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Abstract: Flower and fruit colors are of vital importance to the ecology and economic market value
of plants. The mechanisms of flower and fruit coloration have been well studied, especially among
ornamental flower plants and cultivated fruits. As people pay more attention to exocarp coloration,
the endocarp coloration in some species has often been ignored. Here, we report on the molecular
mechanism of endocarp coloration in three development stages of Euscaphis konishii. The results show
that endocarp reddening is closely related to anthocyanin accumulation, and a total of 86,120 unigenes
were assembled, with a mean length of 893 bp (N50 length of 1642 bp). We identified a large
number of differentially expressed genes associated with endocarp coloration, including anthocyanin
biosynthesis, carotenoid biosynthesis, and chlorophyll breakdown. The genes participating in each
step of the anthocyanin biosynthesis were found in the transcriptome dataset, but a few genes
were found in the carotenoid biosynthesis and chlorophyll breakdown. In addition, the candidate
R2R3-MYB transcription factors and candidate glutathione S-transferase transport genes, which likely
regulate the anthocyanin biosynthesis, were identified. This study offers a platform for E. konishii
functional genomic research and provides a reference for revealing the regulatory mechanisms of
endocarp reddening.

Keywords: endocarp coloration; Euscaphis konishii; transcriptome; anthocyanin biosynthesis;
chlorophyll degradation

1. Introduction

In most angiosperms, the flower and fruit colors are not only of vital importance in plant ecology
and their ability to attract pollinators, such as insects and birds, and seed-dispersing organisms, but their
color is also a crucial trait for both commercial and ornamental value [1,2]. Flower coloration in plants
has been well studied, especially among ornamental plants, such as morning glory (Ipomoea purpurea),
which is the model plant for studying the genetic basis of floricultural traits [3–5]; chrysanthemums
(Dendranthema morifolium) [6,7]; and rose (Rosa rugosa) [8]. The fruit color determines the harvest point
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and increases the market value, and has therefore attracted wide-spread attention resulting in in-depth
research, which is focused on the best-selling cultivated fruits, such as apple (Malus domestica) [9],
grape (Vitis vinifera) [10], and strawberry (Fragaria × ananassa) [11], for which more attention has been
paid to exocarp coloration. However, some species of endocarp coloration have often been ignored.
The endocarp is closely related to the seed development, seed protection, and dispersal strategies
of seeds [12,13], so studying the molecular mechanisms of endocarp coloration in fruit development
may provide a new way to explain the evolutionary and propagation mechanisms. In this study,
we examined a tree (Euscaphis konishii) that belongs to the Staphyleaceae family, which is distributed
across Southeast China, Japan, and Korea [14], that has an endocarp color that changes from green to
red during fruit development and the capsule craze, along with a ventral suture, after the fruit turns
red (Figure 1). We hypothesize that the reddening endocarp of E. konishii is closely associated with
the capsule craze and seed dispersal. Sequencing the transcriptome of E. konishii pericarp provides
a method to reveal the molecular mechanisms of endocarp reddening, and lays the foundation for
explaining the capsule craze and seed dispersal mechanisms.
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Figure 1. Morphological characteristics of Euscaphis konishii: (A) fruiting plant, (B) young fruits, and (C)
opening fruits.

Plant pigments are the key factor affecting fruit coloration, including anthocyanin, carotenoid,
and chlorophyll. During fruit development, chlorophyll degradation is accompanied by anthocyanin
accumulation or carotenoid retention [15]. Although the mechanisms that control exocarp coloration
have been studied in some plant species [16–18], the mechanism of pigment catabolism in endocarp
coloration is not clear. The change in the E. konishii endocarp pigment content during fruit development
and maturation has been studied, and the results show that the endocarp color change from green to
red is closely related to the anthocyanin accumulation [19]; a comprehensive description of the genes
expressed in the E. konishii endocarp is lacking. Anthocyanins, a class of flavonoids, are responsible for
red, blue, and black plant pigments. Their biosynthetic pathway is well understood, and most of the



