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The procedures of differential evolution algorithm can be summarized as population initialization, mutation, crossover, and
selection. However, successful solutions generated by each iteration have not been fully utilized to our best knowledge. In this
study, an external selection mechanism (ESM) is presented to improve differential evolution (DE) algorithm performance. The
proposed method stores successful solutions of each iteration into an archive. When the individual is in a state of stagnation, the
parents for mutation operation are selected from the archive to restore the algorithm’s search. Most significant of all, a crowding
entropy diversity measurement in fitness landscape is proposed, cooperated with fitness rank, to preserve the diversity and
superiority of the archive. The ESM can be integrated into existing algorithms to improve the algorithm’s ability to escape the
situation of stagnation. CEC2017 benchmark functions are used for verification of the proposed mechanism’s performance.
Experimental results show that the ESM is universal, which can improve the accuracy of DE and its variant

algorithms simultaneously.

1. Introduction

Differential evolution (DE) algorithm [1], introduced by
Storn and Price in 1995, is one of the most popular evo-
lutionary algorithms. DE is easy to be understood, and the
principle is simple. Still, it demonstrates good optimization
ability and is used in many single-objective optimization
problems successfully, including continuous optimization
[2], discrete optimization [3], constrained optimization [4],
and unconstrained optimization [5].

Different from other meta-heuristic algorithms [6], the
procedures of differential evolution algorithms can be
summarized as population initialization, mutation, cross-
over, and selection. After each iteration, promising solutions
with better fitness values are selected to survive to the next
iteration. These solutions can be called successful solutions.
DE repeats this procedure until a predefined termination
criterion is reached. However, DE may suffer stagnation
during the evolution process, which means stop generating
successful solutions and converging to a fixed point [7].

When the population stagnates, taking appropriate strate-
gies to restore the search should theoretically further im-
prove the algorithm’s performance.

Successful solutions are generally located in valleys of the
fitness landscape. As the iteration progresses, successful
solutions containing useful information may be discarded
and underutilized. We, therefore, propose an external se-
lection mechanism (ESM). First, ESM stores successful
solutions of each iteration into an archive. When the in-
dividual is in a state of stagnation, the parents for mutation
operation are selected from the archive. In this way, the
population can regain diversity and restore searchability.
Second, the diversity and superiority of the archive are
relatively significant because they can directly affect the
performance of the algorithm. Therefore, a rule is proposed
to update the archive based on novel crowding entropy
diversity measurement in the fitness landscape and fitness
rank.

To verify and analyze the effectiveness of the ESM, we
performed a series of experiments and comparisons on the
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CEC2017 benchmark set [8], incorporating three classic DEs
and five state-of-the-art DE variants. Results indicate that
the ESM can effectively improve the algorithm performance
without increasing the computational complexity.

The rest of this study is organized as follows: Section 2
introduces the canonical DE algorithm, including its typical
mutation, crossover, and selection operators. Section 3 re-
views related work. The proposed ESM procedures are in-
troduced in Section 4. The effectiveness of the proposed
mechanism is discussed in Section 5 based on the compu-
tational results. Conclusions and future work are illustrated
in Section 6.

2. Differential Evolution

In this section, we introduce the basic differential evolution
algorithm, including the well-known mutation strategy
DE/rand/1 [1] and other widely used mutation strategies.

DE_
(best/1) " ¢

DE .
(best/2) " ¢
DE
(rand/2) " !

DE _
(current — to — best/1)

DE '
(current — to — rand/1)

where r,,7,,75,7,, and r; are mutually different integers
randomly generated from the range (1,2, ...,NP), and they
are different from i (r| #r, #r;3#i). X{,, is the individual
vector with the best fitness value in the population at it-

eration .

2.3. Crossover. We illustrate the binomial crossover, in
which the target vector X! and donor vector V! exchange
elements according to the following rules:
. vf)j, if (rand(0,1) < CROI j = jana)s
t .

x;j» otherwise,

where the crossover rate CR € [0,1] is a uniformly dis-
tributed random integer in [1, D] that ensures at least one
element of the trial vector is inherited from the donor vector.

2.4. Selection. The greedy selection strategy is generally used
in DE. The variable, X*!, is assigned when the fitness value
of the trial vector, U!, is equal to or better than X!, and
otherwise X} is reserved:
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2.1. Initialization. An initial random population P consists
of NP individuals, each represented by {X! = (xf’l,xf’z, e
xip)li=1,2,...,NP}, where t =0,1,2,..., T, is the it-
eration number, and D is the number of dimensions in the
solution space. In DE, uniformly distributed random
functions are wused to generate initial solutions
X0 = X min +1a0d (0, 1) - (%} max = %) min)>  Where  x; oy
and x; ., are the maximum and minimum boundary
values, respectively, on the corresponding jth dimension.

2.2. Mutation. At iteration t, for each target vector X!, a
mutant vector V! is generated according to the following:

DE/rand/1: V= X, +F- (X, - X, ). (1)

Other widely used mutations strategies include

Vi=X, +F- (X, -X,)+F- (X, - X, ), ()
Vt = th +F- (Xliest - Xf) +F- (Xil - X;z)’

Vi= X +F- (X - X))+ F- (X, - X)),

(4)

1

e { U f(Ui) < f(X0),

t .
X;, otherwise,

where f (x) is the fitness function.

3. Related Work

Most research on improving DE has focused on mutation
operator [9]. In recent decades, there have been many
mutation operators with distinct search performance that
have been proposed. Fan et al. [10] proposed a triangular
mutation strategy, which was considered a local search
operator. Zhang et al. [11] introduced a new DE variant,
JADE, improving optimization performance by a new
mutation strategy, DE/current — to — pbest/1. DE/current —
to — pbest/1 is one of the most successful mutation operators
because of its relatively balanced performance between
exploration and exploitation. Wang et al. [12] proposed a
new mutation strategy called DE/current — to — Ibest/1
based on the values near the current parameter to keep
balance of exploitation and exploration capabilities during
the differential evolution. A novel DE algorithm with in-
tersect mutation operation called intersect mutation
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differential evolution (IMDE) was proposed [13] to further
improve the performance of the standard DE algorithm.
Mohamed et al. [14] proposed two mutation strategies,
DE/current — to — ord_best/1 and DE/current —to — ord_
pbest/1. Both of the proposed mutation strategies were
based on ordering three selected vectors to achieve dif-
ferent search behaviors. Deng et al. [15] proposed a novel
DE variant called DCDE based on a dynamic combina-
tion-based mutation operator to achieve an appropriate
balance between global exploration ability and local ex-
ploitation ability.

