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Amalina Izzati Abdul Hamid,1,4,* Ami Hassan Md Din,1,* Norhakim Yusof,2 Nazirah Mohammad Abdullah,3

Mohammad Hanif Hamden,1 and Nur Adilla Zulkifli1

SUMMARY

Space geodetic and optical imaging techniques are employed to assess the coastal vulnerability index
(CVI) in order to adapt to the contemporary approach to coastal classification. Satellite altimeter, Satellite
Pour l’Observation de la Terre (SPOT) and integrated multi-satellite retrievals for GPM (IMERG) were
among the satellite data used. The variables were deemed adequate based on the spatiotemporal esti-
mates, then were quantified through expert-weighted scores and integrated into a single index over
the Terengganu coastal area. The CVI findings performed better with eight variables, showing higher
overall accuracy (70.83%), Kappa coefficient (59.02%), and area under curve (AUC) (0.8) than the conven-
tional six variables. Vulnerability rankings are distributed relatively evenly across the Terengganu coast,
with themoderate (2) ranking being themost predominant at 27.2% of the total area. Space geodetic and
optical imagery techniques prove highly beneficial to CVI assessment, offering a viable alternative to
traditional methods, especially for broader-scale coastal management.

INTRODUCTION

Coastal systems hold a substantial ecological and natural significance, and sustaining them is crucial because they provide essential

ecosystem services for human well-being.1,2 Due to their dynamic nature, coastal ecosystems are highly susceptible to environmental

and anthropogenic pressures. Recent years have seen environmental dangers arising from unrestricted development and unsustainable

use of coastal resources. Furthermore, the impact of climate change is increasingly pronounced on coastal areas, with the prevalence

of rising sea levels in the years to come. The anticipated increase in global mean sea level (GMSL) is contingent on which the represen-

tative concentration pathway (RCP) emission scenario is followed, with a rise estimated to range between 0.43 m for RCP 2.6 and 0.84 m for

RCP 8.5.3 Nonetheless, irrespective of the pathway followed, the projected outcomes suggest unfavorable implications across various

dimensions.

The notion of coastal vulnerability arises from interdisciplinary studies involving physical, ecological, and human characteristics that can

alter coastal dynamics, gaining prominence as coastal areas globally confront heightened threats.4,5 Due to the diversity in these factors,

Earth scientists have undertaken investigations using multiple methods to categorize coastal areas by integrating these variables. They

have developed several predictors, with one popular approach being the coastal vulnerability index or CVI. Over time, this approach gains

favor due to its ability to acknowledge and select a number of prominent causes or variables to facilitate coastal classification in understand-

able information.6 However, selecting from a number of crucial coastal variables to identify vulnerability proves to be very tricky. A study by

Thieler and Hammar-Klose7 addressing coastal vulnerability in the United States employed six accessible physical variables, namely geomor-

phology, shoreline erosion and accretion rates, coastal slope, rate of relative sea-level rise, tidal range, and mean wave height. Since then,

scientists worldwide have regarded these variables as crucial for coastal assessments. Despite that, the varied geomorphological profiles of

coastal regions globally should not be confined solely to the variables mentioned by Thieler and Hammar-Klose. Instead, the specific con-

ditions of the research area must be taken into account. For instance, Pantusa et al.8 introduced additional variables that characterize the

study area, in addition to employing conventional variables to assess CVI.

Recently, space technologies have emerged as promising tools for large-scale mapping, propelled by revolutionary advancements in

satellite techniques to extract reliable information.9 In addition to capturing images and data across extensive geographical areas, space

technologies are linked to cost-effectiveness for continuously monitoring and collecting data over time.10 These technologies have also

demonstrated the ability to monitor changes in timely updates, collect geospatial data in remote places, and rapidly acquire data. Therefore,
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by fully adopting these technologies, this paper presents a method using space-geodetic satellites and optical imaging techniques to derive

coastal variables required for assessing CVI. Despite these advancements, space technologies are still lacking in terms of optimal satellite

sensor and data fusion strategies. For this reason, the derived variables in this paper were subjected to a spatiotemporal analysis to optimize

their utilization, ensuring that CVI runs on clean, accurate, and meaningful data.

RESULTS AND DISCUSSIONS

This section delves into the findings and their analyses, beginning with the spatiotemporal analysis for each physical variable, then comparing

the derived CVI from the weighted variables, and concluding with an evaluation of the final CVI.

Spatiotemporal analysis of physical variable

Regional-scale CVI becomes feasible with the advent of space-based measurements that offer widespread information on landscapes and

oceans. In this paper, a spatiotemporal analysis of each physical variable was performed in order to maximize the information extracted by

cutting-edge space geodetic and optical imagery. The following findings based on each physical variable culminate in the formulation of CVI.

Geomorphology

Considering the large landscape image involved, different image classification techniques can present a certain rebuttal on which classifica-

tion is reliable. A comparison was conducted between supervised and segmented object-based segment analysis (OBIA), utilizing 27 coastal

global navigation satellite system (GNSS) control points and focusing on overall accuracy (OA) andCohen’sKappa. This analysis concentrated

on specific sites representing diverse environmental conditions, with Figure 1 depicting the disparities between the two classifications at the

Kemaman industrial zone in Terengganu.

It is evident from Figure 1 that supervised classification tends to exaggerate the composition of land cover, notably misclassifying the ma-

jority of built-up areas asmuddy flat areas. In contrast, SegOptim exhibits immaculate classification, accurately categorizing features based on

Figure 1. Comparison of different classification techniques at Kemaman industrial zone

(left) derived from supervised classification and (right) is from SegOptim.
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the given training samples. Among all classes, compositional characteristics of sand, built-up area, and grassland show refinement in pro-

ducer’s accuracy, whereas features on composites of sands and clays as well as built-up area exhibit a slight refinement in user’s accuracy

when segmented OBIA is used. The combined supervised with segmented OBIA yields and OA of a score of 71.43%, higher than the score

generated from the supervised classification alone, which is 42.86%. Kappametric also improves significantly when segmentedOBIA is incor-

porated, showing a substantial increase of around 23%.

Shoreline erosion or accretion

The rate-of-change extracted from four temporal shoreline positions was spatially quantified over the transects using the linear regression

rate (LRR) analytic approach. This type of analytical is chosen for CVI assessment as it incorporates all shorelines involved in the computation,

Figure 2. Terengganu shoreline’s multi-temporal position and its linear regression

The shoreline’s multi-temporal position and its linear regression at (A) Kampung Pantai, Besut (B) Pantai Merang, (C) Sultan Mahmud Airport, Kuala Terengganu,

and (D) Breakwater at Kuala Terengganu drawbridge.
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resulting in robust performance across a wide range of distributions.11,12 Figure 2 depicts the notable erosion/accretion and its rate-of-change

based on LRR estimates. This table also included the end-point-rate (EPR) analytical, comparing these two approaches.

