasive functional mapping techniques, have demonstrated marked inter-

individual variability in the organization of different functional systems of the brain 
17–19

. 

Localizing functional architecture in a particular subject is therefore a fundamental 

requirement in clinical procedures such as surgical planning 
20

 and brain stimulation 
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therapies 
21, 22

. However, non-invasive functional mapping techniques are generally limited 

in accuracy and reliability at the single-subject level 
23

. To date, precise functional mapping 

in individual patients still heavily relies on invasive measures.

Individual-level functional mapping is also essential for the investigation of variations in 

human behavior and cognition. Functional imaging studies of individual differences 

commonly use regions of interest (ROIs) defined by anatomy or by population-averaged 

fMRI studies 
24

. To improve specificity, individual-level ROIs can be defined using a task-

based functional localizer 
25

 (see 
26

). Recently, increased effort has been devoted to 

developing methods for parcellating functional networks in individual subjects based on 

resting-state connectivity
14, 16, 27–30

. An individual-level functional parcellation can be used 

not only as the “localizer” for specific functions, but can also provide a basis for cross-

subject alignment according to functional characteristics, instead of macroscopic anatomical 

landmarks, to improve group-level analyses.

Achieving individual-level precision is thus a major goal of neuroimaging. Specifically, to 

be clinically useful, a non-invasive functional mapping technology must fulfill the following 

criteria: 1) it should have high reproducibility within subjects; 2) it should be sensitive to 

functional differences between subjects; and 3) it should match results derived from invasive 

cortical stimulation, currently considered the gold standard for individual-level functional 

mapping. Based on these criteria, here we develop a novel approach for individual-level 

functional parcellation based on functional connectivity, which can be applied to either 

resting-state fMRI data or spontaneous activity extracted from task fMRI data. Test-retest 

reliability of the parcellation and its sensitivity to individual differences were evaluated on 

multiple datasets. Validity of the network parcellation was then examined in a group of 

surgical patients who underwent invasive cortical stimulation.

The parcellation strategy is described below (see Figure 1).

Step 1—A functional cortical atlas consisting of 18 networks was first estimated based on 

1,000 healthy subjects 
10

 and projected onto the individual subject’s cortical surface using 

the FreeSurfer software (see ONLINE METHODS). The individual subject’s blood 

oxygenation level-dependent (BOLD) fMRI signal time courses were then averaged across 

the vertices that fell within each network. These atlas-based network time courses were used 

as the “reference signals” for the subsequent optimization procedure.

Step 2—The individual subject’s functional MRI signal at each vertex was then correlated 

to the 18 “reference signals” derived from the previous step. Each vertex was reassigned to 

one of the 18 networks according to its maximal correlation to the “reference signals”. A 

confidence value was also computed as the ratio between the largest and the second largest 

correlation values. For example, if a vertex had the strongest correlation with the “reference 

signal” of network A with a correlation coefficient of 0.8, and had the second strongest 

correlation with the network B with a correlation coefficient of 0.4, then the confidence that 

this vertex belongs to network A was 0.8/0.4=2. After all vertices were reassigned to one of 

the 18 networks with a certain confidence level, in each network the BOLD signals of 

vertices with a confidence value greater than a preselected threshold (e.g., >1.1) were 
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averaged and termed the “core signal”. Several parameters were computed for each network, 

including the pre-estimated inter-subject variability in functional connectivity 
31

 and 

temporal signal-to-noise ratio (SNR), which were normalized and averaged across the 

vertices where the confidence values exceeded the given threshold.

Step 3—For each network, the “core signal” derived from Step 2 and the original 

“reference signals ” derived from Step 1 were averaged in a weighted manner. Before 

averaging, the “core signal” was multiplied by the weighting parameters computed in Step 2, 

including inter-subject variability, SNR, and the number of iterations. The resulting signal 

estimate was used as the new “reference signal” for the next iteration. This weighting 

strategy ensured that the original atlas-based “reference signal” was weighted less compared 

to the “core signal” in regions of high inter-subject variability and regions of high SNR, and 

gradually reduced its weight as the iteration proceeded. Using these new “reference signals” 

which incorporated both the individual subject’s information and the information of the 

population atlas, the brain vertices were further reassigned to one of the 18 networks.

Step 4—Steps 2 & 3 were iterated until the algorithm reached a pre-defined stopping 

criterion, e.g., the procedure was stopped if network membership remained the same for 

98% of the vertices in two consecutive iterations or if it reached a predetermined number of 

iterations.

RESULTS

Maps are Reliable and Capture Inter-subject Variability

The parcellation technique was first applied to a longitudinal dataset consisting of 23 

subjects who were scanned five times within a period of six months (Dataset I). During the 

iterative search, the boundaries of the functional networks were gradually refined according 

to the connectivity patterns estimated in individual data but guided by the population-atlas 

(see Supplementary Fig. 1 for an example showing the intermediate results after each 

iteration). In general, vertices in the primary visual and sensorimotor regions showed 

relatively stable network membership assignment over the iterations. However, vertices in 

the association cortices showed greater adjustment during the optimization process.

Within each subject, the resulting functional atlases converged to be visually consistent 

across the five sessions, both in the primary sensorimotor regions and the higher order 

association regions (Figure 2). Quantitative analyses indicated high intra-subject 

reproducibility across the five sessions (mean Dice coefficient = 83%). At the same time, 

functional maps varied substantially across different individuals (mean Dice coefficient = 

67%), especially in the higher-order association regions. These results indicate that the 

iterative parcellation technique is able to obtain reliable functional networks within the same 

person, and can reflect the network distribution differences between individuals (see also 

Supplementary Fig. 2 for the maps of three subjects who demonstrated high, median, and 

low reproducibility across sessions). Most critically, each individual brain had unique 

features.
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Parcellation Is Widely Applicable to Different Data Types

To objectively examine the performance of the iterative parcellation, quantitative analyses of 

the test-retest reliability and sensitivity to individual differences were performed in a 

population independent from Dataset I that was involved in the algorithm development. MRI 

data of 100 unrelated subjects publicly available from the Human Connectome Project 

(HCP; Dataset II) were used for this replication purpose. This cohort was substantially 

different from Dataset I in terms of age, data acquisition length, ethnicity, scanner type and 

scanning protocol. Each subject performed two resting-state fMRI (rs-fMRI) sessions and 

seven task fMRI (tfMRI) sessions (see ONLINE METHODS). The two rs-fMRI sessions of 

each subject were conducted on two separate days; thus, they could be employed to evaluate 

the test-retest reliability of the network parcellation.

