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Abstract
Purpose: Echocardiography (echo) is widely used for right ventricular (RV) assess-
ment. Current techniques for RV evaluation require additional imaging and manual 
analysis; machine learning (ML) approaches have the potential to provide efficient, 
fully automated quantification of RV function.
Methods: An automated ML model was developed to track the tricuspid annulus on 
echo using a convolutional neural network approach. The model was trained using 
7791 image frames, and automated linear and circumferential indices quantifying 
annular displacement were generated. Automated indices were compared to an in-
dependent reference of cardiac magnetic resonance (CMR) defined RV dysfunction 
(RVEF < 50%).
Results: A total of 101 patients prospectively underwent echo and CMR: Fully auto-
mated annular tracking was uniformly successful; analyses entailed minimal process-
ing time (<1 second for all) and no user editing. Findings demonstrate all automated 
annular shortening indices to be lower among patients with CMR-quantified RV dys-
function (all P < .001). Magnitude of ML annular displacement decreased stepwise in 
relation to population-based tertiles of TAPSE, with similar results when ML analyses 
were localized to the septal or lateral annulus (all P ≤  .001). Automated segmenta-
tion techniques provided good diagnostic performance (AUC 0.69–0.73) in relation 
to CMR reference and compared to conventional RV indices (TAPSE and S′) with high 
negative predictive value (NPV 84%–87% vs 83%–88%). Reproducibility was higher 
for ML algorithm as compared to manual segmentation with zero inter- and intra-
observer variability and ICC 1.0 (manual ICC: 0.87–0.91).
Conclusions: This study provides an initial validation of a deep learning system for RV 
assessment using automated tracking of the tricuspid annulus.
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1  | INTRODUC TION

Right ventricular (RV) dysfunction is a well-established prognostic 
marker for a wide range of conditions including pulmonary hyper-
tension, cardiomyopathy, and congenital heart disease.1–3 Echo is 
the most widely used screening tool to assess the RV with meth-
odologies studied in relation to reference standards and for pre-
diction of cardiovascular outcomes.4,5 However, challenges for RV 
functional assessment by echo are well documented primarily due to 
complex RV geometry.6,7 Moreover, current 2D methodologies for 
RV assessment require additional M-mode and tissue Doppler veloc-
ity image acquisition and analysis for which accuracy is dependent 
on an on-axis cursor placement in the direction of tricuspid annular 
displacement.

Machine learning (ML)–based methodologies have the poten-
tial to provide fully automated image analysis. Conventional neu-
ral networks–based segmentation techniques have been applied 
to echo, though with focus primarily on left ventricular chamber 
size and systolic function quantification.8 While a recent study 
examined a ML approach for three-dimensional echocardiography 
(3DE) assessment of RV volume and EF,9 limited clinical availability 
of 3DE is a known barrier for widespread utilization. Fully auto-
mated ML approaches have yet to be applied for RV assessment 
on standard 2D echo and have the potential to improve efficiency 
and accuracy without need for additional M-mode, tissue velocity, 
or 3D image acquisition.

This study examined RV functional assessment using a novel ML-
derived fully automated approach for RV quantification on routine 
2D echo. The primary study aim was to determine the feasibility 
and reproducibility of automated ML algorithm for cardiac magnetic 
resonance (CMR) quantified RV dysfunction among a prospectively 
enrolled cohort of patients undergoing echo and CMR.

2  | METHODS

2.1 | Study population

The study population comprised prospectively enrolled patients 
with known or suspected coronary artery disease (CAD) between 
September 2015 and December 2018 in a multimodality imaging 
protocol focused on cardiac chamber remodeling. Patients under-
went echo and CMR within a narrow interval (99% the same day). 
Patients with contraindications to contrast-enhanced CMR (eg, 
GFR < 30 mL/min/1.73 m2, ferromagnetic implants) were excluded. 
In all patients, comprehensive demographic data were collected 
using standardized questionnaires, including cardiac risk factors and 
medications. This study was conducted with approval of the Weill 
Cornell Medical College Institutional Review Board, which was in 

compliance with the Declaration of Helsinki; written informed con-
sent was obtained at time of enrollment.

