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MYC represents a transcription factor with oncogenic potential converting multiple cel-
lular signals into a broad transcriptional response, thereby controlling the expression of 
numerous protein-coding and non-coding RNAs important for cell proliferation, metab-
olism, differentiation, and apoptosis. Constitutive activation of MYC leads to neoplastic 
cell transformation, and deregulated MYC alleles are frequently observed in many human 
cancer cell types. Multiple approaches have been performed to isolate genes differ-
entially expressed in cells containing aberrantly activated MYC proteins leading to the 
identification of thousands of putative targets. Functional analyses of genes differentially 
expressed in MYC-transformed cells had revealed that so far more than 40 upregulated 
or downregulated MYC targets are actively involved in cell transformation or tumorigene-
sis. However, further systematic and selective approaches are required for determination 
of the known or yet unidentified targets responsible for processing the oncogenic MYC 
program. The search for critical targets in MYC-dependent tumor cells is exacerbated by 
the fact that during tumor development, cancer cells progressively evolve in a multistep 
process, thereby acquiring their characteristic features in an additive manner. Functional 
expression cloning, combinatorial gene expression, and appropriate in vivo tests could 
represent adequate tools for dissecting the complex scenario of MYC-specified cell 
transformation. In this context, the central goal is to identify a minimal set of targets that 
suffices to phenocopy oncogenic MYC. Recently developed genomic editing tools could 
be employed to confirm the requirement of crucial transformation-associated targets. 
Knowledge about essential MYC-regulated genes is beneficial to expedite the devel-
opment of specific inhibitors to interfere with growth and viability of human tumor cells 
in which MYC is aberrantly activated. Approaches based on the principle of synthetic 
lethality using MYC-overexpressing cancer cells and chemical or RNAi libraries have 
been employed to search for novel anticancer drugs, also leading to the identification of 
several druggable targets. Targeting oncogenic MYC effector genes instead of MYC may 
lead to compounds with higher specificities and less side effects. This class of drugs 
could also display a wider pharmaceutical window because physiological functions of 
MYC, which are important for normal cell growth, proliferation, and differentiation would 
be less impaired.
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FiGURe 1 | Schematic depiction of oncogenic MYC signal 
transduction. The highly simplified cartoon shows key pathways operating 
upstream and downstream of the MYC oncoprotein. Mitogenic signal 
transduction starts with stimulated receptor tyrosine kinases (RTK) 
transmitting signals via guanine nucleotide exchange factors onto the G 
protein RAS. RAS binds and activates the serine/threonine protein kinase 
RAF(Mil), which leads to consecutive phosphorylation of the mitogen-
activated protein kinase kinase (MAPKK) MEK, the MAP kinase (MAPK) ERK, 
and of transcription factor complexes, such as MYC/MAX or JUN/FOS 
(AP-1), regulating the expression of numerous target genes. Based on the 
observed synergy between MYC and RAF(Mil), distinct MYC targets may 
enhance RAS/RAF-induced cell transformation via a positive feedback loop. 
On the other hand, MYC could also directly stimulate AP-1 by transcriptional 
activation of JUN or FOS encoding genes. The c-MYC gene is activated at 
the transcriptional level by the wingless/int-1 (WNT) signaling pathway, 
resulting in nuclear translocation of β-catenin (βCTNN) where it binds to T-cell 
factor (TCF). Several transforming MYC targets are involved in cell cycle 
regulation (Table 1), which encode inter alia E2F transcription factors, cyclins 
(CCN), and cyclin-dependent kinases (CDK), resulting in accelerated cell 
proliferation. Besides the extracellular signal-regulated kinase (RAS–ERK) 
pathway, phosphatidylinositol 3-kinase (PI3K)–mammalian target of 
rapamycin (mTOR) signaling is a central mechanism to control cell growth, 
proliferation, and survival in response to extracellular stimuli. The protein 
kinase AKT phosphorylates many survival factors, and mTOR-mediated 
signaling modulates ribosome biogenesis and translation of proteins, such as 
c-MYC and cyclin D, that promote cell growth and proliferation [adapted from 
Ref. (1, 4, 5)].
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MYC iS An enDPOinT OF MULTiPLe 
SiGnALinG PATHwAYS