Int. J. Mol. Sci. 2018, 19, 3209 3 of 14

genes encoding enzymes in this pathway have been isolated and characterized from many plants [20].
To date, approximately six key enzymes (CHS (chalcone synthase), CHI (chalcone isomerase),
F3H (flavanone-3-hydroxylase), DFR (dihydroflavonol-4-reductase), ANS (leucoanthocyanidin
dioxygenase), and UFGT (UDP (Uridine diphosphate)-flavonoid glucosyltransferase)) are known to be
involved in anthocyanin synthesis. A few types of transporters are known to carry anthocyanin from
the cytoplasmic surface of the endoplasmic reticulum to the vacuole, such as glutathione S-transferase
(GST), multidrug and toxic compound extrusion (MATE), and ATP-binding cassette (ABC) proteins [21].
At least six distinct transcription factors (TFs) (MYB, bHLH, WD40, WRKY, Zinc finger, and MADS
box proteins) have been identified in the anthocyanin biosynthesis [22,23].

In general, chlorophyll degradation is obvious during fruit ripening, and fruit coloration is closely
related to the content and proportion of chlorophyll [24]. High concentrations of chlorophyll in the
pericarp not only mask the red fruit surface color that is provided by other pigments, but also slow their
biosynthesis [25,26]. Chlorophyll breakdown is a complex process that involves at least six chlorophyll
catabolic enzymes (CCEs), a metal-chelating substance (MCS), and transport mechanisms to deliver
chlorophyll breakdown products to the central vacuole [27]. However, chlorophyll degradation in
many endocarp species is still poorly understood, and the genes involved in this pathway have not yet
been identified in E. konishii.

In the present study, we sequenced the transcriptome of the E. konishii pericarp in three
development stages, and 86,120 unigenes were assembled for the identification of genes corresponding
to the pigment metabolic pathways, including chlorophyll degradation, carotenoid biosynthesis,
and anthocyanin biosynthesis. This dataset serves as a platform from which to study the regulatory
mechanisms of E. konishii endocarp reddening.

2. Results

2.1. Changes in Pigment Content

The endocarp reddening in E. konishii may be closely related to the accumulation of the anthocyanin
content. During the pericarp development, the total anthocyanin content increased sharply, but the
chlorophyll and carotenoid degradation was accompanied by anthocyanin synthesis (Figure 2).
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Figure 2. The fruits of E. konishii at three developmental stages and contents for the total chlorophyll,
carotenoids, and anthocyanins in the pericarp. Green stage: 50 days after flowering; turning stage:
70 days after flowering; red stage: 115 days after flowering; blue bar: total chlorophylls; orange bar:
carotenoids; and green bar: anthocyanin.
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2.2. Illumina Sequencing and De Novo Assembly

The library produced 68.78 G of clean data and the average clean data in the nine samples
were 6.78 G. RNA-Seq data were used for the statistical analysis so as to ensure the validity of the
transcriptome results. In this study, high-quality libraries with mapping rates higher than 79.74% and
Q30 values higher than 92.70% were constructed using the pericarp of E. konishii in three stages of the
endocarp coloration (Table S1). A de novo transcriptome of the pericarp of E. konishii was sequenced
to study the mechanisms of the endocarp coloration. In total, 86,120 unigenes were assembled, with a
mean length of 893 bp (N50 length of 1642 bp) (Table S2), which is similar to the previously reported
894 bp (N50 length of 1307 bp) for E. konishii transcriptome in different plant tissues (unpublished;
manuscript in preparation), but considerably longer than the 737 bp for the Litchi chinensis pericarp
transcriptome [28] and 508 bp (N50 length of 635 bp) for the Chinese white pear [29]. These results
indicat that the RNA-Seq data of E. konishii pericarp were usable in this study.