2.2 | Imaging protocol

Echo and CMR were performed using a standardized image acquisi-
tion protocol:

2.2.1 | CMR

CMR was performed using 3.0 Tesla scanners (General Electric). 
Cardiac chamber volumes were assessed via cine-CMR (steady-state 
free precession), which included long-axis2–4 as well as contiguous 
short-axis slices acquired from the tricuspid valve annulus through 
the RV apex that were quantified at end-diastole and end-systole for 
calculation of RV ejection fraction (RVEF). CMR RVDYS was defined 
as RVEF < 50%.

2.2.2 | Echocardiography

Transthoracic echoes were acquired using commercial equipment 
(Philips iE33). Echoes were interpreted by experienced investi-
gators within a high-volume laboratory for which expertise and 
reproducibility for quantitative RV indices have been previously 
reported.5 RV function was quantified using tricuspid annular 
plane systolic excursion (TAPSE) and RV systolic excursion veloc-
ity (S′). Measurements were acquired in accordance with American 
Society of Echocardiography (ASE) guidelines; established cutoffs 
(TAPSE < 1.6 cm, S′ < 9.5 cm/s) were used to define RVDYS by each 
parameter.10 Echo analyses were performed blinded to CMR results.

2.3 | Image processing

Manual segmentation maps were created by annotating the free-wall 
(lateral) and septal tricuspid annulus in each echo frame (n = 7791 
frames) within the echo examinations (n = 101) with a small circular 
segmentation map of uniform size. Segmentation entailed labeling 
pixels in the magnitude images using 3DSlicer, an open-source medi-
cal image postprocessing application.3 Manual segmentation was 
performed by an experienced (level III trained) physician (JK). Inter-
reader reproducibility for manual segmentation was determined via 
analysis of a random subset of 22/101 (22%) of studies.

Images were resampled and (if necessary) zero-padded to 
256 × 256 pixels. Pixel intensity values were then rescaled to values 
between zero and one. Aggressive data augmentation was employed 
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in the form of random zoom, rotation, crop (224 × 224), horizontal/
vertical flip, and addition of Gaussian noise.

2.4 | Model and training

The automated segmentation model was based on neural network 
architecture described by Han,11 a modified U-net,12 for which ex-
cellent performance has been previously demonstrated in medical 
segmentation. The model makes use of residual modules,13 which 
improve gradient flow between adjacent layers and increase clas-
sification accuracy. A diagram of the model's architecture is shown 
in Figure 1.

The ML algorithm was initially trained and tested using sixfold 
cross-validation. Cross-validation is a procedure whereby data are 
randomly split into nonoverlapping subsets such that a model can be 
trained on all but one subset and tested on the remaining subset. In 
this case, a different model instance was trained and tested for each 
of the six holdout subsets and test metrics were averaged per-case 
for the entire dataset. As is typical of cross-validation, no model in-
stance was tested on data from which it was trained. Cross-validation 

was chosen in place of splitting into solitary train, validation, and test 
subsets because it better demonstrates the true performance of a 
model under a size-constrained dataset. To minimize the risk of over-
fitting, neural network architecture, hyperparameters, cross-vali-
dation groupings, and training protocols were not modified in any 
way after the model was exposed to the cross-validation dataset. 
Modification of these parameters could result in improved measures 
of accuracy but this could be at the expense of generalizability.

A weighted softmax/cross-entropy loss function was used for 
training as follows:

where x is the output logit vector at a given pixel, i the true class label, 
w the vector of class weights, and C the number of classes. Weighting 
was employed to combat class imbalance given that the vast majority 
of pixels in each image were nonannular. A class weight of 0.2 was em-
pirically assigned to the nonannular class and 0.8 to the annular class. 
RMSProp was used to apply incremental parameter updates.

The following automated and manual indices were derived using 
a segmentation map: (a) linear tricuspid annular displacement (LTAD), 

Loss (x,i) = −W[i] ∗ ln (ex[i]∕ΣjCex[j])

F I G U R E  1   Network modules (A) and architecture schematic (B). Design of the network based on the U-net architecture, which is widely 
used in medical segmentation tasks. Residual modules were employed to facilitate gradient flow during training and to prevent exploding/
vanishing gradients. Horizontal lines between the contracting and expanding pathways of the network in (B) represent concatenation. Conv 
block = convolutional block; ReLU = rectified linear unit; Txp = transposed; Txp Conv Block = transposed convolutional block

(B)(A)
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which corresponded to the maximum displacement between two po-
sitions of the tricuspid annulus, and (b) circumferential tricuspid an-
nular displacement (CTAD), which represented the total bidirectional 
circumferential distance traversed by the annulus. LTAD and CTAD 
were calculated for both the lateral tricuspid annulus and the septal 
tricuspid annulus. All distances were calculated by considering the 
center of mass of all pixels containing an annular label as the position 
of the annulus. Annular motion was smoothed with a median filter.