In addition, novel neighborhood-based [16], dimension-
based [17], opposition-based [18], and regeneration-based
[19] mechanisms also showed their effectiveness on im-
proving the performance of DE and its variants. In this
study, we focus on the related work on archive-based
techniques for DE. In the multiobjective evolutionary al-
gorithm, a subpopulation called the external archive is used
to store nondominated solutions that have been found
during the search [20, 21], employing an archive is almost
standard in multiobjective optimization [22]. The goal of
single-objective global numerical optimization is to find a
global optimum in decision space of a given objective
function. Recently, archive is also introduced into global
numerical optimization. In JADE [11], a set of recently
explored inferior solutions are archived, and their difference
from the current population is considered as a promising
direction toward the optimum. The archive is applied to the
second difference vector of the mutation strategy in JADE.
Zhou et al. [23] proposed a DE framework with guiding
archive (GAR-DE), GAR-DE chose the base vector of
mutation strategy from the archive to help DE escape from
the situation of stagnation, and Manhattan distance metric
was used to maintain the diversity of the archive. Zeng et al.
[24] proposed a new selection operator (NSO) for DE, which
archived not only the successful updated solutions but also
the discarded trial solutions. The NSO focused on selecting
appropriate solution from the archive to survive to the next
generation.

As can be seen from preceding explanation, the differ-
ences among archive-based mechanisms mainly consist in
two aspects: what information/solutions should be stored in
the archive; how to maintain and update the archive; and
how to use the archive to guide the search. The most striking
feature of the proposed ESM is the use of information
entropy rather than distance metric [23, 25] to maintain the
diversity of the archive.

Shannon defined the information entropy theory [26] for
the first time in 1948. In information theory, entropy is used
to measure the expected value of a random variable. As the
evaluation scale of information quantity of stochastic pro-
cess, information entropy has been extended to a general and
effective tool to solve difficult numerical problems and
uncertain polynomial combinatorial optimization problems
[27, 28]. An information theoretic technique was adopted to
analyze the ruggedness of a continuous fitness landscape in
[29, 30]. Petalas et al. [27] proposed a memetic particle
swarm optimization algorithm that exploits Shannon’s in-
formation entropy for decision-making in swarm level, as

well as a probabilistic decision-making scheme in particle
level, for determining when and where local search is ap-
plied. As can be seen from the previous studies, entropy
actually reflects the degree of chaos of system. Therefore,
entropy principle can be a promising method applied to
evolutionary algorithm to ensure population diversity.

4. The Proposed ESM

In this section, we discuss the characteristics of the successful
solution archive and archive-updating procedure and de-
scribe the ESM implementation.

4.1. Successful Solution Archive. From Section 2, we can
know that DE selects one vector from the trial vector and
parent vector to survive to the next generation, and the
survivor is known as the successful solution. As shown in
Figure 1(a), in the two-dimensional solution space of a
multimodal problem, the population is evenly distributed at
the initial stage. As the iteration continues, from Figure 1(b)
we can conclude that superior successful solutions (red
points) can be generated in possible optimal regions.
However, in Figure 1(c), the random and greedy selection
operation makes the population gradually converge to alocal
optimum. Some successful solutions may be discarded
without being fully exploited because of the greedy selection
operation as the iteration progresses. An appropriate
mechanism to utilize the successful solutions with high
diversity contribution can make the algorithm reexplore the
missed potential optimal solution. To some extent, it is also a
remedy for the greedy selection operation.

Considering the above analysis, as depicted in Figure 2,
an external archive is designed to store successful solutions
generated during each iteration. When an individual is in a
state of stagnation, the archive is activated for parent se-
lection of mutation operation. For instance, the classic
mutation strategy DE/rand/1 can be modified to

Vi=X., +F- (X, -X )i, (5)

where ar|,ar,,ary € A'Aar| #ar, #ar;, A" is the successful
solution archive at iteration t. A simple but efficient method
is adopted at this point, when the number of steps for the
individual’s fitness value to stop updating reaches a pre-
determined value Q, the individual is considered in a
stagnant state [31].

4.2. Archive Updating Procedure. As the successful solution
archive has been established, the current problem is how to
update the archive to keep its diversity and superiority in the
whole evolution process. An archive containing diverse
successful solutions can drag the individual out of stagnation
without crippling the algorithm’s performance.

4.2.1. Individual Diversity Measure. To our best knowledge,
in single-objective optimization, diversity is usually defined
by the spatial distribution of the whole population [32], but
there is few diversity contribution measures for a single



Computational Intelligence and Neuroscience

diverse superior successful solutions

local
optimum

global
optimum

local
optimum

local
optimum
(a)

F1Gurk 1: llustration of the successful solution distribution in a two-dimensional space: (a) at the initial stage; (b) at the intermediate stage;
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Ficure 2: Illustration of the successful solution archive.
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individual to whole population. Wang et al. [33] proposed an
Euclidean distance-based diversity metric for each indi-
vidual, but a huge computational cost is needed to calculate
the distance between every two individuals. To utilize di-
versity information while reducing the computational cost,
we can estimate the diversity by fitness value distribution on
individual level. Fitness distance can represent the spatial
distance to some extent [34].

In multiobjective optimization, Deb et al. [35] proposed
a crowding distance measure method to get an estimation of
the density of solutions surrounding a particular solution in
the population, by calculating the average distance of two
points on either side of this point along each of the ob-
jectives. However, the distribution of this point is not
considered, and the only average distance may not accu-
rately reflect the crowding degree. With utilizing the
characteristic of fitness distance, we can extend the crowding
distance measure to single-objective optimization. For ex-
ample, in Figure 3, the crowding distance of the solution A
can be calculated as 3L + 1L = 4L (according to crowding
distance calculation method in [35]), which is the same as
the solution B (2L + 2L = 4L), whereas solution B obviously
has a higher diversity contribution than solution A.

4.2.2. Archive Update Procedure. From the above statement,
this study proposes a crowding entropy diversity mea-
surement in the fitness landscape at individual level. As
shown in Figure 4, we sort the archive population in the
ascending order of fitness during each iteration, then, a
fitness distance estimation operator can be formulated as
follows:

DI() =|fi — fils (6)
Du(i) =|f; = fil (7)

where f; is the fitness value of the i th individual. DI (i) and
Du (i) can be further normalized, then, the crowding en-
tropy of the i th individual can be defined as follows:

DI (i)

"~ DI + Du (i) ®
B Du (i)
27 DI(i) + Du(i)’ ®)
2
CE; = - ) P, log,(P;;), (10)

Jj=1

where CE; € [0, 1], the larger CE means that the individual
distribution is more uniform, so it has a higher diversity
contribution. According to Figure 3, we can further calculate
CE, = 0.8 and CEg =1, this is also consistent with their
diversity contribution. Since the best and worst individuals
locate in the boundary scope, there is only one neighbor
around them, respectively. Therefore, we set CE; = CE, and
CEyp = CEyp_; for the ESM to function normally. To keep
the superiority of the archive, fitness value rank is further
introduced:

5
A B
o -0 o _e (] 0 e - @
k—Y—A_Y_) k—y—k—y—} Fitness rank
3L 1L 2L 2L

FiGure 3: Crowding distance presented in fitness landscape.
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FIGURE 4: Crowding entropy presented in fitness landscape.

FR; =i, i=1,2,...,NP, (11)
FR,

Ri=<1— ’)-CE,», (12)
NP +1

where R; represents the priority of the individual to be
updated. An individual in the archive with a higher rank (i.e.,
far from the global optimum) or with lower entropy (ie.,
located in a dense area) should have a higher probability of
being updated.

