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CD4+CD25+ regulatory T (Treg) cells play a pivotal role in the maintenance of immune 
homeostasis, where the X-linked master transcription factor forkhead box P3 (FOXP3) 
determines Treg cell development and function. Genetic deficiency of foxp3 induces 
dysfunction of Treg cells and immuno-dysregulation, polyendocrinopathy, enteropathy, 
and X-linked syndrome in humans. Functionally deficient Treg cells or the development 
of exTreg cells positively correlate with autoimmune diseases, such as systemic lupus 
erythematosus (SLE), multiple sclerosis (MS), and ankylosing spondylitis (AS). In general, 
females are more susceptible to SLE and MS but less susceptible to AS, where the 
expression of FOXP3 and its protein complex are perturbed by multiple factors, including 
hormonal fluctuations, inflammatory cytokines, and danger signals. Therefore, it is critical 
to explore the potential molecular mechanisms involved and these differences linked 
to gender. Here, we review recent findings on the regulation of FOXP3 activity in Treg 
cells and also discuss gender difference in the determination of Treg cell function in 
autoimmune diseases.
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introduction

Regulatory T (Treg) cells, via their immune suppressive capability, play an indispensable role in 
maintaining immune homeostasis and preventing autoimmunity induced by excessive, misdirected, 
or unnecessary immune activation. Surface-expressed cytotoxic T lymphocyte-associated antigen 4 
(CTLA-4) mediates suppression of target cells by cell–cell contact (1–4). Treg cells can also reduce 
T cell activation and proliferation through CD39–CD73-mediated production of metabolic adeno-
sine (5). Meanwhile, Treg cells have been shown to harbor cytotoxic capacity and induce target cell 
apoptosis through release of granzymes A/B and perforin (4). Anti-inflammatory cytokines that are 
secreted by Treg cells can also induce immune tolerance (6, 7).

Under pathogenic conditions, such as systemic lupus erythematosus (SLE) and multiple sclerosis 
(MS), Treg cells exhibit plasticity to some extent and may mimic T helper-like phenotypes. Recent 
studies have provided insight into the understanding of the stability and activity of forkhead box 
P3 (FOXP3) in Treg cells regulated by T cell receptor (TCR) signaling, inflammatory cytokines, 
and danger signals. Here, we discuss the cellular and molecular mechanisms underlying FOXP3-
mediated regulation of Treg cells and also the possible effect that gender difference has on Treg cells 
and autoimmune diseases.
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FOXP3 Mutations and Autoimmunity

The transcription factor FOXP3 belongs to the fork-winged 
helix family and is encoded by the foxp3 gene on the X 
chromosome. Genetic deletion of the foxp3 gene and the loss 
of Treg cells promote the development of autoimmune and 
inflammatory syndromes (8–10). Ectopic expression of FOXP3 
in CD4+CD25− T cells may endow CD4+CD25− T cells with 
Treg-like suppressive capability to prevent inflammatory bowel 
disease (IBD) and autoimmune gastritis (9). FOXP3-deficient 
Treg cells have decreased levels of Treg cell signature genes, 
including ctla4, ebi3, il10, and entpd1, and acquire the expres-
sion of T effector cytokine genes such as ifng, tnfα, il4, and il17 
(11–14). A frame-shift mutation in the foxp3 gene locus in 
scurfy mice results in the expression of FOXP3 protein lacking 
its forkhead domain (15). Many other loss-of-function muta-
tions at the foxp3 gene locus have also been identified in patients 
with immune-dysregulation, polyendocrinopathy, enteropathy, 
and X-linked inheritance syndrome (IPEX) (16, 17). Genetic 
mutations of the foxp3 gene are always accompanied by the lack 
of the functional Treg cells, therefore resulting in the develop-
ment of diverse arrays of autoimmune diseases. A compilation 
of studies describing the role of genetic mutants of the foxp3 
gene in autoimmune diseases is shown in Table 1.

FOXP3 and Treg Cell Development

Treg cells comprise approximately 5–15% of the CD4+ T cell 
compartment and can be subdivided into two subpopulations, 
including thymus-derived Treg (tTreg) cells and peripherally 
derived Treg (pTreg) cells. tTreg (also called natural Treg (nTreg)) 
cells are generated from Treg precursors at the immature HSAhi 
CD4SP stage when FOXP3 is induced and Treg lineage commit-
ment established (29). pTreg cells are differentiated from naïve 
T cells at peripheral sites in the presence of IL-2 and TGF-β 
(Figure 1). Those generated in vitro through TGF-β signals are 
known as induced Treg (iTreg) cells (30).