Intra-subject reliability and inter-subject variability were both measured using the Dice 

coefficient after each iteration (Figure 3a). Because the algorithm was initialized with the 

population-based atlas, intra-subject reliability was 1 and inter-subject variability was 0 at 

the beginning. As the iterative procedure progressed, inter-subject variability increased while 

intra-subject reliability decreased, but both stabilized after several iterations (see also 

Supplementary Fig. 3 for the spatial distributions of vertex-wise reliability and variability 

after different numbers of iteration).

The iterative parcellation technique showed good generalizability in this independent 

dataset. Functional maps derived from the two rs-fMRI sessions were highly consistent 

within subjects (see Figure 3b for the maps of three randomly selected subjects, results of 

the 100 subjects can be downloaded from: http://nmr.mgh.harvard.edu/bid/download.html). 

Comparing two rs-fMRI sessions of the same subject, the Dice coefficient was 82.4% 

± 3.2%. Critically, the maps also demonstrated substantial inter-subject variability. Between 

any two individuals, the Dice coefficient was only 60.5% ± 2.8% (corresponding to inter-

subject variability of 39.5%). The intra-subject consistency of network membership was 

significantly higher than the inter-subject consistency (unpaired two-tailed t-test, t(5048) = 

91.0, p < 0.001, Figure 3c).

An important question is whether the iterative parcellation technique can be applied to the 

task fMRI data that are widely available. Given that numerous task fMRI datasets already 

exist 
32

 and task fMRI is routinely performed for preoperative mapping in many hospitals, 

the practical value of this iterative parcellation technique will be greatly enhanced if this 

technique can be directly applied to task data. To test this possibility, the task-based fMRI 

data of the 100 HCP subjects were bandpass filtered (0.01 – 0.08 Hz) and processed in the 

same way as the resting-state data. Parcellation can be derived from the data of a single task 

but is less reliable due to limited data acquisition length (see Supplementary Fig. 4 for the 

parcellation maps derived from single-task data, see ONLINE METHODS for the data 

acquisition length of each task). The data of different tasks were therefore concatenated 

within each subject to increase the amount of data per subject and to minimize the impact of 

any specific task design on the connectivity estimates
33, 34

. For each individual subject, 

iterative parcellation was performed on the concatenated task fMRI data, as well as on the 

concatenated resting-state data (see Figure 3d for the maps of three exemplary subjects). 

Parcellation results based on the task fMRI data and the resting-state data were similar (Dice 
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coefficient = 81.7% ± 4.0%). The consistency between the rest- and task-based parcellation 

maps was as high as the reproducibility between two resting-state sessions (paired two-tailed 

t-test, t(99) =1.76, p = 0.08; see Figure 3c). These results suggest the feasibility of obtaining 

whole-brain functional atlases of individual subjects from task fMRI data.

Brain Lateralization Is Reflected in Network Parcellation

Hemispheric lateralization is an important organizational principle of the human brain and a 

potential marker of individual differences in brain development
35

. Here we quantified the 

laterality of network distribution in individual subjects. For each network, a laterality index 

(LI) was computed based on the count of vertices in the left hemisphere and the count in the 

right hemisphere (see ONLINE METHODS for the definition of LI). Among the 18 

networks that resulted from the iterative parcellation, we identified two networks that 

demonstrated strong asymmetry. The most left-lateralized network (LI = 0.22 ± 0.08, 

positive LI values indicate left-lateralization) included the inferior frontal gyrus and the 

temporal parietal junction – traditional language regions (Figure 4a). Among the 100 

subjects, only a few subjects demonstrated atypical right lateralization of this network (see 

Figure 4a for the histogram of LI). The most right-lateralized network (LI = −0.13 ± 0.09) 

included the insula and the angular gyrus – traditional ventral attention regions
36

. 

Lateralization of these two networks showed moderate test-retest reliability (see 

Supplementary Fig. 5). To directly examine the relationship between the left-lateralized 

parcellation network and language function, we mapped the regions showing activation (at a 

z-threshold of Z > 1.96, corresponding to uncorrected, two-tailed p-threshold of p < 0.05) 

during a story comprehension task 
37

. At the group level, 71.2% of the vertices in the left-

lateralized parcellation network fell within the regions showing language-related activation 

(Figure 4b), suggesting that this left-lateralized network is related to language function.

Finally, we investigated the effect of handedness on functional network laterality in 52 left-

handed and 52 matched right-handed individuals (Dataset III). These subjects were matched 

in terms of age, gender, ethnicity, education, fMRI data acquisition, data quality and other 

parameters (see Supplemental Table S1 for the matching criteria and participant 

demographics). Iterative parcellation was applied to each individual subject to identify the 

18 networks. Again, the language-related network and the ventral attention-related network 

showed the strongest lateralization in both groups. Compared to left-handed subjects, right-

handed subjects showed a trend for stronger lateralization in the language-related network 

(mean LI 0.20 vs 0.16, unpaired two-tailed t-test, t(102) = 1.9, p = 0.057), and significantly 

stronger lateralization in the ventral attention-related network (mean LI −0.14 vs −0.07, 

unpaired two-tailed t-test, t(102) = 3.1, p = 0.003, Figure 4c).

Comparing Parcellation Networks with Task fMRI

The reliability of task-evoked response in individual subjects is affected by many factors 

some of which extend to analysis of resting-state networks as well as other factors that are 

preferential to task fMRI
38

. Many studies have used task fMRI activation maps to validate or 

evaluate the accuracy of results derived from resting-state fMRI. Here, we quantified the 

intra-subject reliability of task fMRI activation maps and the functional networks derived 

from the iterative parcellation. For this investigation, two brain functions that are routinely 
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examined in preoperative mapping, motor and language functions, were assessed in the 100 

HCP subjects. The hand motor network and the language network of each individual subject 

were localized by conventional task-evoked responses and by iterative network parcellation.

Task-evoked responses were estimated using single task runs and showed a range of low to 

high reliability across two runs within the same subject. Reliability was evaluated using the 

Dice coefficient across a variety of thresholds (from Z = 1.96 to Z = 10.0 in 0.1 increments). 