Cancer cells are featured by deregulated activation and suppres-
sion of proto-oncogenes and tumor suppressor genes, respec-
tively. Tumor cells evolve from a multistep process, resulting 
in sustained proliferation, inactivation of growth suppressors, 
immortalization, accelerated angiogenesis, metastasis, and 
resistance to programed cell death. In normal tissues, growth-
promoting signals are carefully controlled leading to cellular 
homeostasis, whereas in cancer cells, these biological signals are 
deregulated. Signals are transmitted by growth factors, which 
bind to cell surface receptors containing intracellular tyrosine 
kinase domains. From here, the signal branches into multiple 
and complex signal transduction pathways to regulate cell cycle 
progression, cell growth, survival, and energy metabolism (1). 
Key players in these processes are encoded by genes, which 
are normally required to coordinate proper cell metabolism, 
proliferation, and differentiation. The functions of many of these 
genes had been elucidated after their identification as transform-
ing principles in oncogenic retroviruses, which carry mutated 
versions in their genomes (2).

Some of the most intensively studied oncogenes encode tran-
scription factors that are functionally located at the end of several 
signaling cascades, thereby integrating multiple cellular signals. 
Transcription factors regulate gene expression and similar to 
cytoplasmic key regulators, the deregulation of many transcrip-
tion factors is associated with human oncogenesis. Transcription 
factors bind to the DNA control regions of target genes and 
activate or suppress their expression, which is important for cell 
proliferation and differentiation. In case of aberrant gene regula-
tor activities caused by mutations, distinct target genes become 
abnormally activated or deactivated, which can ultimately lead 
to oncogenic transformation and malignant cell growth. MYC 
represents a prototypic transcription factor and a nuclear end 
point of several signaling pathways (3) (Figure 1). Hence, iden-
tification and characterization of transformation-relevant target 
genes acting downstream of MYC is a prerequisite to understand 
molecular mechanisms of tumor development in which this 
oncogenic transcription factor is involved.

ORiGin OF MYC AnD  
BiOLOGiCAL FUnCTiOnS

MYC has been originally identified as the transforming deter-
minant (v-myc) of avian acute leukemia virus MC29 in chicken 
(myelocytomatosis virus 29) (6). MYC was also isolated from the 
avian leukemia- and carcinoma-inducing MH2 virus, which car-
ries in addition the v-mil(RAF) allele encoding a serine/threonine 
protein kinase (7). The presence of two oncogenes significantly 
increases the oncogenicity of MH2, which is due to cooperative 
effects between the v-Myc and v-Mil(RAF) proteins (8, 9).

The v-myc allele is derived from the cellular c-myc proto-
oncogene by retroviral transduction (10, 11). C-MYC encodes 
the c-MYC protein, a transcription factor with oncogenic 
potential representing the central hub of a network controlling 

the expression of at least 15% of all human genes, and regulat-
ing fundamental cellular processes, such as growth, prolifera-
tion, differentiation, metabolism, pluripotency, and apoptosis 
(3,  12). Transcriptional deregulation of human c-MYC caused 
by  chromosomal translocation was first observed in Burkitt’s 
lymphoma (13).

Besides retroviral insertion or transduction of human c-MYC 
leading to the development of lymphomas and carcinomas, 
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amplification of MYC alleles has been observed in colon carci-
noma, neuroblastoma, and lung cancer leading to the discovery 
of the N-MYC and L-MYC paralogs (11). Constitutive activation 
of MYC is required for oncogenesis and occurs in many human 
tumor cell lines indicating that deregulated expression of this 
oncoprotein may contribute to cancer formation. In fact, besides 
the K-RAS and B-RAF oncoproteins, c-MYC represents a major 
driver in human tumorigenesis (11, 14). Ectopic expression of 
c-MYC suffices to induce metastasis in a murine non-small-cell 
lung cancer (NSCLC) model featuring the most lethal human 

cancer due to its high metastasis rate. Likewise, in prostate 
and pancreatic cancer, c-MYC is upregulated upon constitutive 
stimulation of the RAS and WNT pathways (15–19) (Figure 1). 
Immortalization and transformation of human epithelial cells 
occur after overexpressing c-MYC and simultaneously inactivat-
ing cyclin-dependent kinase inhibitor 2A (CDKN2A), leading 
to specific gene expression changes (20, 21). Today, it is known 
that deregulation of MYC genes is a frequent event in animal 
and human tumorigenesis taking place in more than 50% of all 
human cancers (3, 22). MYC proteins therefore belong to those 

TABLe 1 | Activated and suppressed MYC target genes associated with cell transformation.