2.3. Functional Annotation of the Unigenes

The gene functions of the 86,120 unigenes were annotated based on eight databases
(NR (ftp://ftp.ncbi.nih.gov/blast/db/), Pfam (http://pfam.xfam.org/), GO (http://www.geneontology.
org/), KEGG (http://www.genome.jp/kegg/), Swiss-Prot (http://www.uniprot.org/), KOG (ftp://ftp.
ncbi.nih.gov/pub/KOG/), eggNOG (http://eggnogdb.embl.de/), and COG (ftp://ftp.ncbi.nih.gov/
pub/COG/)) using BLAST comparisons (setting a cut-off E-value of 10−5) and HMMER comparisons
(setting a cut-off E-value of 10−10). The results showed that 39,658 unigenes were significantly similar
to known proteins in publicly available databases (Table S3). Approximately 44% of the unigenes were
annotated to the NR database, indicating that more than half of the sequences have no apparent homologs,
some of which are likely genes with novel functions. Therefore, the transcriptomes of E. konishii will serve
as an important dataset for the studies of taxa-specific phenomena.

2.4. Differentially Expressed Genes between Fruit with Varied Color

Based on the three comparisons of green vs. turning, green vs. red, and turning vs. red,
we identified a total of 4804 differentially expressed genes (DEGs). Among them, 2175 DEGs between
green vs. turning, 3935 DEGs between green vs. red, and 936 DEGs between turning vs. red were
detected. In order to identify the related genes that are involved in the regulation of endocarp color, the
up- and down-regulated genes between the three stages were further analyzed, and the results showed
that the down-regulated genes were more abundant than the up-regulated genes in th special DEGs or
co-DEGs of the differential stages (Figure 3).

2.5. GO Annotation of DEGs

Among the 4804 DEGs selected to predict functions by gene ontology (GO) annotation, at least
one GO term was assigned to the biological processes, cellular components, and molecular functions
categories for the 1129 DEGs between green vs. turning, 2107 DEGs between green vs. red, and 543 DEGs
between turning vs. red. The three main categories were further classified into 51 functional groups,
including 20 biological processes, 16 cellular components, and 15 molecular functions (Figure S1).

2.6. Co-Expression Analysis and KEGG Enrichment of DEGs

All of the DEGs were grouped into nine classes by co-expression analysis in this study (Figure S2).
An enrichment analysis was performed based on the co-expression results so as to further examine
the endocarp coloring gene in E. konishii. Four distinct gene expression patterns were enriched
(Figure S3) and the results show that the up-regulated genes (Clusters 1 and 2) associated with
endocarp color were enriched in anthocyanin biosynthesis, flavonoid biosynthesis, and isoflavonoid
biosynthesis. The down-regulated genes (Clusters 3, 4, 5, 7, and 8) were enriched in photosynthesis,
photosynthesis-antenna proteins, and anthocyanin. The down first and then up genes (Cluster 6) did

ftp://ftp.ncbi.nih.gov/blast/db/
http://pfam.xfam.org/
http://www.geneontology.org/
http://www.geneontology.org/
http://www.genome.jp/kegg/
http://www.uniprot.org/
ftp://ftp.ncbi.nih.gov/pub/KOG/
ftp://ftp.ncbi.nih.gov/pub/KOG/
http://eggnogdb.embl.de/
ftp://ftp.ncbi.nih.gov/pub/COG/
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not enrich any genes of the endocarp coloration. The up first and then down genes (Cluster 9) were
enriched in the photosynthesis-antenna proteins and carotenoid biosynthesis.
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Figure 3. Comparison of differentially expressed genes (DEGs) between any two stages of the E. konishii
pericarp. The numbers in the boxes indicate the DEGs numbers between any two stages of the
E. konishii pericarp, and the red and blue arrows represent the numbers of up- and down-regulated
genes, respectively.

