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Transcriptional, chromatin, and
metabolic landscapes of LDHA
inhibitor–resistant pancreatic
ductal adenocarcinoma

Parmanand Malvi1†, Vipin Rawat1†, Romi Gupta1,2

and Narendra Wajapeyee1,2*

1Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham,
Birmingham, AL, United States, 2O’Neal Comprehensive Cancer Center, University of Alabama at
Birmingham, Birmingham, AL, United States
Metabolic reprogramming, due in part to the overexpression of metabolic

enzymes, is a key hallmark of cancer cells. Lactate dehydrogenase (LDHA), a

metabolic enzyme that catalyzes the interconversion of lactate and pyruvate, is

overexpressed in a wide variety of cancer types, including pancreatic ductal

adenocarcinoma (PDAC). Furthermore, the genetic or pharmacological

inhibition of LDHA suppresses cancer growth, demonstrating a cancer-

promoting role for this enzyme. Therefore, several pharmacological LDHA

inhibitors are being developed and tested as potential anti-cancer therapeutic

agents. Because cancer cells are known to rapidly adapt and become resistant

to anti-cancer therapies, in this study, we modeled the adaptation of cancer

cells to LDHA inhibition. Using PDAC as a model system, we studied the

molecular aspects of cells resistant to the competitive LDHA inhibitor sodium

oxamate. We performed unbiased RNA-sequencing (RNA-seq), assay for

transposase-accessible chromatin with sequencing (ATAC-seq), and

metabolomics analyses of parental and oxamate-resistant PDAC cells treated

with and without oxamate to identify the transcriptional, chromatin, and

metabolic landscapes of these cells. We found that oxamate-resistant PDAC

cells were significantly different from parental cells at the levels of mRNA

expression, chromatin accessibility, and metabolites. Additionally, an

integrative analysis combining the RNA-seq and ATAC-seq datasets identified

a subset of differentially expressedmRNAs that directly correlated with changes

in chromatin accessibility. Finally, functional analysis of differentially expressed

metabolic genes in parental and oxamate-resistant PDAC cells treated with and

without oxamate, together with an integrative analysis of RNA-seq and

metabolomics data, revealed changes in metabolic enzymes that might

explain the changes in metabolite levels observed in these cells. Collectively,

these studies identify the transcriptional, chromatin, and metabolic landscapes
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of LDHA inhibitor resistance in PDAC cells. Future functional studies related to

these changes remain necessary to reveal the direct roles played by these

changes in the development of LDHA inhibitor resistance and uncover

approaches for more effective use of LDHA inhibitors in cancer therapy.
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Introduction

Metabolic reprogramming is a key hallmark of cancer cells

and represents a therapeutic vulnerability in various cancer types

(1–3). Notably, a number of enzymes and transporters that

promote glycolysis and glucose metabolism are overexpressed

in cancer cells relative to normal cells (4, 5). One such enzyme,

lactic acid dehydrogenase A (LDHA), is known to be

overexpressed in several cancer types and associated with poor

prognosis (6–10).

LDHA encodes the A subunit of lactate dehydrogenase, a

metabolic enzyme that catalyzes the interconversion of lactate

and pyruvate (11, 12). The LDHA dependency of cancer cells has

been demonstrated in several xenograft and genetically

engineered mouse models, in which the genetic ablation of

LDHA significantly reduces tumor growth (13–15). These

studies prompted the development and testing of LDHA

inhibitors (LDHAi) for cancer treatment (16–19). One such

inhibitor, sodium oxamate (hereafter referred to as oxamate), is

a pyruvate analog and thus a competitive LDHAi that halts

lactate production through LDHA inhibition (19). Therefore,

similar to the genetic inhibition of LDHA, oxamate treatment

also results in tumor suppression due to the loss of LDHA

activity (19, 20).

Cancer cells have been shown to depend upon various

nutrients as either energy source or building blocks and these

are shown to be necessary for their survival (2). In particular,

depending upon whether cancer cells utilize primarily lipid or

glucose they are categorized as lipogenic or glycolytic (21–23). A

previous study used metabolic profiling to stratify pancreatic

ductal adenocarcinoma (PDAC) into subtypes with distinct

sensitivities to metabolic inhibitors (23). This prior study

identified two major PDAC classes: those that are sensitive to

lipogenesis inhibitors, such as stearoyl CoA desaturase (SCD)

inhibitors, and those that are sensitive to glycolytic inhibitors,

such as oxamate (23). LDHA is overexpressed in PDAC and

predicts poor prognosis (24, 25), and LDHA inhibition has been

shown to suppress PDAC growth and progression (26, 27).

In this study, we modeled the mechanism of resistance to the

LDHAi oxamate, aiming to understand the mechanisms
02
underlying cancer cell adaptation to glycolysis and LDHA

inhibition, which may lead to improved glycolysis targeting

and LDHAi–based cancer therapies. We used a glycolytic

PDAC cell line MIAPaCa2 as a model system and employed

several integrated and unbiased approaches, including RNA-

sequencing (RNA-seq)-based mRNA profiling, assay for

transposase-accessible chromatin with sequencing (ATAC-

seq)-based chromatin accessibility profiling, and large-scale

untargeted global metabolomics analysis to identify the

transcriptional, chromatin, and metabolic features of oxamate-

sensitive and oxamate-resistant PDAC cells and characterize

their responses to oxamate treatment.
Results

Transcriptome-wide RNA-sequencing
analysis identifies distinct mRNA
expression profiles between oxamate
response and oxamate resistance in
PDAC cells

To identify alterations that occur in pancreatic cancer cells

able to survive LDHA inhibition, we treated the oxamate-

sensitive glycolytic PDAC cell line MIAPaCa2 (parental cells)

with 10 mM oxamate for 4 weeks to generate an oxamate-

resistant PDAC cell line (Figure 1A). MIAPaCa2 is a glycolytic

cell line as observed by a previous study used metabolic profiling

to stratify pancreatic ductal adenocarcinoma (PDAC) into

subtypes with distinct sensitivities to metabolic inhibitors (23).