Gene Activated (+)/
suppressed (−)

Protein product Function Transformation association Reference

AP4 + AP4 Gene regulator Required for MYC-induced cell cycle progression (51)
BMP7 + BMP7 Bone morphogenetic protein Silencing blocks medulloblastoma cell proliferation (52)
CCNB1 + Cyclin B1 CDK regulatory subunit Induces tetraploidy upon overexpression (53)
CCND2 + Cyclin D2 CDK regulatory subunit Absence inhibits MYC-induced colony formation (54)
CCNE1 + Cyclin E1 CDK regulatory subunit Associated with neuroblastoma progression (55)
CDC25A + CDC25 Cell cycle phosphatase Induction of apoptosis in growth factor-depleted 

cells
(56)

CDK4 + CDK4 Cyclin-dependent kinase Absence inhibits MYC-induced tumor development (57)
CDT1 + CDT1 Chromatin licensing factor Colony formation in fibroblasts (58)
E2F1 + E2F1 Cell cycle regulator Inhibition of MYC-induced apoptosis (48)
GATA-4 + GATA-4 Gene regulator Knock-down inhibits colony formation (18)
HMG-I/Y + HMG-I/Y Chromatin-binding protein Tumor generation in nude mice (59)
HSP90A + HSP90 Heat shock protein Contributes to MYC-induced transformation (60)
JAG2 + Jagged2 Notch receptor ligand Ectopic expression increases tumorigenesis (61)
JPO1 + JPO1/CDCA7 Nuclear protein Ectopic expression increases lymphoid maligancy (62)
LDH-A + Lactate dehydrogenase Enzyme in anaerobic 

glycolysis
Anchorage-independent growth in rat fibroblasts (63)

MCL1 + Mcl-1 Myeloid cell leukemia protein Abrogation of MYC-driven lymphoma development (64)
MMTN + Mimitin Mitochondrial protein Knock-down leads to tumor cell growth arrest (65)
MTA1 + MTA1 NURD complex component Knock-down inhibits MYC-induced colony formation (66)
MT-MC1 + MT-MC1 Nuclear protein Tumorigenic activity (67)
NPM + Nucleophosmin Nucleolar protein Enhances MYC/RAS cotransformation in MEF (68)
ODC + Ornithine decarboxylase Enzyme for polyamine 

synthesis
Knock-out prevents MYC-induced 
lymphomagenesis

(69)

OPN + Osteopontin Extracellular signaling protein Colony formation in primary fibroblasts (9)
PIN1 + PIN1 Peptidyl-prolyl isomerase Genetic ablation reduces MYC-induced 

lymphomagenesis
(70)

PMTA + Prothymosin-α Chromatin remodeling factor Induction of anchorage-independent growth (71)
PRDX3 + Peroxiredoxin Mitochondrial protein Colony formation in soft agar (72)
PRMT5 + Arg methyl transferase Key enzyme in snRNP 

assembly
Knock-out in lymphoma cells reduces tumorigenesis (73)

RCL + RCL Nuclear protein Colony formation in rat fibroblasts (63)
TFRC1 + TFRC1 Transferrin receptor 1 Enhancement of MYC-mediated tumor formation (74)
Tmp + Tmp Tumor-associated 

glycoprotein
Tumor formation in nude mice (75)

WS5 + WS5/Pmel17 Transmembrane glycoprotein Colony formation in primary avian fibroblasts (76)
p32 + C1QBP Complement component Inhibition of tumor cell growth upon knock-down (77)
lnc H19 + n.a. Long non-coding RNA Knock-down decreases cancer cell clonogenicity (78)
BASP1 − Brain acid-soluble protein Signaling protein Inhibition of focus and colony formation (50)
FER-H − Ferritin H Iron storage protein Downregulation required for oncogenesis (79)
NDRG1 − N-myc downregulated 

gene
Hydrolase Metastasis suppressor (80)

PRDM11 − PR-domain protein Transcriptional regulator Knock accelerates MYC-induced lymphomagenesis (81)
Onzin − Onzin Cysteine-rich protein Oncogenesis upon overexpressiona (82)
THBS1 − Thrombospondin Antiangiogenic factor Overexpression reduces tumorigenesis in xenografts (83)
TXNIP − Thioredoxin-interacting 

protein
Negative regulator of 
glycolysis

Expression reduces cell proliferation (84)

MycLo4-6 − n.a. Myc-repressed lncRNAs Prohibits MYC-enhanced cell proliferation (85)

n.a., not applicable.
aDisproportional behaviour.
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crucial master switches in most human cancers, from which many 
of them are associated with a poor clinical outcome (12, 23).