Significant retreat is observed at E1 and E2, while E3 and E4 experience accretion. Based on the LRR analytic rate estimates, Tereng-

ganu’s shoreline undergoes average erosion and accretional rates of �1.72 m/yr and 3.56 m/yr, respectively. The transects contributing to

erosion are 63.56%, indicating that the majority of the Terengganu coast is eroding at alarming rates. Kampung Pantai, Besut (E1), as

shown in Figure 2, experiences a substantial retreat of �14.3 m/yr, attributed to the coastal land loss events that potentially occurred after

2002.

Coastal slope

For the spatiotemporal analysis of the coastal slope in Terengganu, 98 GNSS control points were employed, and their orthometric heights (H)

were calculated. These data were then compared with TanDEM-X in terms of mean bias (MB), root-mean-square error (RMSE), and correla-

tion. The statistical analysis reveals a correlation of 0.65 for TanDEM-X with 12 m combined 30 m resolutions. As shown in Figure 3, the eleva-

tion difference of H fromGNSS and TanDEM-X also shows a good correlation with TanDEM-X points relative to the zero value. In summary, in

addition to satisfactory correlation metric, TanDEM-X with combined 12 m and 30 m resolutions exhibits lower RMSE (2.42 m) andMB (0.562

m) metrics, rendering it adequate for the CVI assessment of coastal slope.

Significant wave height

Significant wave height from satellite altimeters and coastal and offshore buoys in the South China Sea were retrieved for spatiotemporal

analysis, emphasizing time series pattern, correlation, and statistical analyses. Figure 4 demonstrates that among the four buoys utilized,

the Sarawak buoy shows a strong agreement in linear correlation analysis with altimetric significant wave height. The correlation metric at

Sarawak buoy yields a confidence result of 0.941, with an estimated RMSE of 0.165 m.

Nevertheless, the significant wave heights observed from the SOTONG and AWAC buoys clearly show a noticeable disparity when

compared to altimetry data, yet still marginally align with the buoy pattern. The diminished correlation metrics at both buoys are attributed

to a lack of data, which may reduce the precision. Meanwhile, the buoy located in the Sabah region’s sea demonstrates a substantial corre-

lation between altimetric and buoy-derived significant wave heights, as proven by the correlation and RMSE values of 0.931 and 0.168 m,

respectively. Table 1 shows that the statistical analysis of significant wave height from both measurements reveals satisfactory scores that

are acceptable for use in the CVI assessment.

Tidal range

To establish the optimal mean tidal range for use in CVI assessment, the tidal range derived from the integrated UTM2013 and altimeter mis-

sions were assessed with mean tidal range data from 11 Peninsular Malaysia tide gauge stations. Figure 5 depicts the correlation and line

patterns of tidal ranges, indicating a robust agreement between UTM20 and the observedmean tidal range from tide gauges, in comparison

to the linear correlation between altimeter-derived tidal range and mean tidal range from tide gauges.

This is further substantiated by the near-optimal coefficients of 0.994 and RMSE of 0.164 m, showcasing a difference of around 0.6 m when

compared to RMSE of the altimetric-derived tidal range, as presented in Table 2. Despite the need for significant enhancements in satellite

altimeter-derived tidal range, the current viable solution to enhance the satellite altimeter-derived tidal model involves integrating it with

conventional tide gauge-derived tidal information. This integrated approach is deemed sufficient for assessing tidal range through space

Figure 3. The correlation and elevation difference of H from TanDEM-X and GSS points
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measurements. Based on this analysis, it is reasonable to assert that the UTM20model outperforms the tidal range from the satellite altimeter

and is thus suitable for CVI assessment.

Sea level rate

Sea level rate is a time series analysis, and information on the signal frequency domain is not as crucial as tide analysis. Hence, sea level anat-

omy (SLA) data, crucial for rate computation, were examined from both tide gauge and altimetric datasets in five east coast stations of Penin-

sular Malaysia. The time series plots of altimetric and tidal records at all tide gauge stations exhibit similar patterns and linear correlation,

indicating good agreement across all stations. Figure 6 shows the linear correlation observed at the East Coast tide gauge stations. The cor-

relation analysis resulted in an average of 92% confidence level for all stations, with correlation values ranging from 0.89 to 0.94. Moreover, all

altimetry data achieved RMSE between 0.04 m and 0.05m, respectively, yielding a near-optimal value of 0, thus appropriate for the CVI

assessment.

Land subsidence or uplift rate

Since the sea level data in this study did not incorporate land subsidence/uplift from tidal data, a separate land subsidence/uplift model was

included. Figure 7 demonstrates the land subsidence/uplift rate over the Terengganu region as calculated by Zulkifli.14 These rates were

determined from year 1999–2017 by assimilating multi-sensor geodetic techniques to enhance land subsidence/uplift estimates. In Figure 7,

the dark blue color signifies a land uplift, which is apparent in urban areas of Kuala Terengganu, Al-Muktafi Billah Shah town, Dungun, and

Chukai. While seismic activities can induce land uplift, it can also be attributed to various factors, as in the case of coastal uplift in Kuala Ter-

engganu, which is most likely the result of aggressive coastal protection and nourishment practices due to mitigating severe erosion. None-

theless, notable land subsidence at Marang coasts, as shown in Figure 7, is a result of substantial alterations in general, in terms of sediment

transport, wave, monsoon, wind, tidal inundation, and urban expansion.15

Rainfall intensity

Based on the annual accumulated rainfall data obtained, the IMERG product is tested in terms of pattern and correlation against 14 rain

gauges dispersed across southern Terengganu. The rain gauge data were collected from 2000 to 2016. Figure 8 shows the annual precipi-

tation pattern from IMERG is underestimated compared to the precipitation recorded by rain gauges. Nevertheless. It closely resembles the

Figure 4. Time series and correlation analyses between altimetric and buoy significant wave heights

Units are in meters.

Table 1. Mean difference, RMSE, and R2 value for significant wave height data

Station Mean Bias (m) RMSE (m) R2

Significant wave height

AWAC 0.046 0.261 0.784

SOTONG 0.634 0.758 0.633

Sarawak 0.011 0.165 0.941

Sabah �0.094 0.168 0.931

Average 0.261 0.338 0.784
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precipitation pattern observed in rain gauge data. According toMahmud et al.,16 satellite-derived precipitation tends to underestimate heavy

rainfall in stations located in East Malaysia, thus lending credence to the IMERG’s underestimated precipitation readings of this study.