Oxamate resistance in MIAPCa2 cells that survived oxamate

treatment was confirmed using a clonogenic assay (Figure 1B).

We then performed a series of large-scale analyses, including

RNA-seq, ATAC-seq, and untargeted global metabolomics,

to uncover the differences between parental and oxamate-

resistant MIAPaca2 cells and their responses to oxamate

treatment (Figure 1C).

We first performed RNA-seq to monitor changes in mRNA

expression in parental and oxamate-resistant MIAPaCa2 cells

treated with either vehicle or oxamate. RNA-seq analysis showed
frontiersin.org
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that the treatment of parental MIAPaCa2 cells with oxamate led

to significant changes in mRNA expression, evidenced by the

identification of 1025 differentially expressed mRNAs following

oxamate treatment compared with vehicle treatment (516

upregulated and 509 downregulated mRNAs; Figures 1D, E

and Table S1). However, oxamate-resistant MIAPaCa2 cells
Frontiers in Oncology 03
were largely transcriptionally non-responsive to oxamate

treatment, with only 129 genes identified as differentially

expressed following oxamate treatment compared with vehicle

treatment (113 upregulated and 16 downregulated mRNAs;

Figures 1D, E and Table S2). Consistent with the finding that

parental and oxamate-resistant MIAPaCa2 cells display
A B

D

E F

G IH

C

FIGURE 1

Generation of sodium oxamate–resistant cell lines and RNA-sequencing to identify differentially expressed mRNAs. (A) Schematic showing the
steps used to generate and validate sodium oxamate–resistant MIAPaCa2 cells. (B) parental (Par) or sodium oxamate–resistant (Res) MIAPaCa2
cells were treated without or with 10 mM sodium oxamate (oxamate) for 2 weeks, followed by clonogenic assay. Representative colonies
showing oxamate resistance are shown. (C) Schematic showing the pipeline for multiple unbiased omics approaches to determine the transcriptional,
chromatin, and metabolic profiles of parental and oxamate-resistant MIAPaCa2 cells. (D) Volcano plot showing differentially expressed genes (up- or
downregulated) in the indicated comparisons. The top 10 up- and downregulated genes based on p-values are also labeled. (E) Bar diagram showing
the number of up- or downregulated mRNAs (genes) in the indicated comparisons. (F–I) Reactome Pathway Analysis showing key biological pathways
associated with the differentially expressed mRNAs in the indicated comparisons.
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significantly different mRNA expression profiles, we observed

2605 differentially expressed mRNAs (1897 upregulated and 708

downregulated mRNAs) in oxamate-resistant MIAPaCa2 cells

compared with parental MIAPaCa2 cells (Figures 1D, E and

Table S3). The differences were even more pronounced when

both cell lines were treated with oxamate, resulting in 4040

differentially expressed mRNAs (2706 upregulated and 1334

downregulated mRNAs) in oxamate-resistant MIAPaCa2 cells

compared with parental MIAPaCa2 cells (Figures 1D, E and

Table S4). Reactome Pathway Analysis of differentially regulated

mRNAs across various comparisons revealed the enrichment of

many distinctly regulated biological pathways (Figures 1F–I).

Collectively, these results demonstrate that parental and

oxamate-resistant PDAC cells show significantly different

transcriptional profiles and significantly different responses

to oxamate, resulting in the enrichment of distinct

biological pathways.
ATAC-seq reveals significant differences
in chromatin accessibility patterns
between oxamate response and
resistance in PDAC cells

The upregulation or downregulation of mRNA expression

can correlate with increased or reduced chromatin accessibility,

respectively (28). Therefore, we measured changes in chromatin

accessibility in parental and oxamate-resistant MIAPaCa2 cells

treated with and without oxamate using ATAC-seq. The ATAC-

seq results showed that parental MIAPaCa2 cells treated with

oxamate underwent a 4-fold increase in chromatin accessibility

changes (9906 differentially expressed peaks) compared with

oxamate-resistant MIAPaCa2 cells treated with oxamate (2362

differentially expressed peaks) (Figures 2A, B). These results

were consistent with the larger number of differentially

expressed mRNAs observed in oxamate-treated parental

MIAPaCa2 cells than in oxamate-treated oxamate-resistant

MIAPaCa2 cells. Similarly, parental MIAPaCa2 cells treated

with oxamate were significantly different from oxamate-

resistant MIAPaCa2 cells treated with oxamate and showed

32,999 changes in chromatin accessibility. A greater than 2-

fold increase in mRNAs were differentially expressed in the

comparison between parental MIAPaCa2 cells and oxamate-

resistant MIAPaCa2 cells than in the comparison between

vehicle-treated and oxamate-treated parental cells. However, a

similar number of changes in chromatin accessibility was

observed between vehicle- (8762 differential peaks) and

oxamate-treated parental MIAPaCa2 cells (9906 differential

peaks) (Figure 2A). As expected, the Integrative Genomics

Viewer (IGV) tracks were consistent with the expected

changes in chromatin accessibility; two such examples, for the

genomic regions encoding MARS1 and FAR2, under the

indicated sample conditions are shown in Figure 2C. Under all
Frontiers in Oncology 04
conditions, a large majority of chromatin accessibility changes

were associated with promoter regions, including approximately

35% in oxamate-treated parental MIAPaCa2 cel ls ,

approximately 38% in vehicle-treated parental MIAPaCa2

cells, approximately 40% in vehicle-treated oxamate-resistant

MIAPaCa2 cells, and approximately 42% in oxamate-treated

oxamate-resistant MIAPaCa2 cells (Figure 2B). Collectively,

these results demonstrate that similar to the differences in

mRNA expression patterns, parental and oxamate-resistant

MIAPaCa2 ce l l s demons t r a t e d i s t inc t chromat in

accessibility profiles.
Integration of RNA-seq and ATAC-seq
data reveals direct correlations between
differential mRNA expression and
changes in chromatin accessibility