The maximum reliability was 40.4% (when Z = 6.76) for the motor task and 34.4% (when Z 

= 1.96) for the language task. Iterative parcellation was then performed on short resting-state 

data segments, with length matched to the motor and language task runs (i.e., 3m 34s and 

3m 57s, respectively). Compared to the task-evoked responses, the iterative parcellation 

yielded higher reproducibility across two runs (paired two-tailed t-test, t(99) = 11.2, p < 

0.001, for the hand motor network; paired two-tailed t-test, t(99) = 21.9, p < 0.001 for the 

language network), with a Dice coefficient of 66.6% ± 10.2% for the hand motor network 

and a Dice coefficient of 61.5% ± 9.1% for the language networks. While the task data 

analyzed here reflect only a subset of possible tasks and range of data quality that could be 

explored, it is notable that the present iterative parcellation approach performed comparably 

and in many individuals better than traditional task-based analysis.

Validation Using Electrical Cortical Stimulation (ECS)

To further validate the results derived from the iterative parcellation approach, we employed 

a clinical dataset consisting of eight surgical patients who performed a battery of motor tasks 

in MRI prior to surgery (Dataset IV). Resting-state data were also collected in six of the 

eight patients. Their hand and tongue sensorimotor regions were localized using ECS, which 

is the current gold standard for preoperative functional mapping. This unique dataset 

provided an opportunity to evaluate the clinical applicability of the iterative parcellation 

technique. Parcellation was performed in each individual patient based on the motor task 

fMRI data that were bandpass filtered (0.01–0.08 Hz) and processed in the same way as in 

the 100 HCP subjects. The hand and tongue regions were also mapped using the traditional 

task activation approach for comparison.

Sensorimotor regions identified by ECS were used as references (Figure 5a), where the red 

dots on the ECS maps indicated negative electrodes (no symptoms related to the 

sensorimotor cortex were reported when stimulated) and the yellow dots indicated positive 

electrodes. Motor and sensory regions identified by traditional task activation showed low 

consistency with the ECS maps (Figure 5b). In contrast, the sensorimotor regions identified 

by iterative parcellation were more consistent with the ECS maps (Figure 5c), suggesting 

that the iterative parcellation technique was valid and could serve as a prescreening method 

for ECS (see Supplementary Fig. 6 for the results of all eight subjects; the subject shown in 

Figure 5a was Patient 2 in Supplementary Fig. 6). In addition, a parcellation map of multiple 

functional networks with confidence values greater than a predetermined threshold (e.g., 1.1) 

can provide a rough estimate of the regions of interest for invasive cortical stimulation 

(Figure 5d), potentially shortening the stimulation procedure.

To objectively assess the potential of our parcellation technique in preoperative mapping, the 

sensitivity and specificity of the hand and tongue sensorimotor maps in 8 surgical patients 

Wang et al. Page 7

Nat Neurosci. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were statistically measured across different confidence thresholds. Sensitivity and specificity 

of the task fMRI were also computed by varying the t-value thresholds of the task activation. 

In addition, we masked the task activation maps using the pre-central and post-central gyri 

labels generated by FreeSurfer to improve specificity. This operation mimics the procedure 

of human experts, who usually disregard the noisy activation responses outside of the 

regions of interest. Receiver operating characteristic (ROC) curves were then plotted for the 

iterative parcellation algorithm (Figure 5e, green curve), traditional task-activation mapping 

alone (purple curve) and task-activation masked with anatomical labels (red curve). The 

iterative parcellation technique significantly outperformed the other two task-based methods 

and showed significantly larger area under the curve (AUC, p = 0.008 and p = 0.015, 

Wilcoxon rank sum test; AUC of iterative parcellation = 0.91, AUC of task fMRI = 0.76, 

AUC of task fMRI masked with anatomical labels = 0.78).

The iterative parcellation was then applied to the pure resting-state data in six patients 

(Figure 5e, black curve). The ROC curve was not significantly different from the original 

parcellation results based on the task fMRI data (AUC 0.91 vs 0.89, p = 0.22, Wilcoxon rank 

sum test). Finally, we examined whether the iterative parcellation was truly advantageous 

over simply using the population-based atlas for each individual subject (Figure 5e, blue 

curve; also see Supplementary Fig. 6 for the atlas mapped on individual subjects). The 

iterative parcellation technique significantly outperformed the population atlas (AUC 0.91 

vs. 0.78, p = 0.015, Wilcoxon rank sum test) in motor mapping.

DISCUSSION

In this study we present a novel approach for parcellating functional networks across the 

cerebral cortex in individuals based on functional connectivity. Each individual brain had 

unique features. Parcellation networks were reproducible within subjects across multiple 

scans and could capture inter-individual differences in functional organization, including 

variability in brain lateralization. We found that this approach can be applied to various 

populations and can be extended to task fMRI data. Using invasive cortical stimulation as 

the gold standard, the sensitivity and specificity of iterative functional parcellation were 

evaluated in surgical patients and compared to that of conventional task fMRI. Our results 

indicate that the individual cortical parcellation technique can correctly localize functional 

networks in individual subjects and has potential for use in clinical applications.

Revealing Individual Variability in Brain Organization

Inter-individual variability in human brain organization has long been studied
39

. However, 

systematic in vivo research on the variability in the functional organization of the human 

brain, especially in the patterns of connectivity, has just begun. Variability in functional 

connectivity has been related to individual differences in human behavior and cognition, 

such as IQ, musical ability and reading ability
24

. Brain changes associated with neurological 

and psychiatric disorders are also reflected by variations in functional connectivity 
40

. 

Recent explorations of resting-state functional connectivity in healthy humans have 

suggested that association regions (including the language, executive control, and attention 

networks) present with particularly strong variability that may relate to individual 

Wang et al. Page 8

Nat Neurosci. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differences in behavior 
31, 41

. Substantial inter-individual variability in functional 

organization calls for imaging techniques that can precisely capture the functional 

characteristics of each subject. To enable functional analyses at the individual-level, 

Carddock et al. parcellated rs-fMRI data into functionally and spatially coherent regions-of-

interest (ROIs) that tended to be equally sized
30

. Arslan et al. proposed a cortical 

parcellation method based on spectral graph theory and were able to obtain reliable results at 

the group level. However, inter-subject variability was underestimated and the method aimed 

to identify a group-wise parcellation that can represent each subject in the group
42

. Goulas 

et al. parcellated the lateral frontal cortex using a module detection algorithm and 

demonstrated inter-subject variability in these modules; however, intra-subject reliability 

was not evaluated at the same time
29

. Using a region growing method, Blumensath et al. 

mapped functional networks in individual subjects with high reproducibility
28

 and found 

that functional connectivity network boundaries might overlap with task activations. These 

technical developments are important and merit future validation, especially based on 

invasive measures. A precise parcellation technique with high sensitivity to individual 

variations will facilitate discovery of meaningful biomarkers for cognitive ability or disease 

states, and will provide increased statistical power for investigating behavioral or genetic 

associations.