Notwithstanding, the average RMSE and R2 metrics shown in Table 3 are 8.32 mm and 0.64, respectively. These results indicate a satis-

factory performance of IMERG in assessing annual spatial rainfall variability in Malaysia’s tropical humid equatorial region. Furthermore,

the detection accuracy of precipitation events in the IMERG product was assessed using metrics such as probability detection (POD), false

alarm ratio (FAR), and crucial success index (CSI). The ideal POD and CSI values are 1, while FAR is 0. The overall POD is 0.94, with SK Kijal

having the highest POD value of 0.97 and Tebak station exhibiting the lowest POD of 0.92. However, the FAR score for SK Kijal is 0.56, the

highest among other stations, indicating around 56%of the expected precipitation but no rainfall from rain gauges. The average FAR is 0.479,

with the Jengai station registering the lowest score of 0.376. Generally, the CSI for all precipitation products ranges from 0.432 to 0.6, sug-

gesting that around half of the precipitations are correctly assessed.

Comparison between six and eight parameters of CVI

The final parameters in Table 4, are summarized from the contribution of each variable to the final estimated vulnerability score derived from

space-based information on physical variables. Each parameter has a relative vulnerability score given to it, ranging from 1 to 5, with 1 denot-

ing very low vulnerability while 5 denoting very high vulnerability.

Three of the seven experts’ weightings were disregarded as their consistency ratio exceeded the 0.1 threshold. The final weights were

computed to three decimal places to improve the visibility of differences between variables.17 Overall, the Terengganu coast vulnerability

is predominantly influenced by shoreline erosion, which holds the highest overall weight of 0.316, followed by significant wave height

(0.178), sea level rate (0.129), geomorphology (0.09), mean tidal range (0.085), coastal slope (0.067), and land subsidence (0.045), while rainfall

intensity carries the lowest weight at 0.021.

The final CVI was calculated, and the assigned vulnerability categories (low, moderate, high, and very high) were determined and

compared to 24 CVI control points derived from extensive GNSS and site surveys. This comparison involved evaluating OA, Kappa metric,

receiver operating characteristic (ROC) curve and area under curve (AUC), to ascertain whether the vulnerability assessment of the Tereng-

ganu coast is better suited with six or eight parameters of CVI. Major refinement of producer’s and user’s accuracies from six to eight

Figure 5. Tidal range correlation analysis and line pattern

Units are in meters.

Table 2. Mean difference, RMSE, and R2 values for tidal range estimates

Model Mean Bias (m) RMSE (m) R2

Mean tidal range

Satellite altimeter �0.447 0.783 0.740

UTM20 �0.115 0.164 0.994
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parameters, with a substantial increase in both accuracies of vulnerability categories of moderate, high, and very high was determined. The

very high (4) ranking indicates an increase in the producer’s accuracy from 50% to 75% between six and eight parameters but decreases from

66.67% (six parameters) to 54.55% (eight parameters), implying that at least 20% is incorrectly classified between both accuracies of eight

parameters.

The eight parameters of CVI results in anOA of 70.83% and a Kappametric of 59.02%. The scores for eight parameters substantially surpass

the accuracy scores of six parameters, which are 45.8% for OA and 26.06% for the Kappa score, reflecting a 32% improvement in accuracy.

Figure 9 depicts the ROC curve and AUC metrics for six and eight parameters, with eight parameters transcending the six. As the developed

CVI revolves around the multi-class problem, the heuristic approach was utilized to break the multi-class classification problem into multiple

binary classifications, allowing for the training of individual models for each case. The ROC curves represent the performance of four

Figure 6. Time series and correlation analysis between altimetric and tidal SLA in Cendering tide gauge station in Terengganu

Units are in meters.

Figure 7. Land subsidence/uplift rate over the Terengganu region
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Figure 8. Terengganu coastal rain gauge stations pattern and correlation plot
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vulnerability categories. The eight parameters of CVI exhibit an excellent classifier, evident by lines closer to the axes, except the

Low_VeryHigh category, which is closer to the gray line and suggests a less effective classifier. The corresponding AUC metrics in eight pa-

rameters exceed 0.8 across tested categories, except for the Low_VeryHigh category. This indicates a more than 80% prediction accuracy for

the tested model. In conclusion, the metrics calculated from the confusion matrix and ROC curve demonstrate that the CVI generated from

eight parameters presents a convincing outcome, outperforming the six parameters.

Terengganu CVI assessment from physical variables

The ranking of physical variables ranking was assessed. Sandy coastline and woodland classes constitute the majority of geomorphological

features. The area surrounding Pantai Batu Buruk, Kuala Terengganu, Teluk Bidara, and Kuala Dungun is dominant in terms of very high-

ranking (5) scores. Based on the computed area of Terengganugeomorphology, the classification predominantly falls into the low (1) category

with a score of 47.5%, largely found in woodland areas, and high (4) score with a percentage of 18.9%, which is mostly observed in coastal

areas.

Terengganu coastal areas exhibit around 83.9% high (4) vulnerability ranking, with 11.01% indicating moderate (3) erosion. According to

rate estimated from LRR, the average rate of changes in Terengganu coast is 0.24 m/yr with average erosion and accretional rates are

�1.72 m/yr and 3.65 m/yr, respectively. Mountainous areas exhibit a low (1) vulnerability score, whereas slopes in urban and industrial areas

Table 3. Evaluation metrics between IMERG and rain gauge precipitation data

Station Mean bias (mm) RMSE (mm) R2 POD FAR CSI

Jengai �1.0386 9.8696 0.5763 0.94 0.3757 0.6004

Billah 0.1044 9.0506 0.6140 0.9694 0.4828 0.5089

Pasir Raja 0.0261 8.8283 0.6011 0.9491 0.4041 0.5775

SK Kerteh* 0.8826 8.170 0.6285 0.9251 0.4929 0.4871

SMK Badrul* 0.6722 7.8441 0.6364 0.9284 0.5135 0.4689

Tebak 0.1135 8.7741 0.6237 0.9217 0.4411 0.5335

Seri Bandi 0.0675 8.35 0.6968 0.9332 0.47 0.5107

Kg. Ibok 0.4336 8.0388 0.7156 0.9475 0.5108 0.4762

SK Kijal* 1.1762 7.7478 0.6881 0.9698 0.5616 0.4325

Air Putih 0.7019 7.6163 0.5708 0.9294 0.4739 0.5058

SK Pasir Gajah 0.3854 7.9461 0.7353 0.9231 0.4577 0.5189

JPS Kemaman* 0.611 7.5745 0.7009 0.9418 0.5167 0.4693

Kg. Ban Ho 0.1883 8.4111 0.5637 0.9512 0.4832 0.5034

Hulu Jabor 0.5396 8.2942 0.6605 0.9444 0.5282 0.4590

Average 0.3474 8.3225 0.6437 0.941 0.4794 0.5037

*Terengganu coastal rain gauge stations; *SK, Sekolah Kebangsaan (primary school).