In the thymus, the development of tTreg cells requires extracel-
lular signals, including TCR-mediated self-antigen recognition,  

TABLe 1 | The polymorphism of the foxp3 gene in autoimmune diseases.

Diseases Polymorphisms  
and mutations

Location Reference

Rheumatoid  
arthritis

(GT)n Promoter (18)

Systemic lupus 
erythematosus 

rs3060515
rs3761548
(GT)n

Promoter
Promoter
Promoter

(19)
(19)
(18)

IPEX rs6609857
(A-G)
ΔE201
(A-G)
A1087G
G13128A

Intron
Intron
Exon
Poly A region
Exon
Exon

(20)
(17)
(17)
(21)
(22)
(23)

Type 1 diabetes (GT)n
rs4824747
(TC)n

Promoter
Intron
Intron

(24–26)
(27)

(24, 25, 28)

γ chain cytokines, and TGF-β etc. DO11.10 transgenic mice 
expressing transgenic TCRs specific for an OVA peptide had 
normal proportions of CD4+CD8−CD25+ thymocytes, while 
DO11.10 transgenic mice with a RAG-2 gene-deficient back-
ground had fewer CD4+CD8−CD25+ thymocytes (31), suggest-
ing that TCR signaling is required for the development of tTreg 
cells. Also, transgenic mice harboring T cells specific for the 
major I-Ed determinant (S1) of influenza hemagglutinin (HA) 
exhibited higher percentages and numbers of FOXP3+ Treg cells 
recognizing HA (32, 33), showing that the TCRs of tTreg are 
biased toward self-antigens. Intermediate TCR strength has also 
been reported to be required for tTreg development. Sequencing 
of TCRs has showed that Treg cells share little similarity with 
naïve T cells. The diversity of TCRs on Treg cells surpasses 
the diversity of TCRs from naïve T cells (34). Although some 
studies have reported no substantial differences between the 
TCR repertories of Treg and non-Treg cells, their conclusions 
may only be based on the usage of the TCR variable region 
segments Vβ or Vα and size distribution of complementarity-
determining region 3 (CDR3) (35, 36). These parameters are too 
limited to determine the identity of individual TCRs and reflect 
the differences only when a clonotypic, oligoclonal response 
occurs. CD4+CD25− T cells harboring the TCRα chains from 
Treg cells have been shown to expand faster when transferred 
into a lymphopenic host, suggesting that TCRs on Treg cells 
possess substantially higher affinity with MHC class II-bound 
self-peptides (37). In Nur77GFP mice, the mean fluorescence 
intensity (MFI) of GFP revealed that the TCR signal strength 
in tTreg and pTreg cells was almost two-fold compared with 
conventional CD4+ T cells (38). All these studies indicate that 
Treg cells are self-reactive.

Besides TCR signaling, γ chain cytokines are also required 
for FOXP3 expression, including IL-2, IL-7, and IL-15. Treg cells 
express high levels of the IL-2 receptor α chain (CD25) (39). 
il2rα- or il2rβ-deficient mice have decreased numbers of Treg 
cells in spleens and lymph nodes and develop autoimmunity 
around 4–8  weeks of age (40–46). Other non-IL-2 cytokines 
through γc partially compensate for IL-2 signaling. In il2−/− mice, 
CD4+FOXP3+ T cells were still detectable, but drastically reduced 
in il2−/−il7−/−, il2−/−il15−/−, il2rβ−/− and γc

−/− mice (47). In the 
thymus, TGF-β signals prevent tTreg cell apoptosis. Conditional 
deletion of the TGF-β type I receptor (Tgfbr1) gene in T cells 
causes tTreg cells in the thymus to become more susceptible 
to apoptosis during negative selection, while bim ablation may 
restore TGF-β signal deficiency (48).

Recent studies showed that FOXP3 expression alone was not 
sufficient for Treg lineage commitment. The demethylation status 
of a Treg-specific demethylation region (TSDR) in the foxp3 
promoter plays an essential role in Treg lineage maintenance 
where the demethylation of the TSDR correlates with stable 
Treg cell phenotype. Gene expression profile analysis in FOXP3-
non-expressing T cells that lacked methylation of the TSDR, 
and FOXP3-expressing T cells that retained methylation of the 
TSDR, showed higher similarity to tTreg cells in the former in 
gene expression but lack of repression in the expression of il2, 
ifng, and zap70; however, the latter cells exhibited normal il2, ifng, 
and zap70 repression but upregulated a set of genes that were 
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not expressed in tTreg cells. These results indicated that FOXP3 
expression and the demethylation of the TSDR are both vital to 
establish Treg lineage commitment, but neither of them alone is 
sufficient (49).