4.3. The Implementation of the ESM. Based on the ESM
described above, we present the ESM updating procedure in
Algorithm 1 and the complete implementation based on
classic DE with mutation strategy DE/rand/1 in Algorithm 2.
Different from the existing alternative for the selection of
parents [33, 36], the proposed mechanism is an adaptive
approach that considers the feedback of the recently suc-
cessful solutions so that the robustness of the DE algorithm
has the potential to be enhanced by dynamically adapting
promising parents for the situation of stagnation. Moreover,
the proposed ESM is computationally efficient. The time
complexities of updating operations of the archive are
O(NP). Additionally, the selection of parents, counting of
the consecutive unsuccessful updates, and stagnation de-
tection do not increase the overall time complexity.

5. Experiments and Comparisons

In this section, the proposed ESM is first integrated into
three representative classic DE algorithms, including
DE/rand/1, DE/best/1, and DE/current — to — best/1, to
verify its efficiency. Then, five state-of-the-art DE variants,
including j2020 [37], EJADE [38], BeSD [39], EBSHADE
[14], and EBLSHADE [14], are introduced to incorporate
with the ESM for further comparison. Finally, all experi-
ments are conducted on the CEC2017 benchmark set [8],
which contains 30 representative benchmark functions in
four categories: unimodal (F1-F3), simple multimodal
(F4-F10), hybrid (F11-F20), and composition (F21-F30).
This benchmark set is widely used in the performance testing
of evolutionary algorithms [9]. It is worth mentioning that
the ESM does not change existing mechanisms in algorithms



Computational Intelligence and Neuroscience

(1) Input: successful solution X;, the archive A;
(2) Output: the archive A;

(3) FORi=1 to NP

(4) Calculate R; of A; by equations (6)-(12);
(5) END FOR

(6) Get the index j of the smallest R;

(7) Replace the solution A; with X;

ALGORITHM 1: The pseudo code of ESM updating procedure.

(1) Step 1: Initialization
(2) Set iteration t = 0, fitness evaluations FEs = 0, stagnation threshold Q = 120.
(3) Initialize a population of NP individuals P° = {X9,..., X%} with
4) X? = {xzt,l’xf',Z’ oo »xf,D >
(5) Set parameter F = 0.5 and CR = 0.5, stagnation iterations q{ = --- = g%, =0, archive
(6) A® = PO
(7) Step 2: Evolution Iteration
(8) WHILE FEs < Max_FEs
(9) DO
(10) Step 2.1: Mutation Operation
11) FORi=1 to NP
(12) Randomly select r, #7, #r; from the set I = {1,2,...,NP};
13) IF 4/ <Q
(14) Generate donor vectors V! by (1);
15) ELSE
(16) Generate donor vectors V! by (5);
17) END
18) END FOR
19) Step 2.2: Crossover Operation
(20) FOR i =1 to NP
(21) Generate trial vectors U} by (3);
(22) END FOR
(23) Step 2.3: Selection and Archive Update
(24) FORi=1to NP
(25 IF f(U)< f(X0)
(26) gt =0
(27) Update A according to Algorithm 1 with U%;
(28) ELSE
(29) gt =q +1
(30) END IF
(31) Generate new vectors X!*! by (4);
(32) END FOR
(33) Step 2.4: Increase the Count
(34) FEs = FEs + NP;
(35) t=t+1
(36) END WHILE

ALGORITHM 2: The pseudo code of DE/rand/1 with the proposed ESM.

including the bound constraint handling and linear pop-
ulation size reduction.

The parameters of all algorithms are listed in Table 1. The
common parameters of the incorporated algorithms are set as
follows: The population size NP is 100, the stagnation tolerance
Q is 120, and the maximum allowed number of function
evaluations Max_FEs = 10000 * D, where D is the problem
dimension. Moreover, H represents the historical memory size
associated with the adaptive control of scaling factors (F) and
crossover rates (CR), LP is the learning period.

Limited by the article space, this study presents results at
D = 30. For the fairness of comparison, each algorithm was
implemented in MATLAB 2017b and executed over 51
independent runs on a Windows 10 64 bit desktop PC with
32 GB of RAM and a 3.0 GHz Intel Core i7-9700 processor.

5.1. Improving the Performance of Classic DEs and State-of-
the-Art DE Variants. The following tables show the mean
value (Mean) and standard deviation (Std.Dev) of the error
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value f(X) — f(X*), where f(X*) representing the global
optimum. The “+,” “~,” and “=" signs at each row of the table
indicates that the ESM-based algorithm is, respectively,
better than, equal to, or worse than the comparison
algorithm.

Tables 2-4 show the performance of three classic DEs. For
DE/rand/1, which is widely recognized for its diversity
maintaining capability and relative low search efficiency, the
ESM significantly improves its performance on 24 test
functions and only cause performance degradation on two
test functions, as shown in Table 2. DE/best/1 is well known as
its local exploitation capability and fast convergence speed,
the ESM also makes progress on 19 functions, as presented in
Table 3. Relatively, the performance of ESM-DE/best/1 de-
creases on five functions including F13, F16, F24, F27, and
F29 and keeps the same as DE/best/1 on the rest six functions.
DE/current — to — best/1 is more inclined to balance global
exploration and local exploitation. From Table 3, we can find
that the ESM also achieves improvement on 26 functions. The
results of ESM-DE/current — to — best/1 only decrease on two
functions including F2 and F19. With functions F25 and F27,
the two competitors keep the same.

From the above experiments, we can conclude that the
ESM can significantly improve classic DE’s performance. To
further verify the ESM’s universality, five representative and
advanced DE variants are introduced, Tables 5-9 show these
variants and their competitors’ performance. For ESM-
j2020, as shown in Table 5, significant improvements are
achieved on 23 functions. From Tables 6 to 9, we know that
the number of functions with “+” decreases compared with
the results shown in Tables 2-5. Meanwhile, from Tables 6 to
9, only a few functions show performance degradation after
applying the ESM. We can therefore conclude that the ESM
is still competitive even in recognized excellent DE variants.

We further conducted Wilcoxon signed-ranked test with
a 0.05 significance [40] to statistically verify the effectiveness
of the ESM. In Table 10, the p-value obtained by ESM-
DE/rand/1, ESM-DE/best/1, ESM-DE/current — to — best/1,
ESM-j2020, and ESM-BeSD are all less than 0.05, which
indicates a significant improvement is achieved by the
proposed ESM. It also can be found that ESM-EJADE, ESM-
EBSHADE, and ESM-EBLSHADE still maintain their ad-
vantages in terms of the value of R+ and R-, which also
reflects that the ESM achieves more promising results.

As mentioned before, the functions of CEC2017 can be
divided into four categories: unimodal functions, simple
multimodal functions, hybrid functions, and composition
functions. To analyze whether the performance of the ESM is
related to the type of function, the performance of the ESM-
based algorithms for each type of function category are
presented in Table 11. As shown in Table 11, the ESM
performs best on hybrid functions. Following the adoption
of the ESM, the algorithm has an 81.25% probability of
finding a better solution but only a 16.25% probability of
finding a worse solution on hybrid functions. Besides, the
performance of the ESM is almost the same on simple
multimodal functions and composition functions and rel-
atively worst on unimodal functions. Table 11 demonstrates
that if the optimization problem is multimodal function,

TABLE 1: Parameter settings of all compared algorithms.