*SMK, Sekolah Menengah Kebangsaan (secondary school); *Kg., Kampung (village).

*JPS, Malaysian Department of Irrigation and Drainage.

Table 4. Final CVI ranking based on eight physical variables

VARIABLE

Ranking of coastal vulnerability index

Very low Low Moderate High Very High

1 2 3 4 5

Geomorphology Rocky cliff/area Composites of sands and rocks Sands Composites of sands and clays Muddy flat area

Shoreline erosion (m year�1) 36.07–53.24 18.90–36.06 1.73–18.89 �15.44–1.72 �15.45–�32.62

Sea level rate (mm yr�1) 2.75–3.32 3.33–3.89 3.90–4.47 4.48–5.04 5.05–5.61

Mean tidal range (m) 4.89–5.91 3.87–4.88 2.85–3.86 1.83–2.84 0.80–1.82

Significant wave height (m) 0.22–0.56 0.57–0.90 0.91–1.23 1.24–1.56 1.57–1.90

Coastal slope (%) >15.10 10.10–15.00 5.10–10.00 2.10–5.00 <2.00

Land subsidence (mm year�1) 0.24–1.04 �0.55 – 0.23 �1.35–�0.56 �2.15–�1.36 �2.96–�2.16

Rainfall intensity (mm hour�1) <0.30 0.31–0.33 0.34–0.36 0.37–0.39 >0.40
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attain the highest score of very high (4) ranking, constituting 12% of the overall ranking. According to the land subsidence/uplift rates,

43.8% of Terengganu coasts have moderate (3) subsidence ranging from �1.35 mm/yr to �0.56 mm/yr, with the Marang coast having

the highest ranking. In addition, the rainfall intensity over the Terengganu coast, estimated from IMERG data for the period of 2000–

2019, has high (4) ranking in the most northern part of the Terengganu coast and moderate (3) ranking in the rest of Terengganu coast.

Figure 10 displays the vulnerability ranking assigned to shoreline erosion, coastal slope, land subsidence/uplift rate, and rainfall intensity

across the Terengganu coast.

The seasonal circulation significantly influences the variability of waves northeast of the SouthChina Sea18 and intensifies larger waves. This

results in the central part of the South China Sea near the Terengganu coasts being moderately (3) exposed to coastal risk, while the northern

and southern parts are categorized as low (2) in vulnerability. Meanwhile, in this study, areas with low tidal ranges are classified as highly

vulnerable since micro tidal areas are more prone to increased storm risk since they are always ’’near’’ high tide. The tidal range along the

Terengganu coast has been classified as high (4) risk in the northern part and moderate (3) risk in the most southern part. After assigning

the risk value of the sea level rate, the dominated ranking is identified, with the low (2) ranking predominating over the Terengganu coast.

The final vulnerability ranking of significant wave height, tidal range, and sea level rate are shown in Figure 11.

The final CVI were categorically assigned based on the 25th, 50th, and 75th percentiles, based on Thieler and Hammar-Klose’s study.7 Fig-

ures 12, 13, 14, and 15 show the final CVI derived from eight parameters mapped along the Terengganu coast. The vast expanse of the Ter-

engganu coast is part of a broad alluvial plain, with sandy beaches stretching nearly the entire length of the coast. As a result, the highest

vulnerability to rising sea levels is mostly found in low-lying areas with mudflats, composites of sands and clays, or sands only. The highest

scores are observed in Pantai Penarik and Pantai Rusila at Kuala Terengganu, Pantai Merchang at Marang, Pantai Teluk Bidara Pantai Teluk

Lipat at Kuala Dungun, and Pantai Paka. The most affected areas are mostly identified in urban and residential areas near the coasts, with a

high (3) risk to very high (4) ranking. The residential areas at Pantai Penarik, Pantai Rusila, Pantai Teluk Lipat, and Pantai Paka are known for their

erosive trend, prompting active restoration works in these areas over the years.

Contrary to expectations, the CVI based on eight parameters reveals that the urban areas of Kuala Terengganu, particularly those near the

Sultan Mahmud Airport, have a high (3) to moderate (2) vulnerability ranking. Despite being known as coastal area with a high risk of severe

erosion due to tarmac extension, the situation is still under control and deemed safer compared to other coastal areas with high-ranking

coastal areas. This is probably because stakeholders are aggressively restoring Kuala Terengganu urban areas by constructing rip rap and

compacting sand on the beach for maintenance purposes.19 Low (1) vulnerability areas, defined by scores less than 1.45, can be found in

the majority of high-lying woodlands, such as Rimba Bandar Bukit Bauk, Dungun, and Bukit Kambing, Kijal. Additionally, sandy beaches un-

disturbed by development, including Pantai Mengabang Panjang and Pantai Mengabang Lekar in Kuala Terengganu, and the pine forest

around the coastal area in Sungai Paluh, Kerteh are also classified in low (1) vulnerability ranking.

Following that, the census parameter of the population in the Terengganu region is incorporated for further analysis of CVI. Figure 16 de-

picts themunicipal population exposed due to CVI, with a very high (4) ranking dominating the population exposed by 35.7%. The highest at-

risk population is concentrated in densely populated areas, well-known for their pronounced erosion, where the distance to the seafront is

close to zero. Around 1,300 people are exposed to the municipal area of Rusila, and 1,200 people are exposed to Teluk Lipat, which has very

Figure 9. ROC curves and AUC metrics for six parameters (left) and eight parameters (right)
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Figure 10. Vulnerability ranking of shoreline erosion, coastal slope, land subsidence/uplift rate, and rainfall intensity over Terengganu

ll
OPEN ACCESS

iScience 27, 110085, June 21, 2024 11

iScience
Article



high vulnerability scores. According to CVI, other areas with substantial population exposure include the Geliga municipal area, encompass-

ing around 900 population, surrounded by Sungai Marang and close to the Kemaman industrial zone. The residential area of Fikri in Chukai,

with a population of around 1,000 people, is densely populated and is also expected to experience severe erosion. In brief, with a few excep-

tions, CVI correctly designated coastal areas subjected to continuous erosion.