In the periphery, combined TCR, TGF-β, and IL-2 signals 
polarize naïve CD4+ T cells into pTreg cells. These pTreg cells 
possess similar suppressive capacities as tTreg cells in vitro and 
in vivo (50, 51). Both tTreg and pTreg cells express FOXP3, CD25, 
CTLA-4, GITR, CD39, and CD73, along with low levels of IL-7Rα 
(CD127) (52). Current studies indicate that tTreg and pTreg cells 
play differential roles in different inflamed tissues. pTreg cells are 
more functional for maintaining mucosal tolerance, while tTreg 
cells are for maintaining immune tolerance. Due to the lack of 
specific lineage markers to distinguish between tTreg and pTreg 
cells in humans, it remains difficult to illustrate the different 
functions of tTreg and pTreg cells. Helios has been identified as 
a marker for tTreg cells (53). However, tTreg subsets have been 
found to contain both FOXP3+Helios+ and FOXP3+Helios− sub-
populations, suggesting that Helios is not a specific marker for 
tTreg/pTreg cells (54). Other studies have identified Neuropilin 
1 (NRP1) specifically and highly expressed on tTreg cells but 
not pTreg cells (55), and glycoprotein A repetitions predomi-
nant (GARP) expressed on activated human tTreg cells but not 
TGFβ-induced iTreg cells (56), but subsequent reports found that 
NRP1low pTreg cells could be converted into NRP1hi pTreg cells 
under inflammatory environments (57). Therefore, other surface 
markers need to be discovered for distinguishing between tTreg 
and pTreg cells.

The Stability of Treg Cells

As Treg cells have been identified as a specific cell popula-
tion possessing suppressive capacity to maintain immune 

FiGURe 1 | The development of Treg cells. Treg cells develop in the thymus and periphery. In the thymus, CD4+CD8+ T cells undergo negative selection and 
become mature tTreg cells through IL-2, IL-15, and TGF-β signals. In the periphery, naïve CD4+ T cells encounter antigen and differentiate into pTreg cells in the 
presence of TGF-β and IL-2.

homeostasis, Treg cell therapy is seen as a promising method 
for treating autoimmune diseases. However, clinical trials for 
autoimmune disease indications thus far, via re-administration 
of expanded Treg cells into patients, have been far from satisfac-
tory (58) as the phenotype and function of Treg cells may change 
in vivo. This raises the question of whether or not Treg cells are 
stable (59). Due to the ambiguity of specific Treg cell markers, 
FOXP3 is so far the most distinct marker to distinguish Treg cells 
from other T effector cells; therefore, most of the work aimed 
at elucidating the stability of Treg cells has been based on the 
expression of FOXP3.

Some investigations have shown that Treg cells are unstable 
and phenotypically flexible under certain inflammatory micro-
environments, supported by evidence of how CD4+FOXP3+ Treg 
cells convert into T-helper-like cells with appropriate stimulation, 
including Th1-, Th2-, Th17-, and Tfh-like cells (60–63). Through 
adoptive transfer of CD4+EGFP+ and CD4+EGFP− T cells from 
the spleen and LN of Foxp3EGFP mice into rag2−/− mice, investiga-
tors found that over 90% of the transferred eGFP+ T cells main-
tained FOXP3 expression, and a minor fraction lost their FOXP3 
expression. Analysis of the minor fraction of T cells identified 
a population limited to the FOXP3+CD25− subset that exhibits 
flexible responses to other cytokines, indicating that natural 
FOXP3+ T cells contained a committed Treg cell lineage and an 
uncommitted minor population (64).

Zhou et  al. generated Foxp3–GFP–Cre  ×  R26-YFP mice to 
track Foxp3+ T cells in vivo by crossing transgenic mice express-
ing a green fluorescent protein–Cre recombinase fusion protein 
(GFP–Cre) controlled by the foxp3 promoter on a bacterial arti-
ficial chromosome (BAC; Foxp3–GFP–Cre mice) with reporter 
mice that express yellow fluorescent protein (YFP) driven by the 
Rosa26 promoter only after excision of a loxP-flanked stop cas-
sette (R26-YFP mice). YFP+GFP− T cells represented cells that 
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had expressed FOXP3 at some point before loss of expression, 
while YFP+GFP+ T cells represented stable FOXP3-expressing 
cells. They found approximately 15% of the YFP+ cells lost FOXP3 
expression, and coined these as “exFoxp3 cells.” Characteristic 
analysis found that these exFoxp3 cells exhibited an activated-
memory T cell phenotype and expressed inflammatory cytokines. 
Adoptive transfer of these cells in  vivo caused rapid onset of 
diabetes (65).