To identify differentially expressed mRNAs associated with

changes in chromatin accessibility, such as upregulated mRNAs

in areas of increased chromatin accessibility and vice versa, we

integrated the RNA-seq and ATAC-seq data across various

comparisons. Of 1025 differentially expressed mRNAs

identified in the comparison between vehicle- and oxamate-

treated parental MIAPaCa2 cel ls , only 79 mRNAs

(approximately 8%) were associated with similar directional

changes for both mRNA expression and chromatin

accessibility (Figure 3A). Only 1 of 129 (less than 1%)

differentially expressed mRNAs in the comparison between

vehicle- and oxamate-treated oxamate-resistant cells displayed

similar directional changes for both mRNA expression and

chromatin accessibility (Figure 3A). Furthermore, 310 of 2605

differentially expressed mRNAs in the comparison between

parental and oxamate-resistant cells (approximately 12%)

showed similar directional changes for both mRNA expression

and chromatin accessibility (Figure 3A). Of 4040 differentially

expressed mRNAs identified in the comparison between

oxamate-treated parental and oxamate-resistant MIAPaCa2

cells, 193 (approximately 5%) showed similar directional

changes for both mRNA expression and chromatin

accessibility. Collectively, the integrated analysis revealed a

subset of mRNAs with expression changes that occurred

concurrently and in the same direction as changes in

chromatin accessibility.

Next, we performed Reactome Pathway Analysis for only

those differentially expressed mRNAs associated with similar

directional changes in chromatin accessibility. The integrated

analysis of changes in mRNA expression and chromatin

accessibility revealed no specific biological pathways enriched

in oxamate-treated oxamate-resistant MIAPaCa2 cells

compared with vehicle-treated oxamate-resistant MIAPaCa2

cells, indicating that these cells were largely non-responsive to

oxamate treatment. However, various distinct biological
frontiersin.org
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pathways were enriched in the other comparisons, as shown

in Figure 3B.

We then aimed to identify transcription factors potentially

involved in the regulation of mRNA expression of genes

associated with similar directional changes in chromatin

accessibility. To this end, we used the Enrichr platform

together with the Encyclopedia of DNA elements (ENCODE)

and chromatin immunoprecipitation (ChIP) Enrichment

Analysis (ChEA) to identify consensus transcription factors
Frontiers in Oncology 05
using the ChIP-X option (29). This particular setting of

Enrichr allows for the identification of consensus target genes

regulated by transcription factors found in the ENCODE and

ChEA databases. For transcription factors with data from

multiple experiments, set intersection was applied to obtain

consensus. For each comparison, multiple transcription factors

were identified as potentially direct transcriptional regulators

for differentially expressed mRNAs (Figure 3C and Tables S5–

S7). In particular, in the comparison between parental and
A

B

C

FIGURE 2

ATAC-seq analysis of parental and oxamate-resistant MIAPaCa2 cells. (A) Heatmaps showing differential genomics regions with increased or
decreased chromatin accessibility based on ATAC-seq identified in the indicated comparisons. (B) Pie-chart for the indicated samples mapping
the locations of annotated peaks identified by ATAC-seq. (C) IGV tracks for the indicated genomic regions for the indicated conditions.
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oxamate-resistant MIAPaCa2 cells, androgen receptor (AR),

SRY-box transcription factor 2 (SOX2), transcription factor 3

(TCF3), SUZ12, and RELA were identified as the top-most

significantly enriched transcription factors. In the comparison

between vehicle- and oxamate-treated parental MIAPaCa2

cells, estrogen receptor 1 (ESR1), CCAAT enhancer–binding

protein beta and delta (CEBPB and CEBPD, respectively),

CCCTC-binding factor (CTCF), and RAD21 were identified
Frontiers in Oncology 06
as the top-most significantly enriched transcription factors. In

the comparison between oxamate-treated parental and

oxamate-resistant MIAPaCa2 cells, upstream binding

transcription factor (UBTF), E74-like ETS transcription factor

1 (ELF1), breast cancer 1 (BRCA1), TATA-box–binding

protein–associated factor 1 (TAF1), and PBX homeobox

3 (PBX3) were identified as the top-most enriched

transcription factors.
A

B

C

FIGURE 3

RNA-seq and ATAC-seq integrative analysis reveals genes that display coherence between changes in chromatin accessibility and mRNA
expression levels. (A) Heatmap for the top 100 (50 upregulated or with increased chromatin accessibility and 50 downregulated or with reduced
chromatin accessibility) genes showing similar patterns in both the ATAC-seq and RNA-seq analyses. (B) Reactome Pathway Analysis showing
enriched biological pathways for genes that display coherence between changes in chromatin accessibility and mRNA expression levels. (C)
Enrichr analysis using ENCODE and ChEA for identifying potential regulatory transcription factors for differentially regulated metabolic genes
identified in the indicated comparisons.
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Untargeted global metabolomics analysis
identifies metabolic patterns in parental
and oxamate-resistant PDAC cells

We next decided to examine metabolic changes in parental

and oxamate-resistant MIAPaCa2 cells treated with and without

oxamate. We first performed a Seahorse analysis to measure
Frontiers in Oncology 07
glycolytic functions in parental and oxamate-resistant