Conclusion

This study has explicitly examined the impact of coastal changes based on physical variables from advanced space-geodetic and optical tech-

niques, focusing specifically on the coastal areas of Terengganu (see Figure 17). The CVI was predicated on the physical variables and was

rationally selected according to their importance on the study area. The additional physical variables for the CVI assessment, which were

land subsidence and rainfall intensity, had been incorporated along with the conventional six physical variables of geomorphology, shoreline

erosion, and coastal slope, significantwave height, tidal range, and sea level rate Thedata selectedwere specifically tailored to the study area.

Following the spatiotemporal analysis of the space-based physical variables, weighted scores based on several correspondents were as-

signed to all eight physical variables, representing a level of relevance to determine the final vulnerability levels.

Figure 11. Vulnerability ranking of significant wave height, tidal range, and sea level rate over Terengganu
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Figure 12. Final CVI from eight parameters from Jerteh to Kuala Terengganu
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Figure 13. Final CVI from eight parameters from Kuala Terengganu to Marang
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Figure 14. Final CVI from eight parameters classification from Marang to Paka
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Figure 15. Final CVI from eight parameters from Paka to Chukai
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The primary purpose of this research is to employ space-based physical variables as a viable tool for vulnerability assessment. Given the

growing concern about the risk of coastal erosion, which is exacerbated by rising sea levels and climate change, it is imperative to conduct a

comprehensive inspection on a broader scale. State-of-the-art space geodetic techniques are now conceivable, and as such, this study has

assessed CVI from a range of satellites. Each physical variable utilized had been optimized, and following the evaluation, each parameter had

shown encouraging results to be adapted to CVI. Analysis of the CVI with control ground also reveals promising outcomes. Estimating CVI

from space-based measurements, however, faced several limitations. One of the main limitations when estimating CVI from space-based

measurements is the difficulty in standardizing the duration of each variable. This task seems to be unrealistic due to different data collection

durations of each sensor. Several parameters necessary to calculate the CVI in Terengganu coasts were also overlooked due to constraints in

available techniques for their computation. Given that the coasts of Terengganu are characterized by beach slopes that provide protection

during severe storms,20 it is necessary to enhance research efforts in space-based methods for measuring beach dunes. Furthermore, the

scarcity of large-scale data poses significant challenge, considering the associated costs of acquisition. Nonetheless, these limitations

open up opportunities for future research.

All in all, the long-term goal of vulnerability assessment is to estimate coastal development to a certain degree of accuracy, which will be

valuable for sustainable management in Malaysian coasts. Many studies on vulnerabilities have difficulty devising accurate and detailed ap-

proaches for risk resolution and identifying reliablemitigation strategies, particularly at themesoscale. Space geodetic techniques offer many

advantages, making them an alternative to conventional techniques while assisting in a practical coastal management framework. The infor-

mation in this study is critical to attaining immediate and long-term goals of coastal management activities. As the studies on coastal vulner-

ability advances, the systems involved must also be analyzed progressively and extensively.
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using Google Earth Engine. Although TanDEM-X data at 30m and 90 m resolutions are freely available through website, TanDEM-X with res-

olution of 12m are obtained through personal contact with the Geoservice of European Comission. Significant wave height, SSH and SLA are

extracted from the RADS server while IMERG data can be accessed publicly through Giovanni website.

Data and code availability

� All vital data relevant to the processing and analysis of coastal vulnerability assessment are mostly from public repositories, with only a

few exceptions of granted repositories that accessible exclusively at the university or purchased through private company.

� All codes used for satellite data processing are written by the authors except those explicitly noted otherwise. These codes can be

considerably shared by the lead contact upon request.
� Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Study area

The area of the study is located along the coast of the Terengganu region in Peninsular Malaysia, as shown in Figure 17. Due to its strategic

location facing the South China Sea, the region serves as a hub of marine tourism, with a population of around one million.21 Strong coastal

currents from the South China Sea transport sand to the Terengganu coast, resulting in sand covering about 90% of the coastal area, with

weathered granitic sediment deposits predominating.22 The South China Sea, an open sea, is a prospective area that exhibits an extensive

supply of satellite data due to its location, which is also critical to this study. Terengganu coastline stretches for approximately 245 km,

commencing from Kuala Besut in the north and ending at Kuala Kemaman. Several critical issues on why Terengganu has been selected

as a study area are addressed, with one notable aspect being its proneness to erosion.23 The majority of Terengganu’s beaches consist of

both natural and man-made beach dunes, serving as protective barriers over sandy coastlines against high waves and water levels during

severe storms. However, the monsoonal regime in this region, particularly during the northeast monsoon,24 combined with various topo-

graphic conditions, has led to the loss of many parts of the beaches in Terengganu, disrupting the natural equilibrium of sediment balance

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Landsat NASA https://developers.google.com/earth-

engine/datasets/catalog/landsat

IMERG GES DISC Distributed Active Archive Center https://giovanni.gsfc.nasa.gov/giovanni/

TanDEM-X EOC Geoservice https://download.geoservice.dlr.de/TDM90/

Software and algorithms

SegOptim package Gonçalves et al. https://github.com/joaofgoncalves/SegOptim

Google Earth Engine Google https://earthengine.google.com/

DSAS United States Geological Survey (USGS) https://www.usgs.gov/centers/whcmsc/

science/digital-shoreline-analysis-system-dsas

Other

RADS server in Universiti Teknologi Malaysia Department of Earth Observation

and Space Systems, TU Delft

http://rads.tudelft.nl/rads/rads.shtml
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and the longshore sediment drift circulation. The impact of themonsoon on Terengganu coastal erosion has also been investigated by incor-

porating the rainfall variable into the CVI.

Physical variables

Other than the six frequently used physical variables associated with rising sea related to coastal changes, which are: 1) geomorphology; 2)

shoreline erosion/accretion rates (m/yr); 3) coastal slope (percent); 4) significant wave height (m); 5) tidal range (m) and 6) rate of sea level

(mm/yr), this study incorporates additional physical variables of land subsidence/uplift (mm/yr) and rainfall intensity (mm/hour), as listed in

see Table below.