Meanwhile, other researchers have shown that Treg cells are 
very stable, and suggest that the unstable Treg cells that have 
been observed are not bona fide Treg cells but an uncommitted 
“pre”-Treg cell lineage. To avoid the occurrence of monitoring 
transiently expressed FOXP3 in effector T cells, Rubtsov et  al. 
generated Foxp3GFP–Cre–ERT2 ROSA26YFP mice to distinguish cells 
that had only begun to express FOXP3 from those that expressed 
FOXP3 for a longer duration by detecting YFP intensity, and 
observed that only 3% of YFP+ cells had lost FOXP3 (66). Hori 
et al. carried out similar experiments with Foxp3GFP–CreROSA26RFP 
knock-in mice, and claimed that exFOXP3 T cells were gener-
ated from transiently induced FOXP3+ T cells in lymphopenic 
environments but not from committed Treg cells (67).

The Regulation of FOXP3 expression

The significance of FOXP3 to Treg development and stability is 
well documented. Direct evidence that has shown FOXP3 protein 
to be important for Treg function has been provided by experi-
ments that inserted a gene cassette co-expressing luciferase and 
enhanced green fluorescent protein (eGFP) into the 3′-untrans-
lated region (UTR) of the endogenous foxp3 locus of C57BL/6 
mice. This lead to FOXP3 mRNA instability, a 90% decrease of 
FOXP3 protein expression, and as a consequence these mice 
succumbed to aggressive lymphoproliferative autoimmune 
syndrome, indicating that Treg cell function directly correlates 
with the amount of FOXP3 protein expressed (12). Observations 
like this make it imperative to explore the molecular mechanisms 
regulating FOXP3 expression (Figure 2).

epigenetic Control of FOXP3 expression
Epigenetic modifications of the foxp3 gene at its regulatory 
regions regulate chromatin accessibility for transcription factors 
and other transcriptional regulators to control FOXP3 expression 
and Treg cell stability. Chromatin immunoprecipitation (ChIP) 
assays have revealed higher levels of acetylated histone H4 within 
the foxp3 promoter in activated Treg cells (68). Treatment with 
histone deacetylase inhibitors leads to an increased expression 
of FOXP3 and percentages of FOXP3+ Treg cells in  vivo (69), 
implying that the upregulation of FOXP3 expression is controlled 
by histone modifications. Both H3K4me2 and H3K4me3 are 
induced at the transcriptional start sites and regulatory regions 
at the foxp3 gene locus in both tTreg and iTreg cells upon TCR 
stimulation (70). Inhibition of H3K4me3 at the foxp3 gene locus 
impairs TGFβ-induced FOXP3 expression (71).

The methylation status of CpG islands within the foxp3 pro-
moter and regulatory elements also regulates the expression of 
FOXP3 in Treg cells. Through bisulfite sequencing, investigators 
have identified a CpG-rich region upstream of exon-1 of the 

foxp3 gene locus and this region is highly conserved between 
human and mice. This evolutionarily conserved region is highly 
demethylated in tTreg cells, incompletely demethylated in iTreg 
cells, and methylated in naïve CD4+CD25− T cells. This dem-
ethylated region is correlated with stable FOXP3 expression and 
closely associated with modified histones, including acetylated 
and trimethylated histone H3 but not acetylated histone H4 (72). 
Genome-wide DNA methylation pattern analysis confirmed 
specific CpG methylation patterns at other Treg cell-associated 
gene regions, including il2ra, ctla4, tnfrsf18, ikzf4, and ikzf2 (49). 
Inhibition of DNA methylation by 5-aza-2′-deoxycytidine or 
deleting DNA methyltransferase-1 (DNMT-1) induces strong 
and stable expression of FOXP3 under TCR stimulation even 
in the absence of TGF-β, which further confirms that the TSDR 
methylation status of the foxp3 gene locus controls the expression 
of FOXP3 (73, 74).

Transcriptional Regulation of FOXP3
Upon TCR activation, AP1, CREB, NFAT, c-Rel and ATF bind 
to the promoter of the foxp3 gene and activate its gene transcrip-
tion in Treg cells (68, 75–80). Foxo-binding sites were also found 
within the foxp3 basal promoter, where deficiency of Foxo1 and 
Foxo3 in Treg cells causes a loss of FOXP3 expression (81). IL-2 
signaling is essential to maintain FOXP3 expression in a STAT5-
dependent manner (47, 82, 83). Additionally, IL-2 may induce the 
expression of SMAR1 in Treg cells, while IL-6 does the opposite. 
SMAR1-bound STAT3 promoters can suppress its gene transcrip-
tion. Deficiency of SMAR1 in Treg cells causes the upregulation 
of STAT3, which in turn converts Tregs into Th17-like cells and 
facilitates increased susceptibility to IBD (84).