MIAPaCa2 cells. We found that oxamate treatment resulted in

reduced extracellular acidification in oxamate-resistant

MIAPaCa2 cells compared with parental MIAPaCa2 cells,

suggesting that oxamate-resistant cells showed inhibition of

glycolysis (Figure 4A). This finding is consistent with the

RNA-seq and ATAC-seq data results (Figure 1D and
frontiersin.or
A

B

D

E

C

FIGURE 4

Metabolic profiling of parental and oxamate-resistant cells treated with or without sodium oxamate. (A) Seahorse analysis of the glycolysis
stress test measuring the glycolytic functions of parental and oxamate-resistant cells. Extracellular acidification rates for parental and oxamate-
resistant MIAPaCa2 cells are shown. (B) Heatmap showing differences in metabolite levels among parental (Par) and oxamate-resistant (Res)
MIAPaCa2 cells treated with vehicle or oxamate. (C) Relative lactic acid levels in parental and oxamate-resistant cells treated with and without
oxamate are shown. (D) Schematic showing glycolysis and the step for pyruvate to lactate conversion. (E) Changes in the indicated metabolites
involved in glycolytic pathways under the indicated conditions.
g

https://doi.org/10.3389/fonc.2022.926437
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Malvi et al. 10.3389/fonc.2022.926437
Figure 3A), which showed that oxamate-resistant cells were

largely non-responsive to oxamate treatment at the mRNA

expression and chromatin accessibility levels, respectively.

We then performed untargeted metabolomics analyses in

parental and oxamate-resistant MIAPaCa2 cells treated with and

without oxamate using capillary electrophoresis time-of-flight

mass spectrometry (CE-TOFMS), which detected a total of 228

different metabolites (Figure 4B and Table S8). As expected, the

metabolomics analysis identified significant differences in lactic

acid levels, which were significantly reduced in oxamate-treated

parental MIAPaCa2 cells compared with untreated parental

cells. Oxamate-resistant MIAPaCa2 cells also showed

significantly reduced lactic acid levels compared with parental

cells (Figure 4C). Furthermore, significant differences in the

levels of other glycolytic pathway metabolites (Figures 4D, E)

and those associated with other metabolic pathways were also

observed (Figures 5–7). These results indicate that, similar to the

differences observed in mRNA and chromatin accessibility

profiles, metabolic profiles reveal major differences between

parental and oxamate-resistant MIAPaCa2 cells and their

responses to oxamate treatment.
Frontiers in Oncology 08
Alterations in the mRNA expression
levels of metabolic genes in parental and
oxamate-resistant PDAC cells and their
enrichment in various metabolic
pathways

We next used our RNA-seq data to specifically examine the

expression of metabolic genes and transporters using a

combination of metabolic genes defined by the Kyoto

Encyclopedia of Genes and Genomes (KEGG) and a list

described in a previously published study that includes

transporters able to impact metabolic pathways (Table S9)

(30). The comparison between parental and oxamate-resistant

MIAPaCa2 cells revealed the differential expression of 339

metabolic genes or transporters (Table S10 and Figure 8A).

Reactome Pathway Analysis of these 339 metabolic genes or

transporters revealed that these differentially expressed genes

were significantly enriched in pathways associated with the

metabolism of lipids, carbohydrates, nucleotides, and inositol

phosphate and the reversible hydration of carbon dioxides,

among others (Figure 8B and Table S11). Similarly, the
FIGURE 5

Metabolites generated during central carbon metabolism in parental and oxamate-resistant cells treated with or without sodium oxamate. Changes
in the indicated metabolites generated during central carbon metabolism under the indicated conditions.
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comparison between vehicle-treated and oxamate-treated

parental MIAPaCa2 cells revealed 115 metabolic genes or

transporters that were differentially expressed between these

two conditions (Figure 8C and Table S12). Reactome Pathway

Analysis of these 115 metabolic genes or transporters revealed

that these differentially expressed genes were significantly

enriched in pathways associated with the metabolism of

carbohydrates, vitamins, and cofactors, among others

(Figure 8D and Table S13).

Next, we attempted to identify potential transcription factors

that regulate differentially expressed metabolic genes. We
Frontiers in Oncology 09
performed Enrichr analysis to identify differentially expressed

metabolic genes in the comparison between parental and

oxamate-resistant MIAPaCa2 cells and in the comparison

between vehicle- and oxamate-treated parental MIAPaCa2

cells. In the comparison between parental and oxamate-

resistant MIAPaCa2 cells, NFE2-like BZIP transcription factor

2 (NFE2L2), chromobox 3 (CBX3), TCF3, AR, and GATA-

binding protein 1 (GATA1) were identified as the top-most

significantly enriched transcription factors (Figure 8E and Table

S14). In the comparison between parental and oxamate-treated

MIAPaCa2 cells, CEBPB, zinc finger MIZ-type containing 1
A

B

C

FIGURE 6

Metabolites generated during lipid, amino acid, and nucleotide metabolism in parental and oxamate-resistant cells treated with or without
sodium oxamate. (A–C) Changes in the indicated metabolites generated during lipid, amino acid, and nucleotide metabolism under the
indicated conditions.
frontiersin.org

https://doi.org/10.3389/fonc.2022.926437
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Malvi et al. 10.3389/fonc.2022.926437
(ZMIZ1), chromodomain helicase DNA–binding protein 1

(CHD1), negative elongation factor (NELF), and PBX3 were

identified as the top-most significantly enriched transcription

factors (Figure 8F and Table S15).

In the comparison between vehicle- and oxamate-treated

oxamate-resistant MIAPaCa2 cells, only 13 genes were identified

as differentially expressed (Figure 9A and Table S16); although

these genes were not enriched in any major metabolic pathways

(Figure 9B), some of these genes were enrichment in

unconventional metabolic pathways, such as cellular hexose

transport and vitamin C (ascorbate) metabolism (Table S17).

Finally, in the comparison between oxamate-treated parental
Frontiers in Oncology 10
and oxamate-treated oxamate-resistant MIAPaCa2 cells, 540

differentially expressed metabolic genes or transporters were

identified (Figure 9C and Table S18). Reactome Pathway

Analysis of these 540 metabolic genes or transporters revealed

the significant enrichment of pathways associated with the

metabolism of carbohydrates, vitamins, and cofactors, among

others (Figure 9D and Table S19).