No. ESM A=NP, Q=120
1 DE/rand/1 F=0.5,CR=0.9;
2 DE/best/1 F=0.5 CR=0.5
3 DE/current — to — best/1 F=0.5,CR=0.5;
4 j2020 [37] F=0.5,CR=0.9;
up = 0.5, ucg = 0.5,
> EJADE [38] c=0.1, p =0.05
6 BeSD [39] K =0.5;
My = 0.5, Mg = 0.5,
7 EBSHADE [14] and H = 100;
My = 0.5, Mg = 0.5,
8 EBLSHADE [14] and H = 100;

hybrid function, or composition function, then the proposed
selection mechanism can be considered in the DE algorithm.

5.2. Convergence Analysis. To more clearly show the influ-
ence of the ESM on algorithm convergence and avoid di-
version, four representative functions from CEC2017 are
extracted, including F7, F16, F20, and F24, convergence
curves for these functions with the three classic DEs and their
relative ESM-based versions are presented. F7 is a simple
multimodal function with a characteristic of convexity. From
Figure 5(a), we can find that all six comparison algorithms
have a similar convergence rate; this also reflects that the ESM
does not cripple the convergence speed of the algorithm on
F7. From Figures 5(b) to 5(d), it can be seen that when each
algorithm adopts the proposed ESM, it converges to a better
value than the original algorithm with faster convergence.
This is mainly because the algorithm can hardly escape when
it suffers stagnation. The algorithm that uses the proposed
ESM has a more excellent capability to keep search efficiency.

5.3. Population Diversity Analysis. As the ESM adopts the
entropy-based individual diversity measure, we further
calculated the diversity of the main population and archive
population on F7, F16, F20, and F24 for three classic DEs. It
should be pointed out that we used the concept proposed in
[41] to measure population diversity:

_ 13
xj :ﬁ ;x'i’i’

(13)

NP D

Population Diversity = ﬁ Zl zi (x i xj)2
i=1 j=

As illustrated in Figure 6(a), the main population and
archive population have an almost uniform diversity on F7.
From Figures 6(b)to6(d), it can be concluded that the ar-
chive population can maintain a relatively higher diversity
than the main population at the intermediate stage for
DE/current — to — best/1 and DE/best/1. To sum up, the
archive population can maintain relative diversity during the
search process, which makes it possible for the algorithm to
recover from stagnation.
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TaBLE 2: Comparison results of DE/rand/1 on CEC2017 test suite (D = 30).
DE/rand/1 ESM-DE/rand/1
MEan Std.DEv MEan Std.DEv
F1 5.8903E-01 2.9710E - 01 4.5086E - 01 1.7552E-01 +
F2 5.7444E + 23 9.9418E + 23 9.2675E + 21 2.5025E + 22 +
F3 3.4902E + 04 6.1469E + 03 2.3752E + 04 3.9591E+ 03 +
F4 6.5749E + 01 9.5494E + 00 6.7267E + 01 1.0601E + 01 -
F5 1.7859E + 02 9.8332E+00 1.7115E + 02 1.1998E + 01 +
F6 1.3560E — 06 1.8981E - 06 6.2629E — 07 4.5960E - 07 =
F7 2.1873E + 02 1.0943E + 01 2.1104E + 02 8.6729E + 00 +
F8 1.8310E + 02 9.0762E + 00 1.7903E + 02 7.5831E + 00 +
F9 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 =
F10 6.8115E + 03 2.7719E + 02 6.7908E + 03 2.7506E + 02 +
F11 7.7115E + 01 1.8139E + 01 7.6014E + 01 2.7738E+01 +
F12 1.9220E + 06 1.3261E + 06 1.3328E + 05 1.6493E + 05 +
F13 6.9480E + 02 1.3966E + 02 4.9388E + 02 8.5027E + 01 +
F14 7.6534E + 01 6.7506E + 00 7.3477E + 01 6.1189E + 00 +
F15 7.2091E + 01 6.3029E + 00 6.0288E + 01 7.8284E + 00 +
Fl16 1.1650E + 03 1.6343E + 02 9.3936E + 02 1.6736E + 02 +
F17 2.8488E + 02 6.0664E + 01 7.4398E + 01 8.8628E + 00 +
F18 1.3888E + 04 5.2100E + 03 8.0349E + 03 2.2066E + 03 +
F19 3.6625E + 01 3.4612E + 00 3.6208E + 01 3.0908E + 00 +
F20 1.9409E + 02 1.4131E+02 3.4660E + 01 6.7089E + 00 +
F21 3.7093E+ 02 9.2962E + 00 3.6776E + 02 1.0301E+01 +
F22 1.0000E + 02 1.5498E-13 1.0000E + 02 0.0000E + 00 =
F23 5.2446E + 02 9.2278E + 00 5.1863E + 02 8.4044E + 00 +
F24 5.8819E + 02 1.2276E + 01 5.8615E + 02 8.0042E + 00 +
F25 3.8675E + 02 2.5661E — 02 3.8674E + 02 1.1873E-02 =
F26 2.6453E+03 9.4563E + 01 2.5338E + 03 1.1013E + 02 +
F27 4.9203E + 02 1.0543E + 01 4.9375E +02 8.0730E + 00 -
F28 3.2756E + 02 4.6815E + 01 3.1464E + 02 3.5907E + 01 +
F29 9.0769E + 02 9.6800E + 01 7.3123E + 02 7.3738E + 01 +
F30 1.5880E + 04 3.3864E + 03 1.0375E + 04 1.4700E + 03 +
Total numbEr of (+/=/-): 24/4/2
TaBLE 3: Comparison results of DE/best/1 on CEC2017 test suite (D = 30).
DE/best/1 ESM-DE/best/1
Mean Std.Dev Mean Std.Dev
F1 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 =
F2 2.8258E+ 10 1.1400E + 11 3.5454E + 04 1.6884E + 05 +
F3 6.0493E + 02 3.5493E+02 3.1110E + 00 4.8214E + 00 +
F4 9.1949E + 01 2.7991E + 01 9.2586E + 01 2.5015E + 01 =
F5 9.2763E + 01 5.1334E+ 01 4.4342E + 01 1.6997E + 01 +
Fé6 2.5865E - 02 6.1852E — 02 3.6252E-02 1.1222E-01 =
F7 1.7540E + 02 3.2845E+ 01 8.2894E + 01 2.9691E + 01 +
F8 9.1332E + 01 5.5536E + 01 4.5522E + 01 1.1158E +01 +
F9 1.3824E + 01 2.8355E+ 01 1.3216E + 01 2.0467E + 01 =
F10 6.1379E+ 03 5.6240E + 02 2.2535E+ 03 1.6207E+ 03 +
F11 6.9152E + 01 4.1818E + 01 5.9835E + 01 3.3934E+ 01 +
F12 2.4650E + 04 1.7178E + 04 1.8722E + 04 1.1910E + 04 +
F13 8.0829E + 03 1.3281E+ 04 1.1159E + 04 1.4904E + 04 -
F14 1.0157E + 02 2.4475E + 01 7.9954E + 01 3.5773E + 01 +
F15 1.3412E + 02 7.9017E + 01 8.4741E + 01 5.4255E + 01 +
F16 4.6549E + 02 2.8862E + 02 4.8784E + 02 2.7012E + 02 -
F17 1.6363E + 02 9.3907E + 01 1.5320E + 02 8.2527E + 01 +
F18 7.5687E + 04 5.7404E + 04 4.6144E + 04 2.9812E + 04 +
F19 6.4986E + 01 4.8051E + 01 6.0751E + 01 5.8037E + 01 +
F20 1.6043E + 02 9.2239E + 01 1.6611E + 02 9.9222E+ 01 =
F21 2.8238E+02 4.5823E + 01 2.4758E + 02 1.1434E + 01 +
F22 2.8353E+03 2.8108E+03 1.2129E+ 03 1.6013E+03 +
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TasLE 3: Continued.
DE/best/1 ESM-DE/best/1