In the periphery, naïve T cells can be converted into 
FOXP3+ Treg cells in the presence of TGF-β. TGF-β induces 
the occupancy of Runx1 and Runx3 on the promoter of foxp3, 
but also activates SMAD3 and NFAT binding to the conserved 
non-coding sequence 1(CNS1) of the foxp3 gene and induces 
FOXP3 expression (78, 85–90). Thus, CNS1 is considered to be 
involved in the development of pTreg cells in response to TGF-β 
signals. In CNS1-deficient mice, FOXP3+ Treg cells are markedly 
decreased in the gut-associated lymphoid tissue (GALT) and 
mesenteric lymph node (MLN), where TGF-β-dependent pTreg 
cells are generated, but not in the spleen and non-gut draining 
lymph nodes (91). In addition, RA was reported to be capable of 
augmenting the enrichment of SMADs to CNS1 and therefore 
enhances FOXP3 expression (88).

Conserved non-coding sequence 2(CNS2) was identified 
as a unique region containing CpG-rich islands to maintain 
stable FOXP3 expression in mature tTreg cells. In naïve T 
cells and pTreg cells, CNS2 is hypermethylated by DNMT-1 
and occupied by HDACs and Mecp2 to repress the expression 
of FOXP3. Under the stimulation of TCR signals plus IL-2, 
DNMT-1 is released from CNS2 and induces demethylation  
(47, 77, 83, 92). The transcription factors CREB, STAT5, Est1, 
c-Rel, FOXP3, Runx–Cbfb heterodimer, and Foxo1/3 are 
recruited to this element to initiate FOXP3 transcription (77, 81, 
86, 91, 93, 94). Deletion of CNS2 induces a loss of FOXP3 protein 
in mature Treg cells in the presence of IL-6, IFNγ, IL-12, and 
IL-4 (95, 96). However, a high amount of IL-2 rescues the loss of 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


FiGURe 2 | The regulation of FOXP3 expression. The foxp3 promoter, three conserved regulatory regions, and the epigenetic modification status of the foxp3 
gene. Upon TCR stimulation, NFAT, AP1, Sp1, and CREB-ATF bind to the promoter of the foxp3 gene. STAT5 forms a dimer in response to IL-2 signals and 
translocates to the foxp3 promoter. In the periphery, TGF-β signals drive SMADs and NFAT occupancy at the CNS2 region and may induce FOXP3 expression. The 
CpG island within the foxp3 promoter region is demethylated in both tTreg cells and pTreg cells but not in naïve T cells. The histones bound to the foxp3 promoter 
region are hyperacetylated in both tTreg and pTreg cells. However, CNS2 is demethylated only in tTreg but not in pTreg cells.

September 2015 | Volume 6 | Article 4935

Nie et al. The regulation of Treg cells

Frontiers in Immunology | www.frontiersin.org

FOXP3 expression through enhancing STAT5 enrichment onto 
the foxp3 basal promoter (73, 74).

Conserved non-coding sequence 3(CNS3) is also respon-
sible for the induction of FOXP3. Conditional knockouts of 
CNS3 in Treg cells can markedly decrease the frequency of 
tTreg cells and may impair TGF-β-mediated pTreg induction 
(91). c-Rel was found to bind to this region to drive FOXP3 
expression (91).

The FOXP3 Protein Complex and its 
Modifications

FOXP3 cooperates with various cofactors to induce the Treg cell 
gene expression signature and tailor their suppressive function. 
Biochemical and mass-spectrometric studies showed that FOXP3 
could associate with several hundred partners to form a large 
multi-protein complex (97, 98). FOXP3 cooperates with NFAT 
and AML1/Runx1 to regulate the expression of IL-2, CD25, 
and CTLA4 through binding to their promoters and activat-
ing gene transcription. Disruption of their interaction would 

impair Treg suppressive function (99, 100). The association of 
FOXP3 with Eos–CtBP co-repressor complexes is required for 
FOXP3-mediated IL-2 repression in Treg cells. In a colitis mouse 
model, Eos-deficient Treg cells failed to repress the development 
of adoptive colitis (101). Additionally, a FOXP3–IRF4 complex 
contributes to establishing Treg-specific gene programs. A con-
ditional knockout of IRF4 in Treg cells showed elevated Th2 
responses (102). Deleted in breast cancer 1 (DBC1), a subunit of 
the FOXP3 complex, prevents FOXP3 degradation and maintains 
Treg cell stability under inflammatory conditions. Functional 
Dbc1−/− mice are more resistant to develop severe autoimmune 
disease symptoms during induction of experimental autoimmune 
encephalomyelitis (EAE) (103).