Next, we identified transcription factors potentially involved

in the regulation of differentially expressed metabolic genes. To

do so, we performed an Enrichr analysis of the differentially

expressed metabolic genes in the comparisons between vehicle-

and oxamate-treated oxamate-resistant MIAPaCa2 cells and
A

B

C

FIGURE 7

Metabolites associated with the metabolism of urea and coenzymes and other metabolites in parental and oxamate-resistant cells treated with
or without sodium oxamate. (A–C) Changes in the indicated metabolites generated during the metabolism of urea and coenzymes and other
metabolites under the indicated conditions.
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between oxamate-treated parental and oxamate-treated

oxamate-resistant MIAPaCa2 cells. In the comparison between

vehicle- and oxamate-treated oxamate-resistant MIAPaCa2

cells, GATA1 and repressor element 1–silencing transcription

factor (REST) were identified as the top-most significantly

enriched transcription factors (Figure 9E and Table S20). In
Frontiers in Oncology 11
the comparison between oxamate-treated parental and oxamate-

resistant MIAPaCa2 cells, E2F transcription factor 6 (E2F6),

Myc-associated factor X (MAX), upstream transcription factor

(USF)1, USF2, and nuclear transcription factor Y subunit beta

(NFYB) were identified as the top-most significantly enriched

transcription factors (Figure 9F and Table S21).
A B

D

E F

C

FIGURE 8

Alternations in metabolic genes and their potential transcriptional regulators in parental/resistant cells and parental/oxamate-treated parental cells.
(A) Heatmap showing the expression of the top 100 (50 upregulated and 50 downregulated) differentially expressed metabolic genes between
parental and oxamate-resistant MIAPaCa2 cells. (B) Reactome Pathway Analysis for differentially expressed metabolic genes between parental and
oxamate-resistant MIAPaCa2 cells shows key metabolic pathways associated with significantly enriched genes (p-value <0.05, shown in yellow). (C)
Heatmap showing the expression of the top 100 (50 upregulated and 50 downregulated) differentially expressed metabolic genes between vehicle-
and oxamate-treated parental MIAPaCa2 cells. (D) Reactome Pathway Analysis for differentially expressed metabolic genes between vehicle- and
oxamate-treated parental MIAPaCa2 cells shows key metabolic pathways associated with significantly enriched genes (p-value <0.05, shown in
yellow). (E) Enrichr analysis using ENCODE and ChEA for identifying potential regulatory transcription factors involved in the differential expression
of metabolic genes between parental and oxamate-resistant cells. (F) Enrichr analysis using ENCODE and ChEA for identifying potential regulatory
transcription factors involved in the differential expression of metabolic genes between vehicle- and oxamate-treated parental MIAPaCa2 cells.
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FIGURE 9

Alterations in metabolic genes and their potential transcriptional regulators in resistant/oxamate-treated resistant cells and oxamate-treated
parental/oxamate-treated resistant cells. (A) Heatmap showing the expression of the top 100 (50 upregulated and 50 downregulated)
differentially expressed metabolic genes between vehicle- and oxamate-treated oxamate-resistant MIAPaCa2 cells. (B) Reactome Pathway
Analysis for differentially expressed metabolic genes between vehicle- and oxamate-treated oxamate-resistant MIAPaCa2 cells shows key
metabolic pathways associated with significantly enriched genes (p-value <0.05, shown in yellow). (C) Heatmap showing the expression of the
top 100 (50 upregulated and 50 downregulated) differentially expressed metabolic genes between oxamate-treated parental and oxamate-
treated oxamate-resistant MIAPaCa2 cells. (D) Reactome Pathway Analysis for differentially expressed metabolic genes between oxamate-
treated parental and oxamate-treated oxamate-resistant MIAPaCa2 cells cells shows key metabolic pathways associated with significantly
enriched genes (p-value <0.05, shown in yellow). (E) Enrichr analysis using ENCODE and ChEA for identifying potential regulatory transcription
factors involved in the differential expression of metabolic genes between vehicle- and oxamate-treated oxamate-resistant cells. (F) Enrichr
analysis using ENCODE and ChEA for identifying potential regulatory transcription factors involved in the differential expression of metabolic
genes between oxamate-treated parental and oxamate-treated oxamate-resistant MIAPaCa2 cells.
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FIGURE 10

Integrative RNA-seq and metabolomics analysis identifies similarities and differences between parental and oxamate-resistant pancreatic cancer
cells. (A) Integration of altered metabolic genes and metabolites was performed using the joint pathway analysis module of MetaboAnalyst 5.0
for the comparison between parental and oxamate-resistant MIAPaCa2 cells. (B) Integration of altered metabolic genes and metabolites was
performed using the joint pathway analysis module of MetaboAnalyst 5.0. for the comparison between vehicle- and oxamate-treated parental
MIAPaCa2 cells. (C) Integration of altered metabolic genes and metabolites was performed using the joint pathway analysis module of
MetaboAnalyst 5.0 for the comparison between vehicle- and oxamate-treated oxamate-resistant MIAPaCa2 cells. (D) Integration of altered
metabolic genes and metabolites was performed using the joint pathway analysis module of MetaboAnalyst 5.0 for the comparison between
oxamate-treated parental and oxamate-treated oxamate-resistant MIAPaCa2 cells. (E) Venn diagram for the indicated comparisons showing
differentially altered metabolic pathways based on the integrative analysis of differentially expressed metabolic genes identified by RNA-seq and
differential metabolites identified by the metabolomics analysis in the indicated samples.
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Integration of metabolic and RNA-seq data
to identity co-regulated pathways at both
the transcriptional and metabolic levels