Since this paper emphasises the use of space-geodetic and optical imaging techniques for deriving coastal variables, this section de-

scribes the necessary steps to be taken in the process. Subsequently, a proportion of the risk rating was assigned to each variable prior to

the computation of CVI. The WGS84 coordinate system was mainly used for the geodetic datum realisation of this study. The approaches

to derive each physical variable were as follows:

Geomorphology

Considering that the CVI study presented in this paper heavily relied on space-based techniques to assess variables, one of which was eval-

uating the large-scale geomorphology of the Terengganu coastal area using optical imagery, it was imperative to classify the imagery

correctly. SPOT 6 of the multi-spectral image from the 2018-2019 epoch and 1.5 m spatial resolution was used for this purpose. Two types

of classification were employed: standard supervised classification and optimised segmentation of object-based image analysis (OBIA)

from the SegOptim package in R. Training samples were collected in the form of polygons representing the region of interests (ROI), and

identical training samples were used for both classification processes. The SegOptim package, developed by Gonçalves et al.,25 was utilised

to classify complex areas to overcome ambiguities in supervised classification. The advantage of this package lies in its application of genetic

algorithms to optimise multiple image segmentation parameters. However, SegOptim relies on third-party software to perform segmenta-

tion due to the inherent complexity of segmentation algorithms and their implementations. The segmentation algorithm used for this assess-

ment was fromOrfeo Toolbox of large-scale mean-shift algorithm, which the developer recommends as it can comprehend big satellite data

to execute accurate segmentation. Once the optimisation parameters in charge of regulating the initial population had converged, final seg-

mentation and classification were executedwithin the package. Finally, the classified images fromboth classifications weremerged through a

‘blend’ analysis in Geographic Information System (GIS) software.

Shoreline erosion or accretion

The working principle underlying shoreline erosion/accretion derivation is similar to geomorphology when optical satellite is used. Neverthe-

less, the classification of overall multi-spectral images is not as pivotal as the delineation between land and sea areas. SPOT 6 from the epoch

2018-2019 was used again to identify shoreline changes along the Terengganu coast, supplemented by additional satellites, namely historical

SPOT 6 from the epoch 2013-2014, as well as Landsat imagery from the epochs of 1994-1996 and 2001-2002. All satellite imageries used to

analyze shoreline erosion/accretion underwent normalised difference water index (NDWI) analysis,26 which is recognized for highlighting

open water features in satellite imagery, accentuating the delineation of water bodies. Landsat images were acquired through Google Earth

Engine (GEE), a cloud-based platform that facilitates access to high-performance computing resources for geospatial data processing. In this

study, the code was developed to emphasize cloud masking, acquisition, pre-processing, and NDWI analysis. It was also tailored to auton-

omously populate the study area with cloud-free images using numerous image combinations at varying epochs, thus enhancing practicality

and time efficiency. Following that, the rate of shoreline erosion/accretion was calculated using the Digital Shoreline Analysis System (DSAS),

a software extension within the GIS environment, where transects were automatically cast along the Terengganu shoreline based on the user-

created baseline before performing the rate calculation.

Physical variables used for CVI assessment

Parameter Sensor Duration

Sea level rate rate Multi-mission of satellite altimeters 1993-2019

Tidal range

Significant wave height

Geomorphology SPOT 2019

Shoreline erosion/accretion SPOT and Landsat 1996, 2002, 2013 and 2019

Coastal slope TanDEM-X 2014

Land subsidence/uplift GNSS, GRACE and tide gauge 1999-2017

Rainfall intensity GPM and TRMM (IMERG) 2000-2019
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Coastal slope

In this study, the coastal slope was derived from the landward beach elevation to the shoreline. Instead of using a bathymetry model, this

approach was used to demonstrate the coastal area’s condition. TanDEM-X, a publicly available digital elevation model (DEM), was used

to derive coastal slope information owing to its high accuracy over Peninsular Malaysia.27 Combining 12 m with 30 m was performed by mo-

saicking the DEM raster datasets to create a single raster. The extraction of the Terengganu coastal slope was carried out in the slope analysis

within GIS software, determining the slope inclination as a percent rise, also known as the percent slope. Since a projected coordinate system

is required to compute distance slope inmetres, the geographical WGS84 was converted to the projected coordinate system ofWGS84 UTM

zone 48. Nevertheless, in order to perform spatio-temporal analysis of coastal slope with Global Navigation Satellite System (GNSS) levelling,

orthometric heights (H) derived from TanDEM-X were computed relative to local reference coordinate to align with the local datum used

during GNSS levelling and the local geoid height.

Significant wave height

Significant wave height is the average of the highest one-third proportion of waves in a spectrum. In contrast to the traditional buoy-based

acquisition of wave height data, satellite altimeters can only measure significant wave height signals by analysing backscattered microwave

pulses reflected at the sea surface.28 This study employed 12 satellite altimeter missions to obtain significant wave height from 1993-2019,

executed within the Radar Altimeter Database System (RADS). Developed by the Delft Institute for Earth-oriented Space Research

(DEOS), RADS is a database system that integrates authenticated altimetry products which consistently maintained by the international sci-

entific community. In the initial step of RADS processing, a shell script was created to define the geographical coordinates of the study area

and incorporate essential parameters for retrieving significant wave height. The correction and bias removal were applied during the retrieval

process. Significant wave heights obtained from the satellite altimeter were spatially gridded with a block size of 0.25� to cover extensive sea

areas by using inverse distance weighted (IDW) interpolation before undergoing data filtering. The final step involves averaging the monthly

significant wave heights retrieved from RADS over the study period.

Tidal range

Tidal signals over deep oceans have historically not been a significant concern, but contemporary scientists have explored the use of satellite

altimeters to provide deep ocean tidal signals through tide modelling. Hamden et al.13 predicted a tidal datum called UTM20 across Malay-

sian seas by combining coastal tide gauge data with satellite altimetry-derived sea surface heights (SSH) model. To predict tides from tidal

analysis, continuous tidal data in short intervals betweenminutes and days is preferable for accurate tidal signal reading.While satellite altim-

eter proves valuable in providing continuous data, its temporal sampling rate of once a week to every 35 days due to its orbital design renders

it impractical to provide tidal data at shorter intervals. Since tidal range demands an actual value with small temporal sampling, along-track

satellite altimeter data are currently the best option for predicting the tide model from space. RADS was used to pre-process sea surface

height (SSH) acquired from along-track altimeter data based on the optimal range and geophysical correction for the Malaysian region.

Ocean tide correction was not applied in the RADS shell script to minimise the loss of tidal signal in altimeter-derived SSHs. SSH data

from each altimeter mission were arranged in an orderly manner. In cases where redundant data existed at the end date, it was truncated

to align with the commencement of the next altimeter mission.