PRinCiPAL BiOCHeMiCAL  
FUnCTiOnS OF MYC

MYC is a bHLHZip protein encompassing protein dimerization 
domains (helix–loop–helix, leucine zipper) and a DNA contact 
surface (basic region) that forms heterodimers with the MAX 
protein and binds typically to specific DNA sequence elements 
termed E-boxes (5′-CACGTG-3′) (10, 11). MYC and MAX 
homologs with conserved basic functions were found in primi-
tive metazoans (24, 25) and premetazoans (26), suggesting that 
principal functions of the MYC master regulator arose very early 
in the evolution of multicellular animals.

MYC is regulated at transcriptional and translational levels 
and stabilized by post-translational modifications, such as 
RAS-dependent phosphorylation (27). In fact, it has been shown 
that RAS/ERK and PI3K/AKT signaling cascades significantly 
increase the half-life of MYC, which is normally subjected to 
rapid ubiquitin-mediated protein degradation (28, 29) (Figure 1). 
Although MYC is also involved in DNA replication and cell cycle 
checkpoint processes (30), its major function is transcriptional 
regulation (11, 12). MYC binds to multiple coactivators repre-
senting components of histone acetyltransferase complexes, to 
ubiquitin ligases, or to other transcription factors, thereby induc-
ing transcriptional activation or repression (10, 11).

AMPLiFiCATiOn OF Gene  
eXPReSSiOn BY MYC

Previous global analyses, using techniques such as serial analysis 
of gene expression, DNA microarrays, chromatin immunopre-
cipitation coupled with high through-put sequencing (ChIP-Seq), 
promoter scanning, or proteomics, have led to the identification 
of thousands of genes controlled by the MYC/MAX network, 
which are involved in fundamental cellular processes, including 
growth, proliferation, metabolism, differentiation, and apop-
tosis (31–37). Many of the MYC-activated genes are broadly 
related to processes of nucleotide synthesis, cell growth, and 
metabolism, including protein synthesis, ribosomal biogenesis, 
glycolysis, mitochondrial function, and cell cycle progression 
(11, 12, 38). In addition, several cell cycle-related genes whose 
protein products initiate DNA replication are transcriptional 
MYC targets, which could explain why deregulated DNA 
synthesis, chromosomal abnormalities, and genomic instability 
frequently occurs in human tumor cells containing activated 
MYC (39).

Deregulated MYC target genes have been identified in numer-
ous human tumors (11, 40), but so far it has been difficult to 
ascribe the oncogenic properties of MYC to a defined set of target 
genes. In fact, results from recent studies indicate that MYC acts 
as a general amplifier of gene expression (41–43). According 
to this theory, the promoters of all actively transcribed genes 
are occupied and activated by c-MYC in tumor cells expressing 
high levels of this transcription factor, leading to non-linear 

amplification of existing transcriptional activities (41, 42, 44–46). 
The observed differential expression of multiple genes in cells 
containing aberrantly activated MYC is therefore due to indi-
vidually enhanced gene expression occurring at varying levels. 
The amplifier model also explains how ectopic c-MYC increases 
the efficiencies of other transcription factor programs (46), e.g., 
during generation of pluripotent stem cells from fibroblasts. 
This re-programing of cells is achieved by overexpressing the 
transcription factors OCT4, SOX2, and KLF4 (47). On the other 
hand, gene repression in cells transformed by MYC is caused by 
MYC interaction with specific transcription factors or indirectly 
by increasing the expression of repressive transcriptional and 
chromatin components.

MYC TARGeTS wiTH OnCOGeniC OR 
TRAnSFORMATiOn-SUPPReSSive 
ACTiviTieS

The conversion of a normal into a tumorigenic cell could be 
caused by the products of multiple transformation-associated 
MYC target genes, from which more than 40 have been identi-
fied so far (Table 1). Some of these genes exhibit transforming 
activity upon ectopic expression, suggesting that they contribute 
to MYC-induced oncogenesis. Furthermore, there is evidence 
that MYC enhances the effects of other oncogenic gene regula-
tors, such as E2F (48) or AP-1 (9) (Figure  1). In addition to 
the implication of MYC/MAX heterodimers in transcriptional 
activation, MYC has been also associated with transcriptional 
repression, thereby in many cases not binding directly to E-boxes 
but instead involving other transcription factors such as MIZ-1 
or SP1 (3, 12, 46, 49, 50). Most of the genes repressed by MYC 
are involved in cell cycle arrest, cell adhesion, and cell-to-cell 
communication (11).