To identify metabolic pathways and mRNA expression levels

that are co-regulated, we performed an integrative analysis

combining RNA-seq and metabolomics data. We focused on all

metabolic genes identified as altered across the various comparisons

(parental versus oxamate-resistant; vehicle- versus oxamate-treated

parental; vehicle- versus oxamate-treated oxamate-resistant; and

oxamate-treated parental versus oxamate-resistant). To conduct the

integrated analysis, we used the joint pathway analysis tool in

MetaboAnalyst 5.0 (31). The results of this integrated analysis are

shown in Figures 10A–D and summarized in Tables S22–S25. For

example, aminoacyl tRNA biosynthesis, arginine biosynthesis, and

proline biosynthesis were identified as the three top-most

significantly altered metabolic pathways in the integrated analysis

for parental versus oxamate-resistant MIAPaCa2 cells. We also

analyzed differences among comparisons to identify specific

changes associated with specific pairwise comparisons. The Venn

diagram for this analysis is shown in Figure 10E. For example, 75

metabolic pathways were identified as significantly altered in the

integrated analysis for parental versus oxamate-resistantMIAPaCa2

cells, whereas 81 metabolic pathways were identified as significantly

altered in oxamate-treated parental versus oxamate-resistant

MIAPaCa2 cells. Of these, 75 were common between the two

comparisons, 0 were specific to the comparison between parental

and oxamate-resistant MIAPaCa2 cells, and 6 were specifically

altered in the comparison between oxamate-treated parental and

oxamate-resistant MIAPaCa2 cells. These results demonstrate that

the integration of metabolomics and RNA-seq data can reveal

information that is not possible to identify by looking at either

RNA-seq or metabolomics data alone.
Discussion

Targeting metabolic enzymes has emerged as a new approach

for cancer therapy (3, 32). However, based on our knowledge of the

response of cancer cells to other therapeutic agents, including the

development of eventual therapeutic resistance, cancer cells are

expected to eventually adapt to metabolic enzyme inhibition.

Therefore, understanding the adaptation process at the molecular

level is necessary to optimize the use of metabolic enzyme–targeting

agents and improve the treatment or prevent the development of

drug-resistant cancers.

The overexpression of the metabolic enzyme LDHA is

necessary for tumor growth and progression (6–10, 13–15).

LDHA typically exists as a tetramer (LDH-5) and functions

primarily to interconvert pyruvate to lactate and transform

NADH to NAD+. However, LDHA is a multifunctional

protein and has been localized not only to the cytoplasm but

also in mitochondria and the nucleus (33, 34). Outside of the
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nucleus, LDHA plays a role in the regulation of glycolysis,

whereas LDHA inside the nucleus functions as a single-

stranded DNA–binding protein (SSB) (34). Additionally,

nuclear LDHA has been shown to sense reactive oxygen

species, leading to the production of alpha-hydroxybutyrate in

human papillomavirus (HPV)-induced cervical cancer (35).

Here, using the LDHAi oxamate as a metabolic enzyme

inhibitory drug and PDAC as a model system, we studied the

impact of LDHA inhibition on the transcriptional, chromatin,

and metabolomics landscapes. We also performed integrated

analyses to identify common transcriptome and chromatin

accessibility features and common transcriptome and

metabolic features in parental and oxamate-resistant PDAC

cells treated with and without oxamate. These studies revealed

several differences in the mRNA expression profiles, chromatin

accessibility profiles, and metabolic profiles across parental and

oxamate-resistant PDAC cells treated with or without oxamate.

RNA-seq analysis showed that parental cells were highly

responsive to oxamate treatment, whereas oxamate-resistant

cells showed only marginal responses to oxamate treatment.

Consistent with this finding, vehicle- and oxamate-treated

parental cells displayed large differences in their mRNA

expression profiles. These results are consistent with the

rationale that once oxamate resistance develops, oxamate-

resistant cells become largely inert in response to oxamate

treatment. In conclusion, these results demonstrate that

oxamate resistant cells may acquire such a state as a

mechanism of adaptation to survive in the presence of

oxamate and to become oxamate resistant. Notably, also

pathway analysis identified distinct set of genes and pathways

gets enriched in each of treatment conditions, in which oxamate

treated parental cells very clearly separated from highly non-

responsive oxamate resistant cells.

Furthermore, ATAC-seq analysis and its integration with

the RNA-seq analysis revealed that only a small subset of

mRNAs (1% to 12%) associated with differential expression

were associated with changes in chromatin accessibility within

promoter regions. These results are consistent with those of

other studies, which also reported an approximately 10% overlap

between RNA-seq and ATAC-seq data (36). Furthermore, the

usefulness of integrated analyses was highlighted by the ability of

integrated RNA-seq and ATAC-seq data to identify changes in

chromatin accessibility associated with consequent changes in

mRNA expression, which allowed for the identification of

potential transcriptional regulators associated with changes in

mRNA expression. Additionally, using the integration data with

that of transcriptional regulator identification data allows for

identifying distinct transcription factors that might contribute to

distinct transcriptional response to oxamate treatment. Future

studies will allow us and others to evaluate the role of these

individual transcription factors in driving the oxamate resistant

state and their role in glucose metabolism regulation in part via

glycolysis regulation.
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Finally, the integration of metabolomics data with RNA-seq

data for metabolic genes and transporters allowed changes in

mRNA levels to be linked with changes in metabolites. These

studies thereby provide an overall reason for changes in

metabolites under distinct oxamate treatment or parental and

oxamate-resistant states, and demonstrate that they in part are

driven due to changes at transcriptional of enzymes that in turn

regulate various metabolic pathways.

In conclusion, these studies highlight the importance of

performing integrative analyses of RNA-seq, ATAC-seq, and

metabolomics data to identify changes that would not be

possible to identify using any single omics–based approach.

Further studies using other functional genomics approaches are

likely to reveal the driving roles played by these transcriptional

and metabolic changes in conferring resistance to LDHAis.