Harmonic analysis was subsequently used to predict the tide model, excluding the ERS-class missions from the process due to their sun-

synchronised orbit, which makes the prediction of solar tides and the semidiurnal S2 signal implausible. However, given the temporal sam-

pling limitations of satellite altimeters, it is crucial to address tidal aliasing. This issue can be solved by applying tidal aliasing information to

harmonic analysis.29 From harmonic analysis, the amplitudes and phases of 12 harmonic tidal constants were derived and these constants

were then used to predict the along-track highest astronomical tide (HAT) and lowest astronomical tide (LAT) models. These models are

based on tide predictions over theminimumduration of 19 years, as suggested by Byun et al.30 Due to the inevitable degradation of altimeter

footprints near the coast, the griddedHAT and LAT from the altimeter were truncatedwithin 20 km from the coast tominimise the influence of

altimetric noises. Afterward, the HAT and LAT above zero tide gauges, derived from the coastal tide gauge, were integratedwith the altimetry

HAT and LATmodels using the Thin Plate Spline approach. The tidal range was subsequently computed from the vertical difference between

HAT and LAT. It is worth noting that in this paper, the term ‘‘tidal range’’ is used instead of the traditional term ‘‘mean tidal range’’. This distinc-

tion arises because the tidal range in this study was derived from integrating two types of measurements as opposed to being traditionally

derived from the average of continuous tide gauge data.

Sea level rate

To calculate sea level rate, altimetry sea level anomaly (SLA) data from satellite altimeters were retrieved through RADS. The process involved

using the same 12 satellite altimeter missions that were used to retrieve significant wave height. The principle of obtaining sea level anomaly

data from satellite altimeters is also similar to significant wave height. However, the sea level signal from the satellite altimeter is based on the

round trip of short-wavemicrowave rays travelling from the satellite to the sea surface, with the main parameter of range, R; being derived.31

Sea level data underwent crossover adjustment within the RADS framework, a RADS-only component of dual-crossover minimisation analysis

to reckon errors and refine altimeter observations. Crossover minimisation is accomplished when the European Space Agency (ESA) -class

satellites are adjusted to the National Aeronautics and Space Administration (NASA) -class satellite orbits, as the stability of NASA-class
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satellite orbits surpasses the ESA-class satellite orbits. Following crossover adjustments, daily altimetry data were filtered and gridded to the

SLA at predefined bin sizes using Gaussian weighting functions.32 Distant weighting functions were applied to obtain meaningful values for

grid points by assigning larger weights to points closer to the centre located between tracks. Daily SLAs were then aggregated into monthly

average solutions. Eventually, the sea level rates over the Terengganu coast were estimated using the robust fitting method, a statistical

method that deals with solution determination and outlier detection. This method uses the Iteratively Re-weighted Least Squares (IRLS) tech-

nique to fit the SLA time series to a linear function and then solve for trends in the function while identifying the SLA outliers.

Land subsidence or uplift rate

It is important to highlight that satellite altimeter provides absolute anomalies, whereas relative anomalies for sea level changes

(including land motion) have been customarily used for CVI studies. This is because of topographical concerns, in which land sub-

sidence or uplift data are the main indicators of flood risk assessment.6,33 Therefore, it is necessary to include information on

land motion to account for absolute anomalies identified by satellite altimeters. Zulkifli14 outlined a methodology for calculating

the rate of land subsidence/uplift by integrating land motion information from the Global Navigation Satellite System (GNSS),

Gravity Recovery and Climate Experiment (GRACE), satellite altimeters and tide gauges. GNSS datasets from 53 IGS stations

were employed as reference stations to connect 78 local CORS data to the global reference frame, which were post-processed in

high-precision GNSS data processing software.

Concurrently, land motion information derived from GRACE satellites was quantified regarding terrestrial water storage (TWS) and

groundwater storage (GWS). The resulting vertical displacements generated from both sets of information were used to calculate the

land subsidence/uplift rate from GRACE. The conclusive rates from both measurements, computed from the time series of final GNSS co-

ordinates and GRACE-derived vertical displacement, were determined using robust fitting. The calculation of land subsidence/uplift rate

from satellite altimeter and tide gauge mainly involves manipulating the absolute and relative SLA from both measurements. The direct

approach corrects tide gauge records from the influence of land motion and is limited to measuring coastal tide gauges at a single point.

The double difference approach, on the other hand, is versatile, applicable anywhere, and involves determining the relative vertical motion

between two land motion records rather than at a single tide gauge point. They underwent similar robust fitting analysis, followed by the

direct and double difference approaches to estimate the final rate derived from satellite altimeters and tide gauges.14 Ultimately, a least

square collocation was applied to integrate the land subsidence/uplift rate derived frommultiple sensors used in this study. Since the optimal

inputs have been utilised to obtain the best rate, the estimated land subsidence/uplift rate was not subjected to spatio-temporal analysis.

Rainfall intensity

Northeast monsoon has predominantly influenced rainfall patterns in eastern Peninsular Malaysia, resulting in strong waves along the

coast.34 This condition erodes a substantial segment of the beach profile, though recovery is possible during the Southwest monsoon.

Regardless, a study by Ariffin et al.35 demonstrated that the developed beaches in Terengganu did not recover from the post-storm states.

The strong current contributes significantly to erosion, particularly during seasons characterized by severe shoreline erosion, underscoring

the importance of incorporating the rainfall intensity parameter into the CVI. IMERG common precipitation product blends precipitation

data from the Global Precipitation Measurement (GPM) satellite constellation with early precipitation estimates from the now-defunct

Tropical Rainfall Measuring Mission (TRMM) satellite. IMERG Final Precipitation L3 1-month V06, which was derived from the half-hour

GPM estimates, was used for this study, providing the final estimate of daily cumulative precipitation. NASA recommends using the final

run product since they incorporate month-to-month adjustments, which add up to the final run monthly satellite-gauge combination.

IMERG’s rainfall intensity data was obtained from the time-averaged map available in the Giovanni website (a web application hosted

by the NASA Goddard Earth Science Data and Information Services Center (GES DISC) Distributed Active Archive Center (DISC), that of-

fers an intuitive platform for visualizing, analysing, and accessing Earth science remote sensing data, mainly from satellites), which did not

account for the short-term precipitation effect over one hour (as estimated by the Intensity-Duration-Frequency or IDF curve). Instead, the

acquired intensity was calculated from the intensity of annual means, which was computed by dividing the total rainfall by the number of

hours within the data’s duration.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analytical hierarchy process for CVI computation

Analytical Hierarchical Process (AHP) is extensively used in decision-making problems for its ability to prevent arbitrary weight allocation.17,36

Hence, it was used in CVI assessment to determine the weight of each variable by consolidating the opinions of seven experts knowledgeable

about the coastal process of the study area. This was achieved using a questionnaire of pairwise comparison analysis, encompassing feedback

from policymakers to academicians. With a comparison matrix, a priority vector, which is essentially the matrix’s eigenvector, was computed.