Besides regulating the expression of protein-encoding 
genes, MYC also controls the expression of distinct long 
non-coding ribonucleic acids (lncRNA) (78, 85–87) and of 
multiple small non-coding regulatory microRNAs (miRNA) 
(3, 88–91). Some of the miRNAs have oncogenic properties 
such as the miR-17–92 cluster (oncomir-1) or have tumor sup-
pressor functions (16, 85, 88, 92) (Table 1). miRNAs inhibit 
protein translation or lead to degradation of their target mes-
senger RNAs (mRNA) and have been implicated in cancer by 
inactivating distinct mRNAs encoding oncogenes or tumor 
suppressors (93).

APPROACHeS TO iDenTiFY CRiTiCAL 
TARGeTS eXeCUTinG MYC-inDUCeD 
CeLL TRAnSFORMATiOn

Transformation-associated targets of MYC either display intrin-
sic transforming activities or inhibit oncogenesis depending 
whether they are activated or repressed (Table  1). Assuming 
that MYC transformation is mainly based on transcriptional 
deregulation, only the combined effects of multiple activated 
or suppressed targets may suffice to induce a “MYC-like” 
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transformed phenotype. However, just systematically analyzing 
known transformation-relevant MYC targets is not constructive 
because the list in Table  1 is not exhaustive, and even more 
important, many of these targets have been isolated from dif-
ferent cellular systems under in  vitro cell culture conditions. 
This may not reflect the real situation in vivo in which oxygen, 
nutrients, or growth factors are limited. Furthermore, the 
hypothesis in earlier reductionists’ approaches assuming that 
a tumor consists of a homogenous collection of cancer cells 
and its biology is accessible by elucidating all cell autonomous 
properties and is not valid any more. In human carcinogenesis, 
diverse cell types from cancer stem cells give rise to intra-tumor 
heterogeneity, thus further increasing the genetic complexity 
and representing a major cause of cancer recurrence (1, 94, 95). 
Cancer cells progressively evolve from normal cells in a multistep 
process, thereby acquiring distinct characteristic features in an 
additive manner. Thus, a succession of clonal expansions occurs 
also involving epigenetic mechanisms such as methylation or 
histone modification. In particular, the transition to invasion and 
metastasis encompasses several discrete steps. With regard to this 
complex scenario, certain in  vitro environmental pertubations 
have to be reconsidered and better adapted to the in vivo situa-
tion, for instance, by using isogenic cell lines, which differ only 
in single allelic mutations (95, 96). More unbiased approaches 
based on oncogenic functions are required to identify a puta-
tive magic target gene set which suffices to phenocopy MYC 
transformation, supposed that such Holy Grail exists at all. The 
following approaches are suggested to dissect the complexity of 
the oncogenic MYC transcriptional program:

Functional expression Cloning
Isolation of novel coding and non-coding MYC targets with 
strong oncogenic activities could be done by cDNA expression 
cloning using MYC-dependent tumor cells as a source for RNA 
isolation. The application of retroviral cDNA expression librar-
ies has already successfully led to the isolation of transforming 
genes from human tumor cells (97–100). Thereby, the selection 
for distinct genes is based exclusively on function, in this case 
the capacity to transform cells. Appropriate gene-transfer tools 
are retroviral vectors, allowing the efficient introduction of 
complex cDNA libraries (99, 101) and appropriate screening 
procedures.

Combinatorial Gene expression
Due to the pleiotropic MYC effect leading to the development 
of multiple different tumor forms, one could postulate that 
simultaneous perturbation of multiple targets suffices to convert 
a normal cell into a cancer cell displaying a MYC-transformed 
phenotype. Due to the capacity of MYC to enhance existing 
transcriptional programs (see above), the identification of 
transcription factors, which are involved in executing the onco-
genic MYC program, should be straightforward. Critical MYC 
targets can then be overexpressed and inactivated depending on 
whether they are activated and suppressed in MYC-transformed 
cells, respectively. To simultaneously overexpress multiple 
genes or interfering RNAs in single cells, several established 

techniques exist. They are based on different principles such as 
 co-transfection of multiple plasmids, usage of bicistronic vec-
tors containing an internal ribosomal-binding site, infection 
with retroviruses containing different envelope subtypes, or 
self-processing peptides (47, 102).