Similar approaches can be employed to identify differences in

the response to other metabolic inhibitors, which may eventually

lead to the optimization of metabolic enzyme–targeted therapies

to achieve the maximum clinical benefits in cancer patients.

Future studies using a larger number of PDAC cell lines, in

vivo models, and other cancer types of glycolytic nature will

allow us to further identifying unifying features of oxamate

resistant cells. Similarly, use of other LDHA inhibitors and

comparing the genetic inhibition of LDHA with that or its

pharmacological inhibition will reveal the impact of non-

enzymatic and non-canonical functions of LDHA in

promoting growth of cancer cells.
Materials and methods

Cell culture

MIAPaCa2 cells were obtained from the American Type

Culture Collection (Manassas, VA, USA) and were grown in

Dulbecco’s modified Eagle medium (Life Technologies,

ThermoFisher Scientific, Waltham, MA, USA), supplemented

with 10% fetal bovine serum (Life Technologies, ThermoFisher

Scientific) and 1% penicillin/streptomycin (Life Technologies),

at a CO2 concentration of 5%.
Generation of sodium oxamate–resistant
cell lines

Sodium oxamate–resistant cells were generated by

continuously culturing MIAPaCa2 cells in the presence of 10

mM sodium oxamate for 4 weeks. The medium was replaced

every 3 days and supplemented with fresh sodium oxamate until

these cells began to form distinct colonies. The sodium oxamate–

resistant phenotype in isolated polyclonal populations was

further validated by clonogenic assay.
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Clonogenic assays

The clonogenic ability of MIAPaCA2 parental and sodium

oxamate–resistant cells was measured under untreated and

sodium oxamate–treated conditions. For these assays, 5 × 103

cells/well were seeded in 6-well culture plates. For drug

treatment experiments, cells were treated with 10 mM of

sodium oxamate. The medium containing sodium oxamate

was changed every 3 days. After 10–14 days of treatment,

surviving colonies were stained with a solution containing 40%

methanol, 10% acetic acid, and 0.005% Coomassie Brilliant Blue

R-250 (Sigma-Aldrich, USA), and the plates were imaged using

an Epson Perfection V850 Pro Photo Scanner (USA).
Seahorse analysis for the measurement
of extracellular acidification rates

Extracellular acidification rates were measured using the XFe24

analyzer (Seahorse Bioscience). Briefly, parental and oxamate-

resistant MIAPaCa2 cells (untreated and treated with sodium

oxamate) were seeded at a density of 40,000 cells/well in

triplicate. After 24 h, the culture medium was replaced with assay

medium, and extracellular acidification rates were measured for 2 h.
RNA-sequencing

Total RNA was extracted from frozen cell pellet samples

using the Qiagen RNeasy Plus Universal mini kit according to

the manufacturer’s instructions (Qiagen, Hilden, Germany).

RNA samples were quantified using a Qubit 2.0 Fluorometer

(Life Technologies, Carlsbad, CA, USA), and RNA integrity was

verified using an Agilent TapeStation 4200 (Agilent

Technologies, Palo Alto, CA, USA). RNA-seq libraries were

prepared using the NEBNext Ultra RNA Library Prep Kit for

Illumina according to the manufacturer’s instructions (NEB,

Ipswich, MA, USA). Briefly, mRNAs were initially enriched with

Oligo(dT) beads. Enriched mRNAs were fragmented for 15

minutes at 94°C. First-strand and second-strand cDNA were

subsequently synthesized. cDNA fragments were end-repaired

and adenylated at the 3’ends, and universal adapters were ligated

to cDNA fragments, followed by index addition and library

enrichment by PCR with limited cycles. The sequencing library

was validated on the Agilent TapeStation (Agilent Technologies,

Palo Alto, CA, USA) and quantified using a Qubit 2.0

Fluorometer (Invitrogen, Carlsbad, CA) and by quantitative

PCR (KAPA Biosystems, Wilmington, MA, USA).

The sequencing libraries were clustered on two lanes of a

flowcell. After clustering, the flowcell was loaded on the Illumina

HiSeq instrument (4000 or equivalent) according to the

manufacturer’s instructions. The samples were sequenced
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using a 2 × 150-bp paired-end configuration. Image analysis and

base calling were conducted using HiSeq Control Software. Raw

sequence data (.bcl files) generated from Illumina HiSeq were

converted into fastq files and de-multiplexed using Illumina

bcl2fastq 2.17 software. One mismatch was allowed for index

sequence identification.
RNA-sequencing analysis

After investigating the quality of the raw data, sequence

reads were trimmed to remove possible adapter sequences and

nucleotides with poor quality using Trimmomatic v.0.36. The

trimmed reads were mapped to the reference genome available

on ENSEMBL using the STAR aligner v.2.5.2b. The STAR

aligner uses a splice aligner that detects splice junctions and

incorporates them to help align the entire read sequences. BAM

files were generated during this step. Unique gene hit counts

were calculated by using feature counts from the Subread

package v.1.5.2. Only unique reads that fell within exon

regions were counted.

The reads were first mapped to the latest UCSC transcript set

using Bowtie2 version 2.1.0 (37), and the gene expression level

was estimated using RSEM v1.2.15 (38). Differentially expressed

genes were identified using the DESeq2 program (39). Genes

showing altered expression with p < 0.05 and fold changes > 1.5

were considered to be differentially expressed. Goseq (40) was

used to perform the gene ontology (GO) enrichment analysis,

and Kobas was used to perform the pathway analysis (41).
ATAC-sequencing and data analysis

Parental or oxamate-resistant MIAPaCa2 cells treated with 10

mM oxamate or phosphate-buffered saline (PBS) for 24 h were

washed and treated with DNAse I (Life Tech, Cat. #EN0521) to

remove genomic DNA contamination. Live cell samples were

quantified and assessed for viability using a Countess Automated

Cell Counter (ThermoFisher Scientific, Waltham, MA, USA).