Mean Std.Dev Mean Std.Dev
F23 4.1270E + 02 2.4531E + 01 3.9811E + 02 1.4860E + 01 +
F24 4.7466E + 02 2.8842E + 01 4.7812E + 02 1.3574E + 01 -
F25 3.9123E+02 1.1628E + 01 3.9129E + 02 1.1172E+ 01 =
F26 1.6222E+03 2.1578E + 02 1.4146E + 03 4.2851E+ 02 +
F27 5.1391E + 02 1.5952E + 01 5.1741E+ 02 1.2805E + 01 -
F28 4.3979E + 02 2.9759E + 01 4.2865E + 02 2.3995E + 01 +
F29 5.7692E + 02 1.1599E + 02 5.9473E + 02 1.0825E + 02 -
F30 6.3732E+03 3.1823E+03 4.2434E + 03 2.5536E + 03 +

Total number of (+/=/-): 19/6/5
TaBLE 4: Comparison results of DE/current — to — best/1 on CEC2017 test suite (D = 30).
DE/current — to — best/1 ESM-DE/current — to — best/1

Mean Std.Dev Mean Std.Dev
F1 4.2529E + 03 1.3861E + 04 2.4194E + 03 4.8764E + 03 +
F2 1.4541E+13 5.2565E+ 13 7.0969E + 13 3.8743E+ 14 -
F3 2.5651E + 02 1.7770E + 02 1.4208E + 00 2.2041E+ 00 +
F4 1.1469E + 02 1.3856E + 01 1.0468E + 02 1.8355E + 01 +
F5 1.4448E + 02 1.2098E + 01 2.9207E + 01 6.2955E + 00 +
F6 7.9340E - 03 4.4121E-02 2.0523E-03 1.1284E - 02 +
F7 1.7631E + 02 1.2016E + 01 7.5749E + 01 3.9251E+ 01 +
F8 1.4187E + 02 1.2879E + 01 2.7608E + 01 7.8113E+ 00 +
F9 4.2194E -01 4.5290E - 01 2.8916E - 01 3.5412E-01 +
F10 6.1656E + 03 3.9958E + 02 4.6688E + 03 1.8249E + 03 +
F11 6.8524E + 01 3.1083E + 01 5.5608E + 01 2.9379E + 01 +
F12 2.2269E + 04 1.3508E + 04 1.9785E + 04 1.3868E + 04 +
F13 6.5569E + 03 3.5373E+03 4.7370E + 03 7.3061E + 03 +
F14 1.2361E + 02 2.9917E + 01 8.7387E + 01 2.5164E + 01 +
F15 2.1775E + 02 8.1693E + 01 1.9212E + 02 8.3283E + 01 +
F16 7.4089E + 02 2.3808E + 02 4.1651E + 02 2.2185E+02 +
F17 1.8434E + 02 5.3907E + 01 9.5323E + 01 5.6810E + 01 +
F18 5.8340E + 04 2.6259E + 04 5.2731E + 04 3.7186E + 04 +
F19 7.9602E + 01 2.9727E + 01 1.1554E + 02 5.1436E + 01 -
F20 2.2812E+02 8.2020E + 01 1.2592E + 02 8.0240E + 01 +
F21 3.3232E+02 1.0378E + 01 2.3302E + 02 1.8782E + 01 +
F22 2.9659E + 02 1.0908E + 03 1.0053E + 02 1.1111E+00 +
F23 4.6069E + 02 2.1824E + 01 3.8629E + 02 1.4205E + 01 +
F24 5.4998E + 02 1.6167E + 01 4.6028E + 02 1.5954E + 01 +
F25 4.0471E + 02 1.7220E + 01 4.0175E + 02 1.7238E + 01 =
F26 1.9292E + 03 5.1027E+ 02 1.3090E + 03 2.7680E + 02 +
F27 5.1686E + 02 1.1760E + 01 5.1961E + 02 1.4919E + 01 =
F28 4.7064E + 02 3.4376E + 01 4.5744E + 02 3.0111E+01 +
F29 7.0816E + 02 1.0684E + 02 5.2205E + 02 8.3692E + 01 +
F30 9.8358E + 03 7.4280E + 03 7.5623E + 03 3.6244E+ 03 +

Total number of (+/=/-): 26/2/2

5.4. Parameter Sensitivity Analysis. As illustrated in the
previous sections, the ESM contains one parameter Q re-
quired adjustment. Q is a threshold which represents the
stagnation steps. Table 12 shows the B-W values that
represent the variation between better (“+”) and worse
(“=”) number of the mean value after applying the ESM. It
can be seen that the ESM-based algorithm performance is
not so sensitive to the change of Q values over a finite range.
For further comparison, A wider range of Q values and its
corresponding B-W values are shown in Figure 7. In
general, when the Q value is too large, the overall

performance of the ESM begins to deteriorate. This is
mainly because too large Q value reduces the probability of
the ESM intervening in the algorithm; therefore, it is
difficult for the ESM to function in limited iterations. In
summary, considering the overall performance of the ESM,
Q is set to 120.