Analysis of Targets by Permanent Gene 
inactivation
The functionality of critical target genes can be tested by genomic 
inactivation and the usage of appropriate in vivo tumor model 
systems. To analyze if expression of a distinct target is required 
for maintenance of cell transformation, its inactivation should be 
performed in MYC-dependent tumor cells. Otherwise, to test if a 
target is required for the initiation of MYC-induced cell transfor-
mation, the relevant gene has to be disrupted in normal cells prior 
to MYC transduction. An appropriate tool for genomic inactiva-
tion is the recently developed clustered regularly interspaced 
short palindromic repeats (CRISPR) system (103, 104). Precise 
genome editing is achieved by creating specific double-stranded 
breaks, which allow the generation of homozygous knock-out 
or knock-in genotypes. Specific MYC target gene inactivation 
could lead to inhibition of the tumorigenic phenotype, cell cycle 
arrest, or apoptosis. Suitable in vivo techniques to quantify gene 
inactivation effects on tumor growth and angiogenesis are, e.g., 
the generation of mouse xenoplants, and the chicken chorioal-
lanthoic membrane assay. Inhibition of tumorigenesis caused 
by inactivation of MYC distinct targets would indicate essential 
functions of the tested genes.

MYC TARGeTS AS TeMPLATeS FOR 
inHiBiTOR DeSiGn

Because of its pivotal role in cancer, MYC has become an obvious 
target in the treatment of human cancer cells. Several approaches 
to interfere with MYC gene transcription, MYC protein function, 
or with the functions of distinct targets have been pursued to 
inhibit MYC-dependent pathogenesis.

Intracellular signal transduction pathways regulating MYC 
expression and protein stability have been targeted by using 
chemical inhibitors, which are in the trial phase or already applied 
in the clinic. Thereby, key proteins of the two main signaling cas-
cades responsible for cell survival, differentiation, proliferation, 
metabolism, and motility were inhibited: the RAS– extracellular 
signal-regulated kinase (ERK) and the phosphatidylinositol 
3-kinase (PI3K) pathways (4, 105, 106) (Figure 1).

Direct inhibition of MYC functions has been achieved by 
using different strategies. c-MYC transcription has been targeted 
by inhibiting the chromatin acetyl-lysine recognition domain 
(bromodomain) of a MYC-specific coactivator. This led to 
suppression of c-MYC transcription followed by genome-wide 
downregulation of MYC-dependent target genes (107). C-MYC 
transcription has been blocked by the miRNA miR-494 leading 
to inhibition of proliferation, invasion, and chemoresistance 
in pancreatic cancer (108). Furthermore, a dominant negative 
mutant of the MYC dimerization domain termed Omomyc is 
effective against glioma thereby inhibiting cell proliferation and 
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increasing apoptosis (109). Perturbation of MYC/MAX interac-
tion by synthetic α-helix mimetics or by the homeobox protein 
Hhex led to impaired DNA binding suppressed transcriptional 
activation and inhibition of cell growth and tumorigenesis (110, 
111). Efficient interference with MYC functions has been also 
achieved by using novel pyridine inhibitors leading to specific 
inhibition of MYC/MAX dimerization, transcriptional regula-
tion, and oncogenesis (112, 113). These novel compounds reveal 
a unique inhibitory potential even at nanomolar concentrations 
combined with the specific inhibition of MYC-driven tumor 
growth in vivo (112).

However, under normal physiological conditions MYC 
is required for many cell physiological processes and for 
homeostasis. A complete block of the MYC protein by binding 
to efficient inhibitors may result into undesired side effects or 
into drug resistance after prolonged application. Approaches 
based on the principle of synthetic lethality using MYC-
overexpressing cancer cells have lead to the identification of 
targets, which may be susceptible towards appropriate drugs. 
Synthetic lethality is defined by cell death induced by mutation 
or inhibition of two different genes, whereas the dysfunction 
of one gene has no effect on cell viability. This principle can be 
exploited to screen for anticancer drugs by mimicking the effect 

of the second genetic mutation using chemical or inhibiting-
RNA libraries (114). For instance, pharmacological inhibition 
of the eukaryotic translation factor eIF4F is synthetic lethal in 
an Eμ-MYC lymphoma model (115). Likewise, selective death 
of MYC-dependent human breast cancer cells was achieved 
by siRNA-mediated inhibition of cyclin-dependent kinase 1 
(CDK1) (116). Another example is the identification of a DNA 
repair protein kinase (PRKDC) as a synthetic lethal target in 
MYC-overexpressing lung cancer cells, which was identified in 
RNAi library screen (117). Therefore, attacking oncogenic MYC 
effectors may increase the specificity of MYC-dependent tumor 
treatment and enlarge the arsenal of available drugs.
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