Implications for Clinical Intervention

An individual-level functional atlas has strong implications for clinical practice, especially 

for surgical planning and brain stimulation that depend on precise functional localization. 

Current preoperative mapping with task-based fMRI suffers from poor signal-to-noise ratios, 

limited test-retest reliability and limited overlap with analogous maps derived from invasive 

cortical stimulation
43, 44

, causing many to question its clinical utility. For example, based on 

a meta-analysis of 63 published studies, task fMRI has only a moderate (~50%) within-

subject test-retest reproducibility 
38

. In the present study, limited reproducibility was also 

observed between the two runs of task fMRI data in the HCP subjects. Whereas this was 

partially due to the limited acquisition length of the task runs and variability in data quality, 

the iterative parcellation based on the same amount of data were significantly more reliable. 

In addition, the iterative parcellation can be directly applied to the bandpass filtered task 

fMRI data and produce functional maps comparable to maps based on pure resting-state data 

(see Figure 3d & Figure 5e). In a small group of surgical patients, we found that 

sensorimotor networks could be localized with higher accuracy by the iterative parcellation 

than using conventional task fMRI.

The advantage of the iterative parcellation over conventional task fMRI may be explained by 

the different amount of variance in the BOLD signal they use for mapping. Task-evoked 

activity accounts for only a small percentage of the total variance in the functional MRI 

signal and therefore provides less stability, as the practical limits of scanning burden 

constrain the amount of task data that can be acquired, especially in patient populations. 

Variance utilized in task activation mapping can be estimated based on the variance 

explained by the hemodynamic task model. In the eight surgical patients reported in the 

present study, task-related activity in the motor regions of interest defined by ECS accounted 

for only 32.5% of the total variance in the functional MRI signal. Prior work has shown that 
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coherent spontaneous activity does not disappear during task paradigms, but continues 
45

. 

Our parcellation approach utilizes the spontaneous activity for mapping, which may account 

for the major portion of the variance in task fMRI BOLD signal 
45

.

To render this parcellation strategy useful in mapping the language and memory networks in 

patients, further optimization and validation are necessary. Nevertheless, our preliminary 

observations indicate that parcellation can reliably identify a strongly left-lateralized 

network overlapping with the regions activated by a language task, and a right-lateralized 

network that is located in traditional ventral attention regions. Additionally, lateralization of 

these networks may relate to handedness. These observations suggest that this iterative 

individually-tailored parcellation captures a large portion of the individual variability present 

in the organization of cerebral networks.

Improving Cross-subject Alignment for Group Analysis

Establishing the functional correspondence between subjects is a prerequisite for group-level 

functional imaging analyses. Although the association between brain anatomy and function 

is not fully understood and can vary across individuals, most fMRI processing tools align 

individual subjects to a common template based on anatomical features such as global 

morphology or landmarks identified by structural MRI
46, 47

. Functional networks are likely 

to be misaligned if they are not tightly linked to the macroscopic anatomy. For example, 

aligning subjects for the investigation of language function can be particularly challenging 

because the distribution of the language network is known to be highly variable and can even 

be found in different hemispheres in different individuals. Substantial inter-subject 

variability in functional regions was found even after carefully aligning the data based on 

curvature which largely removed macro-anatomical variability
19

. Some recent studies have 

attempted to align subjects based on functional characteristics. By incorporating the inter-

subject signal correlations into a cortical registration algorithm, Subuncu et al. brought 

functionally similar regions into correspondence during a movie-watching task
48

. However, 

this strategy relies on consistent task activations across subjects. Robinson et al. developed a 

novel method that is capable of aligning subjects using a wide variety of characteristics 

including both structure and function
49

. They demonstrated strong increases in the cluster 

mass of task activations when subjects were aligned based on resting-state functional 

connectivity compared to curvature-based registration. The development of functional 

network parcellation using resting-state connectivity 
10, 11

, especially parcellation at the 

individual level 
14, 27

, may offer a complementary connectivity-based functional localizer for 

group-level analyses. A parcellation as described in the present study can provide a set of 

functional landmarks for cross-subject registration and lead to novel strategies of brain 

image alignment.

Limitations and Future Directions

There are several technical limitations of this study that deserve mention. First, the number 

of networks was selected according to specific technical criteria instead of relying on 

biological considerations
10

. The fixed number of networks may not be appropriate for all 

individuals, especially for patients who have experienced functional reorganization due to 

diseases. In some patients certain networks may become completely absent. For example, 
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dramatic reorganization of the tongue motor area was observed in one of our patients due to 

encephalomalacia (see Patient 5 in Supplementary Fig. 6). This change in functional 

organization has led to misalignment of the hand motor networks in the parcellation, where 

the hand network spread to lower portions of the post-central gyrus. Thus, additional 

improvement and validation of this iterative functional parcellation method are required in 

order to apply it to patients with distorted anatomy. For example, in patients with localized 

lesions (limited to one hemisphere), the iterative functional parcellation could be performed 

in the healthy hemisphere without distortion, as well as in the cerebellum if no lesions are 

observed. The functional properties in the affected hemisphere could then be estimated 

based on its functional connectivity to the healthy cerebral hemisphere or the unaffected 

cerebellum.

Secondly, we parcellated the cortex into a relatively small number of networks, which can 

reduce the sensitivity to subtle changes of functional networks, such as those due to learning 

or other experiences. Future development of the parcellation technology should aim at 

mapping functional networks with finer spatial resolution and determining the number of 

networks more flexibly in different subjects. A possible strategy is to initiate the iterative 

parcellation from a population-based atlas with large number of networks, and gradually 

adjusting the number of networks by merging networks with similar time courses (e.g., r > 

0.5). Once a merger occurs, the iterative parcellation can be restarted with the reduced 

number of networks. This strategy flexibly adjusts the number of networks based on an 

individual subject’s data and can accommodate the need for identifying small networks. 

Iterative parcellation with this flexible strategy can also achieve high reproducibility (see 

Supplementary Fig. 7 for an example). Alternative strategies are also possible such as 

estimation of regions based on local transitions in connectivity properties
13–15

.