The model was built in Python using the deep learning framework 
PyTorch. Training and testing were performed on a workstation with four 
CPU cores, 64 GB of system memory, and a graphics-processing unit 
(GPU) with 11 GB of video memory (NVIDIA [Santa Clara] GTX 1080 Ti). 
Software code pertaining to both training and testing of the ML model 
can be found on line at:https://github.com/akbra​tt/RVTra​cker.

2.5 | Model performance

The model was evaluated by comparing values of maximal displace-
ment obtained from the automated segmentation compared to the 
manual segmentation. Measurements obtained from automated seg-
mentation maps were compared to standard echo indices and RVEF on 
CMR, defined as the reference standard of RV functional assessment.

2.6 | Statistical methods

Comparisons between groups were made using Student's t test 
(expressed as mean  ±  SD) for continuous variables. Inter- and 

intra-observer agreement between methods was assessed using 
the method of Bland and Altman,14 which yielded mean difference 
as well as limits of agreement between methods (mean ± 1.96 SD). 
Bivariate correlation coefficients, intra-class correlation coefficients, 
and linear regression equations were used to evaluate associations 
between variables. Statistical calculations were performed using 
SPSS 24.0 (Statistical Package for the Social Sciences, International 
Business Machines, Inc), SciPy,15 and Excel (Microsoft Inc). Two-
sided P < .05 was considered indicative of statistical significance.

3  | RESULTS

3.1 | Clinical application

Tricuspid annular shortening indices for RV functional assessment 
via manual and automated ML segmentation were tested in 101 pa-
tients equating to 7791 frames, among whom nearly one third (31%) 
had RV dysfunction (RVEF  <  50%) as defined by CMR reference 
standard. Table  1 details clinical characteristics of the population, 
including comparisons between patients with and without CMR-
evidenced RV dysfunction. Segmentation via ML was successful in 
all cases, requiring minimal processing time (<1 second for all cases) 
and required no additional user editing. Figure 2demonstrates rep-
resentative lateral and septal annular displacement performed both 
manually and by ML algorithm.

Table  2 demonstrates three RV annular shortening quantifica-
tion methodologies: manual segmentation, fully automated ML 
algorithm, and conventional RV indices. Findings demonstrate all 

 
Overall 
(n = 101)

RV 
dysfunction+ 
(n = 31)

RV 
dysfunction- (n = 70) P

Clinical

Age (y) 68 ± 10 69 ± 11 67 ± 10 .38

Male gender 81% (82) 87% (27) 79% (55) .31

Body surface area 1.9 ± 0.2 1.9 ± 0.2 2.0 ± 0.3 .44

Coronary artery disease risk factors

Hypertension 80% (81) 68% (21) 86% (60) .04

Hypercholesterolemia 77% (78) 68% (21) 81% (57) .13

Diabetes mellitus 51% (51) 58% (18) 47% (33) .31

Tobacco use 62% (63) 68% (21) 60% (42) .46

Family history 25% (25) 23% (7) 26% (18) .74

Prior myocardial 
infarction

54% (54) 61% (19) 50% (35) .29

Prior coronary 
revascularization

75% (76) 81% (25) 73% (51) .40

Percutaneous 
intervention

55% (56) 61% (19) 53% (37) .43

Coronary artery bypass 32% (32) 32% (10) 31% (22) .93

Note: Data presented as mean ± SD (data in parentheses refer to range for each respective 
variable). RV dysfunction: RVEF < 50%.

TA B L E  1   Clinical characteristics

https://github.com/akbratt/RVTracker
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annular shortening indices whether performed manually or by 
ML algorithm to be impaired among patients with RV dysfunction 
(P < .001 for all) with similar decrements regardless of quantification 
in the septal versus lateral tricuspid annulus. These results paralleled 
conventional annular displacement indices as evidenced by similar 
impairments in TAPSE and RV S’ among those with RV dysfunction 
(P < .001 for both).