5.5. Scalability Analysis. The dimension of the test functions
governs the difficulties on finding the global optimum.
Higher dimensional functions are generally more difficult to
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TaBLE 5: Comparison results of j2020 on CEC2017 test suite (D = 30).
j2020 ESM-j2020
Mean Std.Dev Mean Std.Dev
F1 3.9138E - 02 2.7831E-02 4.1149E-02 2.6801E - 02 -
F2 2.1525E +22 7.2306E + 22 3.5391E + 16 7.4152E + 16 +
F3 3.0526E + 04 5.6182E + 03 1.5964E + 04 3.6765E + 03 +
F4 7.6190E + 01 1.0125E + 01 7.7537E+ 01 1.0041E + 01 -
F5 1.5059E + 02 1.5882E + 01 3.3617E + 01 1.1325E + 01 +
F6 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 =
F7 1.9215E + 02 1.0204E + 01 8.8048E + 01 2.4532E+01 +
F8 1.5771E+02 9.7337E + 00 3.5822E + 01 1.3602E + 01 +
Fo 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 =
F10 6.0724E + 03 2.8112E+02 2.6253E + 03 9.8373E+02 +
F11 7.1620E + 01 2.5123E+01 1.4904E + 01 1.6548E + 01 +
F12 7.3213E + 05 6.1498E + 05 4.9652E + 04 3.2587E+04 +
F13 3.9600E + 02 8.0250E + 01 2.6856E + 02 4.2577E+01 +
F14 7.1081E + 01 5.4527E+ 00 5.2870E + 01 1.1383E + 01 +
F15 6.0349E + 01 5.8258E + 00 3.6537E + 01 1.3383E+ 01 +
Fl6 9.0601E + 02 1.4229E + 02 4.1188E + 02 1.7961E + 02 +
F17 9.1833E + 01 3.4540E + 01 4.3249E + 01 2.4777E+01 +
F18 3.2864E + 03 1.5646E + 03 1.5206E + 03 8.9776E + 02 +
F19 3.3522E+01 4.8067E + 00 1.5961E + 01 2.9754E + 00 +
F20 5.3644E + 01 2.1292E + 01 4.7332E + 01 6.8896E + 01 +
F21 3.5434E+02 6.7332E+ 00 2.3149E + 02 1.2889E + 01 +
F22 1.0000E + 02 2.2819E-13 1.0000E + 02 8.1676E — 14 =
F23 4.9590E + 02 6.7701E + 00 3.7594E + 02 1.0453E+ 01 +
F24 5.7509E + 02 8.0847E +00 4.5326E + 02 1.1284E + 01 +
F25 3.8677E+02 2.5429E - 02 3.8676E + 02 1.3848E - 02 =
F26 2.3688E+03 1.1160E + 02 1.1769E + 03 1.2856E + 02 +
F27 4.9473E + 02 1.1847E + 01 4.9543E + 02 6.3871E + 00 -
F28 3.3192E + 02 4.5936E + 01 3.2368E + 02 4.8265E + 01 +
F29 7.8452E + 02 8.7484E + 01 4.8871E + 02 2.6830E + 01 +
F30 9.8924E + 03 2.2550E + 03 6.4595E + 03 1.2161E + 03 +
Total numbEr of (+/=/-): 23/4/3
TaBLE 6: Comparison results of EJADE on CEC2017 test suite (D = 30).
EJADE ESM-EJADE
Mean Std.Dev Mean Std.Dev
F1 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 =
F2 4.5316E + 03 2.1794E + 04 1.2673E + 04 5.6411E + 04 -
F3 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 =
F4 2.4107E + 01 2.9037E + 01 2.6740E + 01 2.9430E + 01 -
F5 1.8962E + 01 4.4630E + 00 1.7560E + 01 4.1722E +00 +
F6 6.9845E — 07 2.4275E - 06 1.4467E - 06 6.4530E - 06 -
F7 4.6647E + 01 2.8902E + 00 4.5802E + 01 3.2092E + 00 +
F8 1.8850E + 01 3.1904E + 00 1.7218E + 01 5.1087E + 00 +
Fo 1.9587E - 01 3.4505E-01 1.2548E - 01 1.8845E - 01 +
F10 1.8437E+ 03 3.0553E+02 1.5558E + 03 5.3726E + 02 +
F11 4.7182E+01 2.6517E + 01 3.9138E + 01 2.3463E+01 +
F12 2.0542E+03 1.8865E + 03 1.8759E + 03 1.2938E + 03 +
F13 4.9648E + 01 3.1191E + 01 3.7663E + 01 1.7336E + 01 +
F14 3.9862E + 01 1.3835E+ 01 3.8508E + 01 1.1120E + 01 +
F15 4.1678E + 01 4.0043E+ 01 4.2540E + 01 3.6838E + 01 -
F16 3.2052E+02 1.8067E + 02 2.6554E + 02 1.5914E + 02 +
F17 5.7500E + 01 1.3465E + 01 5.1900E + 01 3.5779E+ 01 +
F18 7.7806E + 01 5.1375E+01 8.8347E + 01 6.3700E + 01 -
F19 1.7808E + 01 1.0382E+ 01 1.9606E + 01 1.8146 E + 01 -
F20 1.0632E + 02 5.7664E + 01 5.1910E + 01 5.3314E + 01 +
F21 2.1850E + 02 3.6330E+00 2.1748E + 02 4.0920E + 00 +
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TaBLE 6: Continued.
EJADE ESM-EJADE
Mean Std.Dev Mean Std.Dev
F22 1.0008E + 02 4.4179E - 01 1.6606E + 02 3.6781E +02 -
F23 3.6253E + 02 6.0195E + 00 3.6162E + 02 6.1887E + 00 +
F24 4.3448E + 02 6.1456E + 00 4.3460E + 02 5.0372E+ 00 =
F25 3.8703E+02 7.8427E - 01 3.8701E + 02 3.6023E-01 =
F26 1.1198E+ 03 7.2825E+ 01 1.0310E + 03 2.7881E + 02 +
F27 5.0690E + 02 8.8147E + 00 5.0681E + 02 6.6749E + 00 =
F28 3.7620E + 02 6.0263E + 01 3.3258E + 02 5.2414E + 01 +
F29 4.6359E + 02 2.7079E + 01 4.4343E + 02 3.0038E + 01 +
F30 2.1586E + 03 1.9675E + 02 2.1400E + 03 2.0292E + 02 +
Total number of (+/=/-): 18/5/7
TaBLE 7: Comparison results of BeSD on CEC2017 test suite (D = 30).
BeSD ESM- BeSD
Mean Std.Dev Mean Std.Dev