Finally, functional maps derived from fMRI can be influenced by various confounding 

factors. For example, spatial specificity of the functional connectivity maps can be 

influenced by the signal in macroscopic veins, and signal correlations can be overstated 

within or between highly vascularized regions
50

. Thus, inter-subject variability observed in 

functional connectivity patterns can also be confounded by variations in vascular anatomy. 

While it is difficult to quantify the exact contribution of vascular variation, the high inter-

subject variability in functional connectivity observed in the association cortex, especially 

the variability in hemispheric lateralization, is unlikely to be dominated by vascular 

variations, but contributions of vascular anatomy to the topographical maps studied here will 

be critical.

ONLINE METHODS

Participants and Data Collection

Four separate fMRI datasets obtained with different imaging parameters were employed in 

the current study.

Dataset I—The first dataset consists of twenty-five healthy subjects (age 51.8 ± 6.99, nine 

female, two left handed) enrolled as a control dataset in a longitudinal fMRI study on stroke 

recovery. Participants were screened to exclude individuals with a history of neurologic or 
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psychiatric conditions, as well as those using psychoactive medications. Each subject 

underwent five scanning sessions within 6 months (7, 14, 30, 90 and 180 days from 

enrollment). All participants performed two or three resting-state runs per session (6 m 12 s 

per run) to estimate intrinsic functional connectivity. After quality control, 23 subjects who 

had at least two good runs (tSNR > 100) in each session were included in this study (mean = 

2.02 runs). This dataset has been previously reported 
31

. MRI data were acquired on a 3 

Tesla Siemens TimTrio system (Erlangen, Germany) using the 12-channel phased-array coil 

supplied by the vendor. Structural images were acquired using a sagittal MP-RAGE three-

dimensional T1-weighted sequence (TR = 1,600 ms; TE = 2.15 ms; flip angle = 9°; 1.0 mm 

isotropic voxels; FOV = 256 × 256). Functional data were obtained using a gradient echo-

planar pulse sequence (TR = 3,000 ms; TE = 30 ms; flip angle = 90°; 3 mm isotropic voxels, 

transverse orientation, 47 slices fully covering cerebral cortex and cerebellum). Subjects 

were instructed to stay awake and keep their eyes open. Participants provided written 

informed consent in accordance with guidelines set by the institutional review boards of 

Xuanwu Hospital.

Dataset II—The second dataset included 100 young healthy subjects (the “ Unrelated 100” 

group, 54 female, age range 22 – 35 years except one subject was over 36 years) made 

publicly available by the Human Connectome Project, supported by the WU-Minn 

Consortium
51

. Written informed consent was obtained from each participant in accordance 

with relevant guidelines and regulations approved by the local institutional review board at 

Washington University in St. Louis (IRB # 201204036). For each participant, two resting-

state fMRI sessions (each session consisted of one run with left-to-right direction phase 

encoding and one run with right-to-left direction) and seven task fMRI sessions (each 

session consisted of one run with left-to-right direction phase encoding and one run with 

right-to-left direction) were obtained. The tasks included working memory (5 m 1 s per run), 

gambling (3 m 12 s per run), motor (3 m 34 s per run), language (3 m 57 s per run), social 

cognition (3 m 27 s per run), relational processing (2 m 56 s per run) and emotional 

processing (2 m 16 s per run). For a complete description of the dataset, please see 
51, 52

.

All HCP subjects were scanned on a customized Siemens 3T “Connectome Skyra” scanner. 

Structural images were acquired using the 3D MPRAGE T1-weighted sequence with 0.7 

mm isotropic resolution (FOV = 224 mm, matrix = 320, 256 sagittal slices in a single slab, 

TR = 2,400 ms, TE = 2.14 ms, TI = 1000 ms, flip angle = 8°). The scan parameters of the rs-

fMRI data were: TR = 720 ms; TE = 33.1 ms; flip angle = 52°; FOV = 208 × 180 mm; slice 

thickness = 2.0 mm; 72 slices; 2 mm isotropic voxels, multiband factor = 8; echo spacing = 

0.58 ms; Bandwidth (BW) = 2290 Hz/Px; time points = 1200. The task acquisitions were 

identical to the resting-state fMRI acquisitions in order to provide maximal compatibility 

between task and resting data.

Dataset III—The third dataset included data of 52 left handed and 52 matched right handed 

subjects (28 female in each group, age range 18 – 25 years) that were acquired as part of the 

Brain Genomics Superstruct Project
53

. All participants provided written informed consent in 

accordance with guidelines set by Institutional Review Boards of Harvard University or 

Partners Healthcare. Each subject performed two resting-state (eyes open) runs in MRI 
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scanner (6 m 12 s per run). All data were collected on matched 3T Tim Trio scanners 

(Siemens, Erlangen, Germany) using a 12-channel phased-array head coil. Images were 

acquired using the gradient-echo echo-planar pulse sequence (TR = 3,000 ms, TE = 30 ms, 

flip angle = 85°, 3 × 3 × 3 mm voxels, FOV = 216 and 47 slices collected with interleaved 

acquisition with no gap between slices). Whole brain coverage including the entire 

cerebellum was achieved with slices aligned to the anterior commissure-posterior 

commissure plane using an automated alignment procedure, ensuring consistency among 

subjects 
54

. Structural data included a high-resolution multi-echo T1-weighted 

magnetization-prepared gradient-echo image (TR = 2,200 ms, TI = 1100 ms, TE = 1.54 ms 

for image 1 to 7.01 ms for image 4, flip angle = 7°, 1.2 × 1.2 × 1.2 mm and FOV = 230). 

Subjects were instructed to stay awake, keep their eyes open, and minimize head movement; 

no other task instruction was provided. The handedness of each subject was assessed via the 

Edinburgh handedness inventory
55

. The demographic information of the 52 pairs of subjects 

and the matching criteria are listed in Table S1.

Dataset IV—The fourth dataset included eight surgical candidates (age 19.5 ± 5.0; five 

female; one left handed) with intractable epilepsy. This was a subset of patients from a 

recently published study of cortical mapping using gamma activity recorded from subdural 

electrode grids 
56

. The experiment included a preoperative fMRI scan, surgical implantation 

of subdural electrode grids and direct electrical cortical stimulation (ECS) using these grids. 