3.2 | Comparison between manual and automated 
machine learning segmentation

When comparing manual and automated quantification of annular 
segmentation, all displacement correlations were good (r = .61–.82) 
with reasonable limit of agreement for both (−1.09 to 1.39 and −5.31 
to 5.50, respectively). Scatter plot and Bland–Altman analyses using 
ML-derived annular tracking in relation to manual quantification are 
shown in Figure 3.

To assess reproducibility, manual and automated lateral LTAD 
and CTAD quantification were performed in 22% of random sub-
set of studies (Table  3). Reproducibility was, unsurprisingly, high 
for ML algorithm with zero inter- and intra-observer variability and 
intra-class correlation coefficient of 1.0. Inter- and intra-observer 
reproducibility of manual segmentation was lower as compared to 
automated segmentation, but overall demonstrated high intra-class 
correlation coefficient and small limits of agreement (0.87–0.91 and 
−4.46 to 3.46).

3.3 | Diagnostic performance for RV function

As shown in Figure 4, both LTAD and CTAD decreased stepwise in 
relation to population-based tertiles of TAPSE, with similar results 

when ML analyses were localized to the septal or lateral tricuspid 
annulus (all P  ≤  .001). Figure  5 demonstrates RV annular segmen-
tation techniques developed in this study to yield good diagnostic 
performance for discriminating RV dysfunction defined by CMR. 
Automated ML-derived approach had good overall performance in 
relation to CMR defined RV dysfunction (AUC 0.69–0.73), which 
were overall slightly lower as compared to conventional RV an-
nular indices quantified as TAPSE and S′ (0.78–0.80). Manual and 
ML-derived RV annular shortening indices were tested with regard 
to diagnostic performance for RV dysfunction as defined by CMR. 
Applying ML-derived annular cutoffs to maximize sensitivity (>80%), 
findings yielded comparable high negative predictive value (84%–
87%) but lower positive predictive value (37%–40%) in relation to 
conventional RV indices, TAPSE and RV S′ (NPV 83%–88%, PPV 
64%–66%; Table4). Applying the same optimized cutoffs, manual 
segmentation of RV annulus also yielded similar diagnostic perfor-
mance (NPV 83%–87%, PPV 37%–39%).

4  | DISCUSSION

The primary aim of this study was to develop and validate a ML-
derived automated echo quantification methodology for RV func-
tional assessment using 2D echocardiography. To the best of our 
knowledge, this is the first study to systematically test a deep 
learning–derived automated assessment of RV systolic function 
on 2D echo with CMR as the reference standard. Our ML-derived 
segmentation algorithm successfully analyzed all cases with mini-
mal processing time (<1  second) with no user editing required. 
Taken together, findings of this study demonstrate fully auto-
mated tricuspid annular displacement derived from a novel deep 
learning model to perform similarly to manual echo indices for the 
detection of CMR-evidenced RV dysfunction, providing proof of 

F I G U R E  2   Annular displacement 
measurements. Representative lateral 
and septal LTAD (left) and lateral and 
septal bidirectional CTAD (right). 
Segmentation performed both manually 
and by machine learning algorithm. 
CTAD = circumferential tricuspid annular 
displacement; LTAD = linear tricuspid 
annular displacement; RA = right atrium; 
RV = right ventricle
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concept regarding the feasibility of automated ML for 2D echo 
assessment of the RV.

Artificial intelligence, specifically ML, is currently being ap-
plied in medicine with the promise of providing physicians with 

a novel method of accurately and efficiently interpreting large 
amounts of quantitative information.16 ML applied to cardiac im-
aging can enable automated recognition and segmentation of 
cardiac structures and assist in the diagnosis of disease states. 