Each variable was then assigned a weighted score reflecting its importance and relevance in the level of vulnerability of the coastal area to

erosion. To ensure the consistency of the subjective perception and the accuracy of the comparing weights, two indicators, the consistency

index (C.I.) and consistency ratio (C.R.), were initially calculated. Experts with C.I. values exceeding 0.1 threshold were excluded.17 Conse-

quently, the final weighted value of each physical variable was determined bymultiplying the average weight of the successful experts’ scores

by the risk value, as shown in Equation 1 below:37
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Wn =
Xn

i = 1

fi : wi (Equation 1)

where Wn is the final weighted value and fi is the vulnerability ranking of each variable of factor i, and wi is the weight of each variable. The

relative risk value was then allocated to each physical variable across uniformly sized pixel images, given the large spatial extent of the study

area. This allocation reflects themagnitude of its potential impact on coastal changes. Finally, the CVI was calculated as the square root of the

product of the ranked variables divided by the total number of variables.38,39

Spatio-temporal analysis

Spatio-temporal analysis is conducted to ensure the reliability of the input data of the CVI. Each principal variable is compared with its respec-

tive in-situmeasurements. The variables are analysed in terms ofmean bias ðMBÞ, rootmean square error (RMSE), and Pearson’s correlation of

determination (R). For the geomorphology variable, a confusion matrix of overall accuracy (OA) as well as Cohen’s Kappa coefficient is

computed while the shoreline erosion variable is analysed based on the metrics derived from DSAS, specifically End Point Rate (EPR) and

Linear Regression Rate (LRR). Coastal slope variable is assessed based on orthometric heights. In addition to metrics such as MB;RMSE

and R, categorical indices of probability of detection (POD), false alarm ratio (FAR), and crucial success index (CSI) are used to represent

the occurrence of precipitation events. A list of the metrics used in the spatio-temporal analysis is given below.

Comparison is carried out to determine whether a CVI based on six or eight parameters provided a more accurate vulnerability assess-

ment. A suite of metrics was employed: OA, Kappa coefficient, Receiver Operating Characteristic (ROC) curve, and Area Under the Curve

(AUC). These metrics comprehensively assessed the agreement between the predicted vulnerability categories and the ground truth

data, allowing for an objective evaluation of the optimal number of CVI parameters.

Metrics used in the spatio-temporal analysis

Acronym Metrics Name Formula Unit

MB Mean Bias
MB =

1

n

Xn

i = 1
Yi � Xi

where n denotes the number of observations,

Xi represents the observed in-situ

measurement whereas Yi denotes the space-

geodetic measurement of corresponding

variables.

m or mm

RMSE Root Mean Square
RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i =1
ðYi � XiÞ

r

where n denotes the number of observations,

Xi represents the observed in-situ

measurement whereas Yi denotes the space-

geodetic measurement of corresponding

variables.

m or mm

R Pearson’s Correlation

of Determination
R =

Pn
i =1ðXi � XÞ ðYi � Y ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i = 1ðXi � XÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i =1ðYi � Y Þ2
q

where n denotes the number of observations,

Xi and X represent the observed in-situ

measurement and mean in-situ measurement,

respectively, whereas Yi and Y denote the

space-geodetic measurement and mean of

space-geodetic measurement, respectively, of

corresponding variables.

-

OA Overall Accuracy
OA =

Pq
i = 1nii
n

3 100%

where q is the number of classes where n is the

considered pixel total number, nii is the

diagonal elements of the confusion matrix, ni+

represents the marginal sum of the rows in the

confusion matrix, and n+i represents the

marginal sum of the columns in the confusion

matrix.

%

(Continued on next page)
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Continued

Acronym Metrics Name Formula Unit

Producer 0s accuracy Producer 0s accuracy =
nii
ni+

3 100%

where q is the number of classes where n is the

considered pixel total number, nii is the

diagonal elements of the confusion matrix, ni+

represents the marginal sum of the rows in the

confusion matrix, and n+i represents the

marginal sum of the columns in the confusion

matrix.

%

User 0s accuracy User 0s accuracy =
nii
n+i

3 100%

where q is the number of classes where n is the

considered pixel total number, nii is the

diagonal elements of the confusion matrix, ni+

represents the marginal sum of the rows in the

confusion matrix, and n+i represents the

marginal sum of the columns in the confusion

matrix.

%

Kappa Cohen’s Kappa

coefficient
Kappa =

n
Pq

i =1nii �
Pq

i =1ni+n+i
n2 �Pq

i = 1ni+ni+
3 100%

where q is the number of classes where n is the

considered pixel total number, nii is the

diagonal elements of the confusion matrix, ni+

represents the marginal sum of the rows in the

confusion matrix, and n+i represents the

marginal sum of the columns in the confusion

matrix.

%

EPR End Point Rate
EPR =

DA � DB

Date A� Date B
where DA and DB is the distance of shoreline

movement calculated from point A and B from

baseline, divided by the changes between

those two elapsed shorelines.

m/yr

LRR Linear Regression Rate L = b +mx

where L is a dependent variable that represents

the shoreline’s geographic position, x denotes

independent variable of year, m and b are the

slope and intercept, respectively, that

representing the change in L resulting from a

change in x per unit or LRR.

m/yr

H Orthometric Height HTanDEM�X = hTanDEM�X � NMyGeoid

where HTanDEM�X represents the orthometric

height of TanDEM-X, hTanDEM�X is the

ellipsoidal height extracted from Global

Mapper and NMyGeoid represents the local

geoid height model.

m

POD Probability

of Detection
POD =

a

a+c
where a is the number of correct occurences

detected by IMERG when compared to rain

gauge, b represents the occurences that are

wrongly reported by IMERG, and c is the

precipitation occurences missed by the IMERG

but detected by rain gauge.

-

(Continued on next page)
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Continued

Acronym Metrics Name Formula Unit

FAR False Alarm Ratio
FAR =

b

a+b
where a is the number of correct occurences

detected by IMERG when compared to rain

gauge, b represents the occurences that are

wrongly reported by IMERG, and c is the

precipitation occurences missed by the IMERG

but detected by rain gauge.

-

CSI Crucial Success Index CSI =
a

a+b+c
where a is the number of correct occurences

detected by IMERG when compared to rain

gauge, b represents the occurences that are

wrongly reported by IMERG, and c is the

precipitation occurences missed by the IMERG

but detected by rain gauge.

-

ROC Receiver Operating

Characteristic
TPR =

TP

TP+FN

FPR =
FP

FP+TN
where TP stands for true positive and FN for

false negative. FP is false positive and TN is

true negative. On the ROC curve, two axes of

true positive rate (TPR) and false positive rate

(FPR) are determined.

-

AUC Area Under the Curve AUC =
R
TPR dðFPRÞ -
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