No seizures were observed one hour before or after the fMRI or ECS in all patients. The 

locations of the electrodes and how long they would stay implanted were determined solely 

by clinical criteria. Written consent was obtained from each patient or their guardians and 

the experiments were approved by the Ethics Committees of the Second Affiliated Hospital 

of Tsinghua University. MRI data were collected on a Philips Achieva 3.0 Tesla TX whole 

body MR scanner using an 8-channel SENSE head coil. Structural images were acquired 

using a sagittal magnetization-prepared rapid gradient echo T1-weighted sequence (TR = 8.1 

ms, TE = 3.7 ms, TI = 1,000 ms, flip angle = 8°, FOV = 230 mm × 230 mm, matrix size 

=230 × 230, slices = 180, voxel size = 1×1×1 mm). Functional data was collected using an 

echo planar imaging sequence (TR = 3,000 ms, TE = 30 ms, flip angle = 90°, FOV = 192 

mm × 192 mm, matrix size = 64× 64, slices = 47, voxel size = 3× 3 × 3 mm).

Two types of functional runs were collected from the epilepsy patients: task activation runs 

(all eight subjects) and resting state runs (six of eight subjects). All eight subjects performed 

five motor task activation runs. Each run consisted of one type of self-paced movement (left 

hand, right hand, left foot, right foot, or tongue) consistent with standard preoperative 

mapping paradigms. Each run was 144 seconds long and consisted of six 12-second task 

blocks interleaved with six 12-second rest intervals. Patients performed motor tasks 

according to the instructions presented on the computer screen using the Psychophysics 

Toolbox in MATLAB (MathWorks, Inc.). Six subjects also underwent two resting-state runs 

(360 s each run), during which they were asked to fixate on a crosshair in the center of the 

screen. These pure resting state runs were collected for comparison purposes with the maps 

created based on the task runs.

After an adequate number of seizures had been recorded, bedside ECS mapping was 

performed to identify the sensorimotor cortices 
56

. Using an Ojemann Cortical Stimulator 
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(Integra Life-Sciences), trains of 60-Hz biphasic pulses lasting for 2 – 5 seconds were 

delivered to selected pairs of electrodes. The current intensity of the stimulation started at 2 

mA and was gradually increased until patients showed or reported symptoms related to the 

sensorimotor cortex or the stimulus strength reached 15 mA. Each stimulation involved a 

pair of electrodes; thus, both electrodes were considered positive when a hand or tongue 

movement or sensory was produced.

Data Processing

Dataset I—Resting-state fMRI data of the 23 subjects in this longitudinal dataset were 

processed using the procedures previously described 
10

, which were adapted from 
8 and57

. 

The following steps were performed: (1) slice timing correction (SPM2; Wellcome 

Department of Cognitive Neurology, London, UK), (2) rigid body correction for head 

motion with the FSL package 
58, 59

, (3) normalization for global mean signal intensity 

across runs, and (4) bandpass temporal filtering (0.01– 0.08 Hz), head-motion regression, 

whole-brain signal regression, and ventricular and white-matter signal regression. The 

BOLD frames were not censored based on head motion but all runs included in the present 

study showed temporal SNR > 100.

Structural data were processed using the FreeSurfer version 4.5.0 software package. Surface 

mesh representations of the cortex from each individual subject’s structural images were 

reconstructed and registered to a common spherical coordinate system 
46

. The structural and 

functional images were aligned using boundary-based registration 
60

 within the FsFast 

software package (http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast). The preprocessed 

resting-state BOLD fMRI data were then aligned to the common spherical coordinate 

system via sampling from the middle of the cortical ribbon in a single interpolation step 
10

. 

FMRI data of each individual were first registered to the FreeSurfer template which 

consisted of 40,962 vertices in each hemisphere. A 6-mm full-width half-maximum 

(FWHM) smoothing kernel was then applied to the fMRI data in the surface space. The 

smoothed data were then down-sampled to a mesh of 2,562 vertices in each hemisphere 

using the mri_surf2surf function in FreeSurfer software.

Dataset II—The “minimally processed” fMRI data of the HCP subjects were used, which 

had been preprocessed in the HCP pipeline using FSL (FMRIB Software Library), 

FreeSurfer, and the Connectome Workbench software
37, 61–63

. The preprocessed data were 

projected to the FreeSurfer template with a mesh of 40,962 vertices in each hemisphere. The 

following steps were then performed: 1) demeaning and detrending across each run, 2) 

bandpass filtering (0.01–0.08Hz), 3) head-motion regression and whole-brain signal 

regression and 4) smoothing with a 6 mm FWHM smoothing kernel in the surface space. 

The data were then down-sampled to a mesh of 2,562 vertices in each hemisphere using the 

mri_surf2surf function provided by FreeSurfer. For connectivity analyses, the task fMRI 

data were processed in the same way as the resting-state data. To map the brain regions 

activated by the seven tasks, fixed-effects analyses were performed using FEAT 
61

; see 
37

 for 

details.
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Dataset III—Resting-state fMRI data of the 52 pairs of left handed and right handed 

subjects were preprocessed identically to the first dataset.

Dataset IV—For parcellation analysis, bandpass filtered task fMRI and pure resting-state 

fMRI data of the surgical patients were preprocessed identically to the first dataset. 

Conventional task-evoked activation maps in this dataset were estimated using the general 

linear model. Regressors of no interest included motion correction parameters and low 

frequency drift. The task-induced BOLD response was modeled by convolving the 

hemodynamic response function with the experimental design. Intracranial electrodes were 

registered to the cortical surface using our in-house software
56

 to enable the comparison 

between the ECS maps and the functional parcellation. A post-implantation CT scan was 

obtained within 24 – 48 h after the implant surgery for localization of the electrodes. The 

post-implantation CT images were registered to T1-weighted MRI images using a mutual-

information-based linear transform 
56

. Due to postoperative edema, electrodes extracted 

from the post-implantation CT images may appear off the surface reconstructed from the 

pre-surgical MRI. Our in-house tool allows us to manually adjust the locations of electrodes 

according to the 3D shape of the cortical surface. MRI surface vertices within a 6 mm radius 

of the positive electrodes were defined as positive. This resulted in an ECS map on the 

surface that can be directly compared to the map obtained from the functional parcellation.

Population-based Functional Atlas

A functional network atlas was estimated based on 1,000 healthy subjects
10

 and projected 

onto the individual subject’s cortical surface using the FreeSurfer software. The original 

atlas included 17 networks where hand sensorimotor areas were not separated from other 

areas. Given the common need to map hand areas in surgical patients, we identified the hand 

sensorimotor areas from this atlas based on activations in a hand motor task
64

. As a result, 

this population atlas consisted of 18 networks and would serve as the initial guess of the 

functional network organization in an individual subject’s brain.