 
Overall 
(n = 101)

RV 
Dysfunction+ 
(n = 31)

RV 
Dysfunction− 
(n = 70) P

Cardiac morphology/function/tissue properties

CMR (Left ventricle)

Ejection fraction (%) 42.6 ± 15.3 29.9 ± 9.2 48.3 ± 14.1 <.001

End-diastolic volume (mL) 201.9 ± 63.6 233.9 ± 58.3 187.8 ± 60.9 .001

End-systolic volume (mL) 122.0 ± 62.2 166.5 ± 53.0 102.3 ± 55.8 <.001

CMR (Right ventricle)

Ejection fraction (%) 52.4 ± 11.6 38.5 ± 8.0 58.7 ± 6.4 <.001

End-diastolic volume (mL) 151.2 ± 52.1 176.6 ± 57.2 139.8 ± 45.7 .001

End-systolic volume (mL) 75.1 ± 41.5 110.9 ± 49.0 59.0 ± 24.5 <.001

Echo (Left ventricle)

Ejection fraction (%) 41.8 ± 15.5 29.1 ± 9.0 47.5 ± 14.4 <.001

End-diastolic diameter 
(cm)

5.9 ± 0.6 6.2 ± 0.5 5.8 ± 0.6 .001

Pulmonary arterial pressure 
(mm Hg)

38.5 ± 15.2 45.1 ± 16.0 35.3 ± 13.9 .006

Pulmonary hypertensiona  42% (42) 73% (19) 43% (23) .01

Manual and machine learning-derived RV function

Manual

Lateral

LTAD (cm) 3.2 ± 1.0 2.8 ± 0.8 3.4 ± 1.0 <.001

CTAD (cm) 8.5 ± 3.2 7.4 ± 3.3 9.0 ± 3.0 <.001

Septal

LTAD (cm) 1.6 ± 0.6 1.3 ± 0.5 1.7 ± 0.6 <.001

CTAD (cm) 4.9 ± 2.1 4.2 ± 2.1 5.3 ± 2.1 <.001

Machine learning

Lateral

LTAD (cm) 3.1 ± 1.0 2.6 ± 0.7 3.3 ± 1.1 <.001

CTAD (cm) 8.5 ± 4.0 7.0 ± 2.9 9.1 ± 4.3 <.001

Septal

LTAD (cm) 1.6 ± 0.9 1.2 ± 0.5 1.8 ± 1.0 <.001

CTAD (cm) 4.5 ± 2.7 3.4 ± 1.6 4.9 ± 3.0 <.001

Conventional

TAPSE (cm) 1.8 ± 0.4 1.5 ± 0.3 1.9 ± 0.4 <.001

S′ (cm/s) 11.2 ± 2.8 9.5 ± 2.4 12.0 ± 2.6 <.001

FAC (%) 36.5 ± 10.4 29.3 ± 8.6 40.2 ± 9.4 <.001

Note: Data presented as mean ± SD (data in parentheses refer to range for each respective 
variable). RV dysfunction: RVEF < 50%.
aPulmonary hypertension defined as PASP > 35 mm Hg. 

TA B L E  2   Imaging characteristics

F I G U R E  3   Logistic regression and Bland–Altman analyses comparing automated and manual annular segmentation. Note good 
correlations (r = .61–.82) and reasonable limit of agreements for both LTAD and CTAD (LOA-1.09-1.39 and −5.3-5.5, respectively). 
CTAD = circumferential tricuspid annular displacement; LTAD = linear tricuspid annular displacement
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Mean ± SD 
[cm] (LOA) [cm] ICC P

Inter-observer

LTAD 0.30 ± 0.50 (−0.68, 1.29) 0.89 (0.73-0.95) <.001

CTAD 0.52 ± 1.59 (−2.41, 3.46) 0.91 (0.84-0.95) <.001

Intra-observer

LTAD −0.32 ± 0.55 (−1.39, 0.75) 0.87 (0.69-0.93) <.001

CTAD −1.10 ± 1.71 (−4.46, 2.26) 0.88 (0.69-0.94) <.001

TA B L E  3   Reproducibility analysis for 
lateral annular displacement

F I G U R E  4   Tricuspid annular 
segmentation in relation to population-
based tertiles of TAPSE. As shown, 
both lateral and septal linear tricuspid 
annular displacement (left) as well 
as lateral and septal circumferential 
tricuspid annular displacement (right) 
decreased stepwise in relation to TAPSE 
strata. CTADL = lateral circumferential 
tricuspid annular displacement; 
CTADS = septal circumferential tricuspid 
annular displacement; LTADL = lateral 
linear tricuspid annular displacement; 
LTADS = septal linear tricuspid annular 
displacement