The transcription factor GATA3 is highly induced in Treg 
cells that reside in barrier sites, including the gastrointestinal 
tract and skin. GATA3 is required for maintaining high levels 
of FOXP3 expression by binding to and promoting the activity 
of cis-acting elements of FOXP3. GATA3-deficient Treg cells are 
more prone to acquire an effector T cell phenotype and express 
effector cytokines in inflamed tissues (104, 105). USP21 positively 
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regulates and stabilizes GATA3, which can maintain FOXP3 
expression. Furthermore, USP21-knockout mice show spontane-
ous T cell activation (106, 107). Tbet and RORgt have also been 
identified to be essential for Th1-like and Th17-like Treg cells in 
inflammatory microenvironments, respectively, and promote 
Treg cell homing to inflamed loci (108–110).

Post-Translational Modifications of FOXP3
The post-translational modifications of FOXP3 affect Treg dif-
ferentiation, function, and phenotypic commitment through 
regulating FOXP3 protein stability and transcriptional activity 
(Figure 3). Several previous studies have reported that FOXP3 
protein stability is controlled by ubiquitination-mediated deg-
radation. Under inflammatory conditions, STUB1 was found 
recruited to FOXP3 by HSP70 to polyubiquitinate FOXP3 at 
its K227/250/263/268 sites in a K48-linked polyubiquitination 
manner. K48-linked polyubiquitinated FOXP3 is further led to 
proteasome-mediated degradation. Manipulating the level of 
STUB1 in Treg cells through ectopic expression or knockdown 
directly affected the protein levels of FOXP3, signature Treg gene 
expression and the ability to suppress inflammatory immune 
responses (111). On the other hand, the deubiquitinase USP7 
is able to deubiquitinate FOXP3 in an HSP90-dependent man-
ner and stabilizes FOXP3 to increase Treg number to enhance 

Treg suppressive activity (112). HIF1a and PKB/Akt1-mediated 
FOXP3 phosphorylation also affects FOXP3 stabilization through 
indirectly regulating FOXP3 ubiquitination levels (113–116).

The transcriptional activity of FOXP3 is also regulated by post-
translational modifications. Our previous results demonstrated 
that FOXP3 could associate with the histone acetyltransferase 
TIP60 and the class II histone deacetylases HDAC9 and HDAC7. 
TIP60 can acetylate FOXP3 and enhance FOXP3-mediated 
transcription repression of IL-2 expression through the FOXP3 
N-terminal 106 to 109aa region (117). FOXP3 can also be 
acetylated by P300 and affects FOXP3 stability through impair-
ing polyubiquitination of FOXP3, thus, blocking proteasome-
mediated FOXP3 degradation (114, 115).

In addition to ubiquitination and acetylation, MS analysis 
has revealed that multiple residues of FOXP3 could be phospho-
rylated. Among these, only a small number have been further 
investigated. In the synovial fluid of rheumatoid arthritis patients, 
the pro-inflammatory cytokine TNFα induces the expression 
and enzymatic activation of protein phosphatase 1 (PP1) that 
dephosphorylates Ser418 of FOXP3. Subsequently, FOXP3 
loses its transcription repression of IL-2 and Treg cells lose their 
suppressive function, causing increased numbers of IL-17+ and 
IFN-γ+CD4+ T cells within the inflamed synovium of rheumatoid 
arthritis patients (118). IL-6-induced PIM1 can phosphorylate 
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Ser422 of FOXP3, which negatively regulates FOXP3 binding 
affinity on chromatin and also Treg function. Reversing PIM1-
mediated FOXP3 phosphorylation through TCR stimulation, 
shRNA-mediated PIM1 depletion or by using a PIM1 inhibitor 
could enhance Treg suppressive function (119). Another member 
of the PIM kinase family named PIM2 was also reported to be 
able to phosphorylate multiple sites of FOXP3 at its N-terminal 
domain, leading to attenuated Treg suppressive function. Pim2−/− 
mice show more resistance to DSS-induced colitis (117). FOXP3 
is also the target of CDK2, which phosphorylates FOXP3 at its 
Ser19 and Thr175 sites to negatively regulate the stability and 
transcriptional activity of FOXP3 (120). Although most inves-
tigations have reported that FOXP3 is strictly expressed in Treg 
cells, FOXP3 can also be expressed in cancer cells and acts as a 
cancer repressor (121, 122). Lck can also phosphorylate FOXP3 at 
Tyr342 in breast cancer cells and increase FOXP3 transcriptional 
repression of mmp9, skp, and vegfa, and thus suppresses cellular 
invasion (123).