F1 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 =
F2 7.2258E + 00 1.9085E + 01 3.9032E + 00 1.4996E + 01 +
F3 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 =
F4 6.8185E + 00 1.6230E + 01 1.7131E+ 01 2.6599E + 01 -
F5 4.5762E + 01 2.8543E + 01 2.7217E + 01 8.1867E + 00 +
F6 0.0000E + 00 0.0000E + 00 1.7219E-07 3.7418E - 07 =
F7 1.3363E + 02 1.5180E + 01 5.1262E + 01 6.7117E + 00 +
F8 5.6343E + 01 2.9912E + 01 2.6864E + 01 7.8132E + 00 +
F9 6.1295E - 02 1.9377E-01 6.7718E — 02 1.7464E - 01 =
F10 5.8972E + 03 3.7315E+ 02 2.5464E + 03 5.6311E+ 02 +
F11 2.6612E + 01 1.5396E + 01 3.7557E + 01 2.2784E + 01 -
F12 8.3133E+ 03 4.3141E+03 8.9538E+03 7.0576E + 03 -
F13 2.2656E + 02 2.3629E + 02 6.3469E + 01 2.8828E + 01 +
F14 6.1777E + 01 1.5857E + 01 4.1127E + 01 9.6938E + 00 +
F15 6.2060E + 01 3.5382E+01 3.8429E + 01 2.6456E + 01 +
F16 6.1366E + 02 1.7387E + 02 2.2941E + 02 1.8203E + 02 +
F17 1.0414E + 02 2.0838E + 01 3.4358E + 01 1.1387E + 01 +
F18 2.1008E + 02 9.9628E + 01 7.7754E + 01 4.7271E + 01 +
F19 4.0368E + 01 2.1662E + 01 3.0129E + 01 1.4941E + 01 +
F20 1.1522E + 02 4.3894E + 01 4.3747E + 01 5.1852E + 01 +
F21 2.3501E+ 02 2.5203E+ 01 2.2421E + 02 9.6408E + 00 +
F22 1.0000E + 02 1.1357E—-13 1.0000E + 02 2.2124E-13 =
F23 3.7384E + 02 1.6564E + 01 3.7369E + 02 9.3329E + 00 =
F24 4.4032E+02 7.1928E + 00 4.3973E + 02 8.2282E+00 +
F25 3.8708E + 02 2.9529E - 01 3.8709E + 02 2.7823E-01 =
F26 1.1447E+ 03 1.7473E+ 02 1.0790E + 03 2.7897E + 02 +
F27 5.0192E + 02 5.4148E + 00 5.0552E+ 02 8.0174E + 00 -
F28 3.1676E + 02 3.8969E + 01 3.3033E+ 02 4.8241E + 01 -
F29 5.9423E+02 7.0224E + 01 4.4240E + 02 3.4337E+01 +
F30 2.5624E + 03 3.5089E + 02 2.1699E + 03 1.3768E + 02 +

Total number of (+/=/-): 18/7/5

solve. To verify the relationship between the dimensionality
and the performance of the proposed mechanism, we
evaluate the average performance of eight ESM-based DE
algorithms in CEC2017 benchmark set. Table 13 shows the
results (+/=/-) of the considered algorithms at D = 10, 30,
50, and 100 on the test functions, for intuition, we convert
the corresponding B-W values into Figure 8. We can find
that the performance of the ESM-based algorithm fluctuates
slightly but does not degrade significantly with the increase

of problem dimension compared to the original algorithm.
In Table 14, the Friedman test [40], a widely used non-
parametric test in the EA community, is used to validate the
performance of all algorithms based on the mean value. It is
not difficult to see that the p-values from D = 10 to D = 100
calculated by the Friedman test are all less than 0.05.
Therefore, there are significant differences in the perfor-
mance of the comparison algorithms on the corresponding
dimensions, and ESM-EBLSHADE gets the first rank overall.
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TaBLE 8: Comparison results of EBSHADE on CEC2017 test suite (D = 30).
ESM-EBSHADE
Mean Std.Dev Mean Std.Dev
F1 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 =
F2 1.9972E + 04 1.1037E+ 05 1.6852E + 02 7.3798E + 02 +
F3 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 =
F4 5.6852E + 01 1.0598E + 01 5.3253E+01 1.7773E + 01 +
F5 1.5508E + 01 2.5802E + 00 1.6273E+01 6.3554E + 00 -
F6 6.8453E — 08 1.0785E-07 4.2769E —07 7.4531E -07 -
F7 4.6604E + 01 2.7607E + 00 4.6489E + 01 4.8631E + 00 +
EF8 1.6879E + 01 2.8304E + 00 1.6186E + 01 3.4825E+ 00 +
F9 1.7544E - 02 8.2641E -02 1.4656E - 02 8.1599E —-02 +
F10 1.6353E+03 2.3269E + 02 1.4154E + 03 2.6504E + 02 +
F11 2.7724E + 01 2.6071E + 01 2.6265E + 01 2.5887E + 01 +
F12 1.2219E+03 4.6754E + 02 1.2126E + 03 4.4003E + 02 +
F13 3.8215E + 01 2.0185E + 01 3.7691E + 01 1.4370E + 01 +
F14 2.8375E + 01 8.7055E + 00 3.0017E+01 4.8689E + 00 -
F15 1.7726E + 01 1.0888E + 01 2.1258E + 01 1.2917E + 01 -
F16 2.9276E + 02 1.1820E + 02 2.0707E + 02 1.2958E + 02 +
F17 4.5658E + 01 1.0476E + 01 3.5719E + 01 1.0310E + 01 =
F18 9.0145E + 01 4.7859E + 01 9.4472E + 01 5.6305E + 01 -
F19 1.4666E + 01 8.9947E + 00 1.2179E + 01 4.1749E + 00 +
F20 6.3748E + 01 4.4406E + 01 5.2312E+ 01 4.9270E + 01 +
F21 2.1777E + 02 3.4870E + 00 2.1847E+02 4.1234E + 00 -
F22 1.0051E + 02 2.8400E + 00 1.0000E + 02 2.2124E -13 =
F23 3.6665E + 02 5.5240E + 00 3.6453E + 02 5.2131E+00 +
F24 4.3676E + 02 3.7374E + 00 4.3642E + 02 6.0049E + 00 =
F25 3.8681E + 02 5.8187E-02 3.8684E + 02 7.5494E —02 =
F26 1.1214E+ 03 6.7789E + 01 1.1160E + 03 7.3256E + 01 +
F27 5.0632E+ 02 4.6020E + 00 5.0579E + 02 6.3243E+ 00 +
F28 3.4497E+ 02 5.8589E + 01 3.4205E + 02 5.8955E + 01 +
F29 4.6900E + 02 1.3609E + 01 4.4219E + 02 2.2017E + 01 +
F30 2.0864E + 03 1.3828E+ 02 2.0213E+ 03 1.6473E+ 02 +
Total number of (+/=/-): 18/6/6
TaBLE 9: Comparison results of EBLSHADE on CEC2017 test suite (D = 30).
ESM-EBLSHADE
Mean Std.Dev Mean Std.Dev
F1 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 =
F2 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 =
F3 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 =
F4 5.8562E + 01 3.4396E - 14 5.8562E + 01 4.0776E — 14 =
F5 6.6978E + 00 1.3325E+ 00 6.9719E + 00 1.5418E + 00
F6 0.0000E + 00 0.0000E + 00 1.4398E - 08 4.1347E-08 =
F7 3.7938E+ 01 1.3728E+ 00 3.6957E + 01 1.2423E+00 +
F8 7.4627E + 00 1.5388E + 00 6.9654E + 00 1.6395E + 00 +
F9 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 =
F10 1.3903E+ 03 2.5407E + 02 1.2476E + 03 2.3487E+02 +
F11 3.3748E + 01 2.8992E + 01 4.,0898E + 01 2.8428E + 01 -
F12 1.1107E+03 3.2096E + 02 1.1021E + 03 3.2418E+ 02 +
F13 1.8932E + 01 7.7131E + 00 1.6355E + 01 5.4803E + 00 +
F14 2.1636E + 01 1.1516E + 00 2.1493E + 01 3.6187E+00 +
F15 3.9785E+ 00 1.8483E + 00 3.6417E + 00 1.6998E + 00 +
F16 4.1583E+01 3.4857E + 01 2.0657E + 01 5.3775E + 00 +
F17 3.1880E + 01 5.6772E+ 00 3.1060E + 01 4.8829E + 00 +
F18 2.2262E + 01 1.5977E + 00 2.2496E + 01 1.2879E + 00 -
F19 6.2724E + 00 2.2466E + 00 5.6099E + 00 1.3474E + 00 +
F20 3.2672E+01 6.5190E + 00 2.7681E + 01 6.2855E + 00 +
F21 2.0835E+ 02 1.4350E + 00 2.0819E + 02 1.4361E + 00 +
F22 1.0000E + 02 0.0000E + 00 1.0000E + 02 8.1676E — 14 =
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TaBLE 9: Continued.