Evaluating Test-retest Reliability and Inter-subject Variability of the Maps Derived from the 
Iterative Parcellation

Intra-subject test-retest reliability of the parcellation results was computed using the Dice 

coefficient after projecting the parcellation results back to each individual subject’s cortical 

surface. This can be simply computed as the percentage of vertices that were assigned to the 

same network in two sessions. To assess the reliability of the parcellation technique at the 

group level, Dice coefficients were then averaged across all subjects. Inter-subject variability 

was computed on the FreeSurfer surface template (2,562 vertices in each hemisphere) based 

on the Dice coefficient between any pair of subjects and then averaged across all pairs.

Comparing the Task fMRI and Iterative Parcellation with the ECS Findings

For the patient dataset (Dataset IV), the results of different mapping modalities were 

projected to each patient’s cortical surface for comparison with the ECS findings. Taking the 

ECS findings as references, the sensitivity and specificity of the activation map and the 

network parcellation were quantified. Sensitivity was computed by dividing the number of 

true positives (fMRI positive vertices that were also positive in the ECS maps) by the 
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number of true positives plus false negatives (i.e. total vertices positive in the ECS maps). 

The specificity was computed by the number of true negatives (fMRI negative vertices that 

were also negative in the ECS maps) divided by the number of true negatives plus false 

positives (i.e. total vertices negative in the ECS maps). ROC curves were obtained by 

calculating the sensitivity and specificity across a wide range of different thresholds. The 

area under the curve was computed for each subject and compared across methods using a 

Wilcoxon paired non-parametric test.

Estimating Functional Lateralization

Lateralization was computed for each network derived from the iterative parcellation. 

Vertices that belonged to a specific network were separated into left-hemisphere and right-

hemisphere portions. A lateralization index was then computed based on the following 

equation:

(1)

Where VL is the count of vertices in the left hemisphere, VR is the count of vertices in the 

right hemisphere.

Visualization and Statistics

The iterative parcellation was performed on the FreeSurfer fsaverage4 template and the 

resulting network labels were upsampled to each individual subject’s own cortical surface 

using the mri_surf2surf function. The labels were then merged into a single “annotation” file 

using the write_annotation function provided by FreeSurfer. The parcellation results were 

visualized in each individual’s cortical surface using FreeSurfer.

No statistical methods were used to pre-determine sample sizes but our sample sizes are 

larger than or similar to those reported in previous publications
31, 37, 65, 66

. Within each 

dataset, no randomization or blinding was employed to separate subjects into different 

groups. Two-tailed t-test was used for all comparisons in this study except for the 

experiment shown in Figure 5, which used Wilcoxon rank sum test. For the t-tests, data 

distribution was assumed to be normal but this was not formally tested.

Code Availability

The code of the iterative parcellation algorithm is available from the corresponding authors 

upon request.

A supplementary methods checklist is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Parcellating the functional networks in an individual subject’s brain using an iterative 

adjusting approach. The technique includes the following steps: 1) A population-based 

functional brain atlas was registered onto the individual subject’s cortical surface using 

FreeSurfer. The individual subject’s BOLD signal time courses were then averaged across 

the vertices that fall within each network. These atlas-based network time courses were used 

as the “reference signals” for the subsequent optimization procedure. 2) The individual 

subject’s BOLD signal at each vertex was then correlated to the 18 “reference signals”. Each 

vertex was reassigned to one of the 18 networks according to its maximal correlation to the 

“reference signals”. A confidence value was also computed as the ratio between the largest 

and the second largest correlation values. After each vertex was reassigned, the BOLD 

signals of the high confidence vertices (e.g., >1.1) in each network were then averaged and 

termed the “core signal”. 3) For each network, the “core signal” derived from Step 2 and the 

original “reference signals ” derived from Step 1 were averaged in a weighted manner. 

Specifically, the “core signal” was multiplied by the weighting parameters derived from 

inter-subject variability and SNR, as well as the number of iterations. The averaged signal 

was used as the new “reference signal” for the next iteration. Using these new “reference 
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signals”, the brain vertices were further reassigned to one of the 18 networks. 4) Steps 2 & 3 

were repeated until the algorithm reached a pre-defined stopping criterion.

Wang et al. Page 22

Nat Neurosci. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Iterative brain parcellation is highly reproducible within subjects and captures differences 

across subjects. Twenty-three healthy subjects underwent five resting-state scanning sessions 

within six months. The functional organization of the individual subject’s brain was 

parcellated into 18 networks using the data of each scanning session. The parcellation 

networks of three subjects that showed the highest reproducibility across sessions are 

displayed so that inter-subject variability can be appreciated. The functional maps of 

different subjects differed substantially, especially in the higher-order association areas (see 

also Supplementary Fig. 2 for maps of three subjects that showed the highest, median, and 

lowest reproducibility. Maps of all 23 subjects can be downloaded at: http://

nmr.mgh.harvard.edu/bid/download.html).

Wang et al. Page 23

Nat Neurosci. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://nmr.mgh.harvard.edu/bid/download.html
http://nmr.mgh.harvard.edu/bid/download.html


Figure 3. 
Quantitative analyses of intra-subject reliability and inter-subject variability based on the 

HCP subjects. (a) One hundred subjects from the Human Connectome Project (the 

“Unrelated 100”) were employed for validation purposes. Intra-subject reliability and inter-

subject variability of the parcellation maps after each iteration are plotted. Standard 

deviations are represented as shaded regions around the curves. As the iteration progressed, 

inter-subject variability increased, while intra-subject reliability decreased (see also 

Supplementary Fig. 3 for spatial distributions of reliability and variability after each 

iteration). (b) The networks of three exemplary subjects are displayed. Maps of all 100 

subjects can be downloaded at: http://nmr.mgh.harvard.edu/bid/download.html. (c) 