F I G U R E  5   Receiver operating characteristic curve for automated and conventional RV quantification in relation to RVEF < 50% as 
established reference standard of CMR. Note automated and conventional indices yielded similar diagnostic performance assessed as area 
under the curve. CMR = cardiac magnetic resonance; RV = right ventricle; RVEF = right ventricle ejection fraction
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Knackstedt  et al demonstrated that the left ventricular ejection 
fraction and longitudinal strain could be accurately and reproduc-
ibly computed from echo data using ML-enabled software.17 Zhang 
et al trained convolutional neural networks to obtain measurements 
of the left ventricle and predict various disease states including hy-
pertrophic cardiomyopathy, cardiac amyloidosis, and pulmonary ar-
terial hypertension.8 While these studies demonstrate feasibility for 
utilization of ML approaches for LV functional assessment, there are 
limited data for its use for RV assessment, likely owing to the geo-
metric complexity of RV structure.

More recently, ML-based 3D echo algorithm to quantify RV 
volumes and RV ejection fraction was tested in a retrospective 
cohort.9 Although quantification was feasible in all fifty-six pa-
tients, the automatic approach was only accurate in 32% of the 
study population. Endocardial contour editing was necessary in the 
remaining 68% of patients and resulted in a sevenfold increase in 
processing time. In addition, while 3D echo is an excellent RV quan-
tification methodology, it should be noted that obtaining optimal 
3D echo image acquisition can be challenging and time-consuming. 
As such, 2D echo is the most widely used screening tool to assess 
RV structure and function. In this regard, our findings support that 
it is possible to successfully automate assessment of RV function 
on conventional 2D echo, creating a robust and readily available 
solution with its application particularly attractive for large-scale 
population-based studies.

Our findings should be noted in the context of the follow-
ing limitations. The study population included 101 CAD patients 
from a single institution, and although automated measurements 
were reliable and comparable to manual measurements, they did 
not provide substantially higher diagnostic utility. It is important 

to note that while equivalent views for conventional and aML 
segmentation were utilized whenever available for measurement, 
it is possible that slight variations in transducer angulation and 
resultant views could have yielded differences in displacement 
values between conventional aML segmentation. It is also pos-
sible that visualization of cardiac structure and function itself 
could have led to reader bias when in assessing TAPSE and S′. 
Such bias could contribute to higher diagnostic performance of 
conventional versus automated measurements. In this context, it 
is also important to note that TAPSE itself is not without limita-
tion, as suboptimal placement of the M-mode cursor can result 
in angle-dependent inaccuracy of RV function. Automated annu-
lar segmentation has the potential to overcome this limitation. 
These concepts need further testing within the framework of a 
larger population with wider range of RV function and further 
training, which itself has the potential to improve diagnostic 
performance. Future machine learning techniques could also in-
clude an ensemble of models evaluating several parameters (eg, 
annular displacement, strain, TAPSE, S′) as opposed to a single 
measurement, which has the potential to further improve its di-
agnostic performance.

In conclusion, fully automated tricuspid annular displacement 
from a novel deep learning model performs well in relation to manual 
echo indices for the detection of CMR-evidenced RV dysfunction. 
This study adds to the growing literature that ML-based algorithms 
can improve image interpretation efficiency and reliability and is the 
first of its kind to systematically test and validate ML-derived 2D RV 
indices. Further research is warranted to test diagnostic and prog-
nostic utility of ML-derived tricuspid annular displacement in large 
population-based cohorts.

TA B L E  4   Test performance characteristics

  AUC (95% CI) Cutoff (%) Sensitivity (%) Specificity (%) Accuracy (%) PPV (%)
NPV 
(%)

Machine Learning

Lateral

LTAD 0.69 (0.63-0.76) 3.41 84 44 56 40 86

CTAD 0.71 (0.64-0.78) 8.93 85 45 57 40 87

Septal

LTAD 0.75 (0.68-0.82) 1.75 83 39 52 37 84

CTAD 0.73 (0.66-0.80) 4.81 83 43 55 39 85

Manual

Lateral

LTAD 0.68 (0.61-0.75) 3.59 86 40 54 39 87

CTAD 0.70 (0.63-0.78) 9.59 86 40 54 39 87

Septal

LTAD 0.72 (0.65-0.79) 1.78 80 42 54 38 83

CTAD 0.70 (0.63-0.78) 5.61 81 40 52 37 83

Conventional

TAPSE 0.80 (0.73-0.86) 1.6 74 83 80 66 88

S′ 0.78 (0.71-0.85) 9.5 57 86 78 64 83
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