After cell lysis and cytosol removal, nuclei were treated with

Tn5 enzyme (Illumina, Cat. #20034197) for 30 min at 37°C and

purified with a MinElute PCR Purification Kit (Qiagen, Cat.

#28004) to produce tagmented DNA samples. Tagmented DNA

was barcoded with a Nextera Index Kit v2 (Illumina, Cat. #FC-

131-2001) and amplified via PCR prior to an SPRI Bead cleanup

to yield purified DNA libraries.

The reads were first mapped to the latest UCSC genome set

using Bowtie2 version 2.1.0 (37). Mitochondrial reads, duplicate

reads, and non-unique reads were removed before peak calling.

MACS2 was used for peak calling using BAMPE mode (42).

Differentially expressed peaks were identified using the DEseq2

program (39). Peaks showing altered expression with p < 0.05 and

fold change > 1.5 were considered differentially expressed.
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Downstream genes of the differential peaks were used for GO

and pathway enrichment analysis. Goseq (40) was used to perform

the GO enrichment analysis, and Kobas was used to perform the

pathway analysis (41).
Integrated analysis of RNA-seq and
ATAC-seq data

RNA-seq and ATAC-seq data were analyzed to identify

same-direction changes in mRNA expression and chromatin

accessibility. This integration was used to assess pathway

enrichment using Reactome Pathway Analysis.
Enrichment analysis for transcription
factor binding sites

Transcription factor enrichment analysis was performed by

Enrichr, a web-based enrichment analysis using ENCODE and

the ChEA consensus TFs from the ChIP-X option for identifying

potential regulatory transcription factors involved in the

differential expression of metabolic genes between parental

and oxamate-resistant MIAPaCa2 cells treated with and

without sodium oxamate. The gene set of differentially

expressed genes was used as input. To identify transcription

factors using data from multiple experiments, set intersection

was applied to obtain consensus. For each comparison, multiple

transcription factors were identified as potentially direct

transcriptional regulators for differentially expressed mRNAs.
Reactome pathway analysis

The differentially expressed genes identified in the RNA-seq

or ATAC-seq analyses of metabolites identified by metabolomics

analysis were evaluated using Reactome Pathway Analysis using

the Reactome Pathway Analysis tool version 80 (https://www.

reactome.org). Briefly, common differentially expressed genes

among parental and oxamate-resistant MIAPaCa2 cells treated

with and without sodium oxamate were uploaded into the

Reactome Pathway Analysis tool. In this analysis, all non-

human identifiers were converted to their human equivalents.

The 25 most significantly altered pathways specific to Homo

sapiens were identified using all resources and sorted by p-values.
Metabolomics analysis

Parental and oxamate-resistant MIAPaCa2 cells treated with

and without oxamate were analyzed for alterations in metabolic

pathways using the CE-TOFMS–based scan profiling method

developed by Human Metabolome Technologies (Boston, MA,

USA) using an Agilent CE-TOFMS system (Agilent Technologies

Inc.). Parental and oxamate-resistant cells were grown in the
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absence and presence of 10mM sodium oxamate in triplicate, and 1

× 106 cells were analyzed for each condition. Samples were

prepared according to the recommendations of Human

Metabolome Technologies. The samples were mixed with 800 µL

methanol, followed by the addition of 450 µL Milli-Q water

containing internal standards (10 µM), and mixed thoroughly.

The extract (1,000 µL) was centrifuged (2,300 × g, 4°C, 5 min).

The supernatant (350 µL) was filtrated through a 5-kDa cutoff filter

(ULTRAFREE-MC-PLHCC, Human Metabolome Technologies,

Yamagata, Japan) to remove macromolecules. The filtrate was

concentrated by centrifugation and resuspended in 50 µL

ultrapure water immediately before the measurement.

Metabolome analysis was performed in samples of cultured cells

using CE-TOFMS for cationic and anionic metabolites. For data

analysis, peaks detected during spectrometric analysis were

extracted using the MasterHands version 2.17.1.11 automated

integration software (developed at Keio University, Tokyo, Japan)

to determine the mass/charge ratio (m/z), migration time, and peak

area. Peak area was converted to relative peak area using the

following equation: Relative peak area = Metabolite Peak Area/

Internal Standard Peak Area × Sample Amount. The peak detection

limit was determined based on a signal-to-noise ratio of 3. Putative

metabolites were assigned based on the m/z value and migration

time using Human Metabolomic Technologies’ standard library

and known–unknown peak library. The tolerance was ±0.5 min for

migration time and ±10 ppm for m/z. Hierarchical cluster analysis

and principal component analysis were performed using statistical

analysis software (developed at HumanMetabolome Technologies).

In total, 228 metabolites were detected (121 metabolites in cation

mode and 107 metabolites in anion mode) and annotated using

Human Metabolomic Technologies’ standard library and known–

unknown peak library. All metabolite concentrations were

calculated by normalizing the peak area of each metabolite to the

area of the internal standard and by comparing with standard

curves obtained from a 100 µM single-point calibration. The peak

profiles of putative metabolites were represented on metabolic

pathway maps using the Visualization and Analysis of Networks

containing Experimental Data (VANTED) software (http://vanted.

ipk-gatersleben.de/). The pathway map was prepared based on

metabolic pathways known to exist in human cells according to

information in the KEGG database (http://www.genome.jp/kegg/).

The list of fold changes for altered metabolites identified in each

comparison is shown in Table S8.

Integrated analysis for RNA-seq and
metabolomics data

Differential genes and metabolites with fold changes were

combined and used as the input file in the MetaboAnalyst 5.0

joint pathway analysis tool. MetaboAnalyst supports raw MS

spectra processing, comprehensive data normalization, statistical

analysis, functional analysis, meta-analysis, and integrative
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analysis with other omics data. The most significantly enriched

pathways were selected and plotted.
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