EBLSHADE ESM-EBLSHADE
Mean Std.Dev Mean Std.Dev

F23 3.5311E+ 02 3.0584E + 00 3.5407E + 02 2.9996E + 00 -
F24 4.2796E + 02 1.7733E+ 00 4.2807E + 02 1.8546E + 00

F25 3.8672E+02 1.9899E - 02 3.8672E+02 2.4427E-02 =
F26 9.7950E + 02 4.0916E + 01 9.7385E + 02 2.9174E + 01 +
F27 5.0689E + 02 5.5012E + 00 5.0580E + 02 4.6504E + 00 +
F28 3.5816E + 02 6.2765E + 01 3.2838E + 02 4.8986E + 01 +
F29 4.3621E+02 7.9105E + 00 4.3392E + 02 6.5290E + 00 +
F30 1.9967E + 03 7.3147E + 01 2.0385E+03 8.6201E + 01 -

Total number of (+/=/-): 16/9/5
TaBLE 10: Results obtained by the Wilcoxon test.
Algorithms R+ R- P-value
ESM-DE/rand/1 vs. DE/rand/1 446.5 18.5 0.039
ESM-DE/best/1 vs. DE/best/1 376.5 88.5 0.047
ESM-DE/current — to — best/1 vs. DE/current — to — best/1 423 42 0.031
ESM-j2020 vs. j2020 419.5 45.5 0.038
ESM-EJADE vs. EJADE 326.5 138.5 0.081
ESM-BeSD vs. BeSD 338.5 126.5 0.046
ESM-EBSHADE vs. EBSHADE 375.5 89.5 0.075
ESM-EBLSHADE vs. EBLSHADE 341.5 123.5 0.089
TaBLE 11: The classification statistics result of proposed ESM in eight algorithms.

Functions +(%) =(%) —(%)
Unimodal functions 45.83 41.67 12.50
Simple multimodal functions 64.29 23.21 12.50
Hybrid functions 81.25 2.50 16.25
Composition functions 62.50 22.50 15.00
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TaBLE 12: The B-W values of all ESM-based algorithms on CEC2017 under different Q values.

Algorithms Q=100 Q=110 Q=120 Q=130 Q = 140
ESM-DE/rand/1 22 21 22 23 20
ESM-DE/best/1 13 14 14 13 14
ESM-DE/current — to — best/1 24 24 24 22 20
ESM-j2020 18 21 20 19 17
ESM-EJADE 10 12 11 10 10
ESM-BeSD 11 10 13 12 12
ESM-EBSHADE 10 11 12 10 11
ESM-EBLSHADE 9 10 11 10 10
Total 117 126 127 119 114
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TaBLE 13: The statistical results of all ESM-based algorithms on CEC2017 under different dimensions.

Algorithms D=10 D =30 D =50 D =100
ESM-DE/rand/1 vs. DE/rand/1 23/5/2 24/4/2 22/6/2 25/4/1
ESM-DE/best/1 vs. DE/best/1 17/8/5 19/6/5 18/6/6 19/5/6
ESM-DE/current — to — best/1 vs. DE/current — to — best/1 23/4/3 26/2/2 25/2/3 23/5/2
ESM-j2020 vs. j2020 22/5/3 23/4/3 21/5/4 22/4/4
ESM-EJADE vs. EJADE 16/8/6 18/5/7 20/5/5 19/5/6
ESM-BeSD vs. BeSD 17/716 18/7/5 19/6/5 18/5/7
ESM-EBSHADE vs. EBSHADE 16/9/5 18/6/6 18/5/7 17/6/7
ESM-EBLSHADE vs. EBLSHADE 15/10/5 16/9/5 15/11/4 16/8/6
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FIGURE 8: The curves of B-W values for the ESM-based algorithm compared to the original algorithm.

TaBLE 14: The Friedman test results of all algorithms on CEC2017 under different dimensions.

Algorithms D =10 D =30 D =50 D =100 Mean ranking Rank
ESM-EBLSHADE 2.13 2.62 2.88 2.57 10.20 1
EBLSHADE 2.98 3.03 3.21 3.55 12.77 2
ESM-EBSHADE 4.85 478 5.01 4.89 19.53 3
EBSHADE 498 5.73 5.55 5.21 21.47 4
ESM-EJADE 5.89 6.07 6.24 5.87 24.07 5
ESM-BeSD 5.31 6.73 6.84 6.57 25.45 6
EJADE 6.51 6.93 6.95 6.88 27.27 7
ESM-j2020 7.51 7.62 7.58 7.41 30.12 8
BeSD 7.11 7.93 8.02 8.57 31.63 9
j2020 9.82 10.89 9.58 11.21 41.50 10
ESM-DE/rand/1 10.09 11.03 11.59 11.07 43.78 11
ESM-DE/current — to — best/1 10.55 11.63 11.21 11.85 45.24 12
ESM-DE/best/1 10.11 11.82 11.85 11.98 45.76 13
DE/best/1 11.53 12.65 12.33 12.57 49.08 14
DE/rand/1 12.31 12.70 12.58 12.34 49.93 15
DE/current — to — best/1 11.89 13.83 12.89 12.59 51.20 16

Friedman-P-value 0.00 0.00 0.00 0.00
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6. Conclusion and Future Work

In DE, making full use of the successful solutions generated
in iterations is a meaningful work to improve algorithm
performance. In this study, an external selection mechanism
(ESM) is proposed to restore the searchability of the algo-
rithm when an individual is in a state of stagnation. The ESM
mainly contains a successful solution archive mechanism
and a crowding entropy diversity control strategy. It can be
easily integrated into the existing DE algorithms to improve
its performance further.

Experiments are conducted on the CEC2017 benchmark
sets cooperated with three classic DEs and five state-of-the-
art DE variants. From experiment results, we can see that the
ESM-based algorithm can significantly improve the original
algorithm’s solution accuracy; the ESM also does not in-
crease the computational complexity of the original algo-
rithm due to the introduction of entropy. Further,
experiments also show that ESM has a fairly positive effect
on multimodal function, hybrid function, and composition
function, its scalability on different problem dimensions also
has a certain universal.

Notably, experimental results proved that the ESM can
effectively improve various DE variants’ performance, more
study is required. Therefore, our future work will mainly
focus on (1) improving the ESM to make it suitable for
various single-objective DE; (2) researching the application
of the proposed ESM in other evolutionary algorithms.
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