2.7. Identification of Transcription Factors

Using the online iTAKE 1.6 (http://itak.feilab.net/cgi-bin/itak/online_itak.cgi), and selecting
the default parameters to predict the transcriptional factors of 4804 DEGs, (Figure S4 and Table S4),
322 DEGs, representing 6.70% of the total DEG, were annotated to 44 transcription factor (TF) families.
Among these TF families, ERF (32) was the most abundant, followed by bHLH (26), MYB_related (26),
WRKY (24), MYB (20), NAC (19), bZIP (14), and C2H2 (13).

2.8. DEGs Related to Anthocyanin Biosynthesis

Twenty- three predicted genes encoding enzymes, including six major enzymes—chalcone synthase
(CHS), chalcone isomerase (CHI), flavanone-3-hydroxylase (F3H), dihydroflavonol-4-reductase (DFR),
leucoanthocyanidin dioxygenase (ANS), and UDP (Uridine diphosphate)-flavonoid glucosyltransferase
(UFGT)—involved in the anthocyanin synthesis were identified (Figure 4 and Table S5). With the
exception of DFR, the five types of synthetic anthocyanin genes contained up-regulated genes strongly
related to anthocyanin accumulation, including two CHS (c50541.graph_c0 and c54700.graph_c0),
two CHI (c69442.graph_c0 and c72737.graph_c0), two F3H (c64532.graph_c1 and c69338.graph_c3),
two ANS (c60763.graph_c0 and c73249.graph_c0), and seven UFGT (c38069.graph_c0, c55350.graph_c0,
c55350.graph_c1, c60134.graph_c0, c68714.graph_c1, c73011.graph_c0, and c73089.graph_c0). We also
identified one up-regulated flavonol synthase gene (FLS, c66996.graph_c0), which may be associated
with the DFR genes for down-regulation.

http://itak.feilab.net/cgi-bin/itak/online_itak.cgi
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Figure 4. Expression pattern of genes involved in anthocyanin synthesis, regulation, and transport.
The value of log2 (FPKM + 1) is represented using the depth of color, with blue representing
the up-regulated expression genes and red representing the down-regulated expression genes.
FPKM means the fragments per kilobaseof exon per million fragments mapped. CHS—chalcone
synthase; CHI—chalcone-flavanone isomerase; F3H—flavanone-3-hydroxylase; DFR—dihydroflavonols
4-reductase; ANS—anthocyanidin synthase; ANR—anthocyanidin reductase; UFGT—UDP (Uridine
diphosphate) flavonoid glucosyltransferase; LAR—leucoanthocyanidins reductase; FLS—flavonol
synthase; ABC—ATP-binding cassette; GST—glutathione-S-transferase; MATE—multidrug and toxic
compound extrusion; MYB—transcription factor MYB; bHLH—basic helix–loop–helix; WD40—WD40
transcription factor.

The anthocyanin transport was regulated by a series of genes, and 23 predicted anthocyanin
transport genes were identified (Figure 4 and Table S5), including 12 GST, 5 MATE, and 6 ABC.
Four genes predicted to encode GST (c48398.graph_c0, c56420.graph_c1, c64524.graph_c2, and
c55124.graph_c0), one MATE (c68306.graph_c2), and two ABC (c64922.graph_c0 and c63386.graph_c0)
were up-regulated in the expression during the fruit development stage. Therefore, these up-regulated
genes (four GST, one MATE, and two ABC) were candidate key genes for anthocyanin transport.

We also identified a large number of transcription factors (TF) genes showing a significantly
differential expression in the different development stages. A majority of up-regulated or up first
and then down TFs, including MYB, hHLH, WD40, WRKY, NAC, ERF, and zinc finger, may regulate
anthocyanin biosynthesis [30]. There were 76 TF MYBs, 34 basic helix–loop–helix (bHLH), 4 WD40
TF, 23 WRKY TF, 17 NAC TF, and 32 NAC TF (Figure 4 and Table S5) that changed significantly in
expression during the fruit development, but the up-regulated genes were significantly less changed
than the down-regulated genes. Only 13 MYBs, 5 bHLHs, 2 WD40, 1 NAC, and 5 ERFs were
up-regulated genes and only 8 MYBs, 1 bHLH, and 2 ERFs were up first and then down genes.
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2.9. Analysis of R2R3-MYB Gene Family