Treg Cells and Gender Bias in 
Autoimmune Diseases

Females and males process basic immune responses rather dif-
ferently. In response to infection, vaccination, or trauma, females 
exhibit stronger inflammation for protection against infection, 
while this characteristic also renders females more susceptible to 
autoimmune diseases. The factors that contribute to these dispa-
rate immune responses between males and females are mainly 
X-linked, which includes hormonal differences.

Current theories related to the pathogenesis of autoimmune 
diseases assume that the disrupted balance between effector  
 T cells (that cause tissue damage) and Treg cells (that suppress 
self-reactive cells) correlates with the pathogenesis of autoim-
mune diseases. The number and function of Treg cells is affected 
by X-linked foxp3 and hormonal fluctuations. Thus, new insight 
into gender differences in autoimmune disease may reveal novel 
therapeutic avenues.

Treg and iPeX
The foxp3 gene is localized on the X chromosome, where muta-
tions in this gene may cause IPEX. In females, there are two X 
chromosomes, where one undergoes random inactivation. If the 
foxp3 gene on one X chromosome is mutated, this would poten-
tially produce functionally impaired Treg cells, whereas the other 
gene with the wild-type foxp3 gene would generate normal Treg 
cells to protect females from IPEX (124).

Treg Cells and MS
Multiple sclerosis is characterized by chronic inflammation, 
primary demyelination, and axonal damage. EAE is the animal 
model of MS. In adoptive transfer experiments, Treg cells may 
prevent the development of chronic EAE in recipient mice 
(125–127), implying that Treg cells contribute to protection 
against MS. Investigators have found no differences in the fre-
quency of CD4+CD25hi Treg cells between patients with MS and 
healthy controls, while several groups revealed how CD4+CD25hi 
Treg cells in MS patients are functionally impaired (128–131). MS 

is more prevalent in females (132). In females, the symptoms of 
MS have been reported to correlate with hormonal levels. When 
estrogen (E2) and progesterone (P4) levels decrease during men-
struation, disease relapses (133, 134); in turn, during the third 
trimester of pregnancy when estrogen and progesterone levels are 
at its highest, the symptoms of MS regress, followed by relapse 
until dropping at post-partum (135, 136). Treatment with ER 
ligand protected mice from the development of EAE (137, 138). The 
protective effect of ER ligand was blocked in estrogen receptor-α 
(Esr1−/−)- and estrogen receptor-β (Esr2−/−)-deficient mice (138). 
Both E2 and P4 have been reported to induce high numbers of 
Treg cells and enhance Treg function (139–142). E2 treatment 
increased Treg cell number and FOXP3 expression both in vitro 
and in  vivo. In estrogen receptor-α-deficient mice, E2-induced 
expression of FOXP3 is abrogated (141, 143). E2 was reported to 
regulate Treg function partially through increasing intracellular 
levels of the checkpoint inhibitor PD-1. PD-1 expression and Treg 
suppressive function were attenuated in ER-KO mice. E2 pre-
treatment could partially restore the suppressive function of Treg 
cells in PD-1 KO mice without affecting FOXP3 expression (144).

Other reports have revealed how 17β-estradiol enhances Treg 
suppressive function via promoting TGF-β and IL-10 secretion 
(145). P4 may drive cord blood fetal T cells but not adult periph-
eral blood T cells to differentiate into FOXP3+ Treg cells. These 
P4-induced Treg cells exhibit a memory phenotype and better 
suppressive activity. Mechanistically, P4 enhances IL-2-STAT5 
signaling and represses IL-6-mediated STAT3 activation by 
downregulating the IL-6 receptor, facilitating Treg differentia-
tion but suppression of Th17 differentiation (139). P4 could also 
suppress the mTOR pathway, and thus promote the generation of 
Treg cells (146) and these Treg express higher levels of ERβ com-
pared with T-responder cells. In MS patients, Treg cells express 
lower levels of ERβ (147), thus implying that having Treg cells 
unresponsive to hormones might result in the dysregulation of 
immune homeostasis and contribute to the pathogenesis of MS.