Parcellation based on the resting-state fMRI demonstrated high intra-subject reliability and 

high inter-subject variability. Comparing two rs-fMRI sessions of the same subject, on 

average 82.4% ± 3.2% of the vertices were assigned to the same networks. Between any two 

individuals, on average only 60.5% ± 2.8% of the brain vertices were assigned to the same 

networks. Error bars are mean ± SD. The intra-subject consistency of network membership 

was significantly higher than the inter-subject consistency (unpaired two-tailed t-test, 
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p<0.001). The iterative parcellation technique was also applied to the concatenated task data 

of the 100 HCP subjects. Parcellation results based on task data and resting-state data 

demonstrated an overlap of 81.7% ± 4.0%, suggesting that whole-brain network parcellation 

could also be obtained from an individual subject’s task data. (d) Networks derived from the 

concatenated task data are shown for three exemplary subjects.
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Figure 4. 
Brain lateralization is reflected in the network parcellation. (a) A laterality index was 

computed for each parcellation network. Histograms of LIs were plotted for the two 

networks that demonstrated strongest lateralization in the 100 HCP subjects, where positive 

values indicate left lateralization. The strongest left-lateralized network was located in the 

traditional language area and the strongest right-lateralized network was located in the 

traditional ventral attention area. (b) The strongest left-lateralized parcellation network also 

overlapped with the regions showing activation during a language task. The maps display the 

percentage of subjects showing overlap in the left-lateralized network and the percentage of 

subjects showing language activation (Z>1.96, corresponding to uncorrected, two-tailed 

p<0.05). Activation maps were estimated using the general linear model. At the group level, 

71.2% of the vertices in the left-lateralized network fell within the regions activated by the 

language task. (c) Handedness has an effect on functional network lateralization. The 

lateralization indices of the language-related and ventral attention-related networks were 

computed in 52 left handed and 52 matched right handed subjects. Compared to left handed 

subjects, right handed subjects showed a trend for stronger lateralization in the language-

related network (p=0.057, unpaired two-tailed t-test) and significantly stronger lateralization 

in the ventral attention-related network (p = 0.003, unpaired two-tailed t-test). Error bars are 

mean ± SEM.
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Figure 5. 
Sensorimotor networks identified by individual brain parcellation showed good 

correspondence with functional regions localized by invasive cortical stimulation. (a) The 

hand and tongue sensorimotor regions of eight surgical candidates were mapped using 

multiple approaches for comparison. Sensorimotor regions identified by ECS were used as 

the gold standard. The red dots on the ECS maps indicate negative electrodes, while the 

yellow dots indicate positive electrodes. (b) Sensory and motor areas identified by 

traditional task activation showed low consistency with the ECS maps. (c) The hand 

sensorimotor regions identified by iterative parcellation based on the concatenated task 

fMRI data were consistent with the ECS maps. The map shows the vertices with high 

confidence values (>1.2). (d) Individual brain parcellation may serve as a prescreening 

method for ECS. The map shows the network membership of vertices with high confidence 
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values (>1.1). Iterative parcellation can provide a rough estimate of the regions of interest 

for cortical stimulation, potentially shortening the stimulation procedure. (e) The sensitivity 

and specificity of the hand and tongue sensorimotor maps in 8 surgical patients were 

statistically measured across a wide range of thresholds for five different mapping 

approaches. The results are displayed in ROC curves, including the iterative parcellation 

technique using task fMRI of eight subjects (green), the iterative parcellation technique 

using pure resting-state fMRI of six subjects (black), directly projecting the population-

based atlas to each individual subject (blue), traditional task-activation mapping alone 

(purple) and task activation masked with anatomical labels generated by FreeSurfer (red).

Wang et al. Page 28

Nat Neurosci. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	Step 1—A functional cortical atlas consisting of 18 networks was first estimated based on 1,000 healthy subjects 10 and projected onto the individual subject’s cortical surface using the FreeSurfer software (see ONLINE METHODS). The individual subject’s blood oxygenation level-dependent (BOLD) fMRI signal time courses were then averaged across the vertices that fell within each network. These atlas-based network time courses were used as the “reference signals” for the subsequent optimization procedure.Step 2—The individual subject’s functional MRI signal at each vertex was then correlated to the 18 “reference signals” derived from the previous step. Each vertex was reassigned to one of the 18 networks according to its maximal correlation to the “reference signals”. A confidence value was also computed as the ratio between the largest and the second largest correlation values. For example, if a vertex had the strongest correlation with the “reference signal” of network A with a correlation coefficient of 0.8, and had the second strongest correlation with the network B with a correlation coefficient of 0.4, then the confidence that this vertex belongs to network A was 0.8/0.4=2. After all vertices were reassigned to one of the 18 networks with a certain confidence level, in each network the BOLD signals of vertices with a confidence value greater than a preselected threshold (e.g., >1.1) were averaged and termed the “core signal”. Several parameters were computed for each network, including the pre-estimated inter-subject variability in functional connectivity 31 and temporal signal-to-noise ratio (SNR), which were normalized and averaged across the vertices where the confidence values exceeded the given threshold.Step 3—For each network, the “core signal” derived from Step 2 and the original “reference signals ” derived from Step 1 were averaged in a weighted manner. Before averaging, the “core signal” was multiplied by the weighting parameters computed in Step 2, including inter-subject variability, SNR, and the number of iterations. The resulting signal estimate was used as the new “reference signal” for the next iteration. This weighting strategy ensured that the original atlas-based “reference signal” was weighted less compared to the “core signal” in regions of high inter-subject variability and regions of high SNR, and gradually reduced its weight as the iteration proceeded. Using these new “reference signals” which incorporated both the individual subject’s information and the information of the population atlas, the brain vertices were further reassigned to one of the 18 networks.Step 4—Steps 2 & 3 were iterated until the algorithm reached a pre-defined stopping criterion, e.g., the procedure was stopped if network membership remained the same for 98% of the vertices in two consecutive iterations or if it reached a predetermined number of iterations.
	Step 1
	Step 2
	Step 3
	Step 4


	RESULTS
	Maps are Reliable and Capture Inter-subject Variability
	Parcellation Is Widely Applicable to Different Data Types
	Brain Lateralization Is Reflected in Network Parcellation
	Comparing Parcellation Networks with Task fMRI
	Validation Using Electrical Cortical Stimulation (ECS)

	DISCUSSION
	Revealing Individual Variability in Brain Organization
	Implications for Clinical Intervention
	Improving Cross-subject Alignment for Group Analysis
	Limitations and Future Directions

	ONLINE METHODS
	Participants and Data Collection
	Dataset I
	Dataset II
	Dataset III
	Dataset IV

	Data Processing
	Dataset I
	Dataset II
	Dataset III
	Dataset IV

	Population-based Functional Atlas
	Evaluating Test-retest Reliability and Inter-subject Variability of the Maps Derived from the Iterative Parcellation
	Comparing the Task fMRI and Iterative Parcellation with the ECS Findings
	Estimating Functional Lateralization
	Visualization and Statistics
	Code Availability

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