Frequencies of Treg cells change during the course of preg-
nancy (148). During pregnancy, elevated E2 levels at early stages 
are important for CD4+CD25+ Treg cell expansion in mice and 
are required for embryo implantation (149). Estrogen-treated 
mice and pregnant mice share similarities in increases of FOXP3 
expression and Treg function (150). E2 and P4 increase maintains 
the expansion of systemic and local uterine Treg cells (140). The 
correlation between pregnancy-induced fluctuations in Treg cells 
and MS amelioration remain unclear, which might be influenced 
by different flow-cytometric approaches and current lack of 
studies.

Treg Cells and SLe
The imbalance of Th17/Treg cells usually correlates with the 
pathogenesis of SLE (151, 152). For SLE, data have shown a gen-
der bias toward prevalence in females, with the female:male ratio 
at almost 9:1 (132). IL-6 plays a very important role in regulating 
the balance between Th17 cells and Treg cells. In the presence of 
IL-6, naïve CD4+ T cells differentiate into Th17 cells (with TGF-β) 
rather than iTreg cells (153). IL-6 together with IL-1 induces the 
degradation of FOXP3 and deregulates Treg cells (61). Higher 
concentrations of IL-6 in sera and in urine have been detected in 
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SLE patients; the concentration of IL-6 in SLE patient sera and 
urine is positively correlated with disease severity (154–157). The 
expression of IL-6 is upregulated by estrogens (158) and is domi-
nant in females (159). In mice, blocking IL-6 could significantly 
increase FOXP3 expression and make animals resistant to ALD-
DNA-induced SLE (160). IL-6 may affect Th17/Treg balance in 
males and females, and thus contributes to the prevalence of SLE 
in females. So far, related studies are limited and more evidence 
is required to further characterize this correlation.

Treg Cells and AS
Ankylosing spondylitis (AS) is a chronic inflammatory disease 
with strong genetic connections (161, 162). Patients with AS are 
two to three times higher in males than females, and suffer from 
inflammatory spinal pain that could lead to the pathogenesis 
of spondyloarthritis and spinal immobility (163). Treatment of 
AS by tumor necrosis factor α inhibitors seem effective, which 
leads to the reduction of disease progression (164). The imbal-
ance of Treg cells and inflammatory Th17 cells in AS patients has 
been previously studied but the underlying mechanism remains 
unclear (165, 166). Small molecule inhibitors that promote Treg 
function could play a beneficial role in preventing the pathogen-
esis of AS (167, 168).

Conclusion

Accumulating experimental evidence has revealed the impor-
tant role of Treg cells in maintaining immune homeostasis and 
preventing the occurrence of autoimmune diseases. Treg cells 
adopt multiple molecular mechanisms to maintain their lineage 
stability and obtain a certain degree of functional plasticity to 
adapt to various inflammatory conditions. However, inflamma-
tory factors from the local microenvironment would interfere 
with the stability of Treg cells and promote the development 
of autoimmune diseases. Therefore, exploring the molecular 
mechanisms behind the function of the Treg cell-lineage 
transcription factor FOXP3 in autoimmunity would provide 
insight into the understanding of the stability and plastic-
ity of Treg cells. Treg therapy could be an important tool for 
treating autoimmune disease in the future. Current reports 
describing the effect of gender differences on Treg cells and the 

contributions of Treg cells to the prevalence of autoimmune 
diseases in females are limited. The latest findings that Treg cells 
are regulated by hormonal fluctuations suggest that these risk 
factors that may disrupt the balance between T helper and Treg 
cells and induce autoimmune disease include birth control pills, 
stress, existence or development of ovarian cysts, and overuse 
of products containing xenoestrogens, etc., causing hormonal 
imbalance. Hence, it is significantly important to take sex-based 
differences into consideration when exploring the role of Treg 
cells in human illnesses and development of Treg cell therapies 
for treating autoimmune diseases.

Although Treg cells are well acknowledged as a potential 
and promising tool for the treatment of autoimmune diseases, 
there is still a large gap between theory and reality. To achieve 
the goal of successfully and effectively using Treg cells to 
restore tolerance and for treating autoimmune diseases, the 
following important questions in Treg cell biology still need 
to be further addressed:

 1. Except for NRP1, Helios, and GARP, are there better surface 
makers for distinguishing between tTreg and pTreg cells, 
and what are the different physiological functions of tTreg 
and pTreg cells in the context of autoimmune disease?

 2. How is the FOXP3 complex and post-translational modifi-
cations dynamically regulated in response to various physi-
ological signals and how do they modify Treg cell function?

 3. What is the role of Treg cells in the onset and progression of 
different autoimmune diseases?

 4. What is the correlation between Treg cells and gender bias 
in different autoimmune diseases?
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