A phylogenetic tree was constructed using 126 Arabidopsis thaliana R2R3-MYB TF family members
and candidate E. konishii MYB family members (Figure 5). In this phylogenetic tree, two highly
homologous A. thaliana genes (AtMYB11 and AtMYB12), with the function of controlling the flavonol
biosynthesis in all tissues [31], were clustered together with c58440.graph_c0 and c66827.graph_c2
genes. Four homologous A. thaliana genes (AtMYB75, AtMYB90, AtMYB113, and AtMYB114),
which regulate the anthocyanin biosynthesis in vegetative tissues [32], were clustered closely together
with c72761.graph_c1. AtMYB123, which controls the biosynthesis of proanthocyanidins in the seed
coat of Arabidopsis, was clustered together with c61353.graph_c2 [33].
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2.10. Protein–Protein Interaction Network Construction and Candidate Gene Selection

A total of 186 transcription factor genes (TFs), 26 synthesis genes, and 23 transport genes may
regulate anthocyanin biosynthesis (all genes are shown in Figure 4 and Table S5) in E. konishii, and
were used to construct a protein interaction network by using the String Online Tools (https://string-
db.org/). Then, we constructed a co-expression network by using Cytoscape. The results show that a
total of 204 genes were determined between 235 genes, and the study identified three modules from the
network (Figure 6). Most of the TF and GST transport genes tended to connect up, respectively. With the
exception of DFR, the major synthesis genes (including CHS (chalcone synthase), CHI (chalcone isomerase),
F3H (flavanone-3-hydroxylase), FLS (flavonol synthase), ANS (leucoanthocyanidin dioxygenase), and UFGT
(UDP (Uridine diphosphate)-flavonoid glucosyltransferase)) involved in the anthocyanin biosynthesis
closely interacted with each other. One candidate transport gene (GST, c48398.graph-c0) and two
transcription factors (MYB12, c58440.graph-c0; MYB113, c72761.graph-c1) strongly interacted with the

https://string-db.org/
https://string-db.org/
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structure of the genes. The down-regulated DFR (c57877.graph_c0) interacted with two down-regulated
MYB genes (c51686.graph_c0 and c63076.graph_c0).
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2.11. Genes Involved in Carotenoid Biosynthesis and Chlorophyll Degradation

Carotenoids are essential components of photosystems that confer a yellow to red coloration to
flowers and fruits. In this study, the results showed that only six candidate genes (Table 1), including
five down-regulated genes (one GGPPS (Geranylgeranyl pyrophosphate synthase), c64566.graph_c0;
one BOH (beta-carotene hydroxylase), c49043.graph_c0; one ZEP (zeaxanthin epoxidase), c68245.graph_c1;
and two NCEDs (9-cis-epoxycarotenoid dioxygenase), c64983.graph_c0 and c65617.graph_c0), and one
up-regulated gene (ZEP, c69135.graph_c0), related to carotenoid biosynthesis, were identified
from the DEG of the E. konishii pericarp transcriptome database, which was far less than the
anthocyanin biosynthesis.

Degreening is obvious during the E. konishii fruit ripening, which results from rapid chlorophyll
degradation. In this study, five candidates that differentially expressed the genes involved in
the chlorophyll breakdown were identified from the E. konishii pericarp transcriptome (Table 1),
including the genes encoding four chlorophyllase (CLH) and one Mg-dechelatase (MCS). Only one
CLH (c48268.graph_c0) decreased sharply from the green to the red stage, two CLH (c56088.graph_c0
and c69667.graph_c2) were up-regulated genes with low expression in the green stage, but had a high
expression in the red stage, and one CLH (c66184.graph_c4) decreased sharply in the turning stage,
but was high in the red stage. The expression of unigenes c70181.graph_c0 (MCS) increased in the
turning stage, but decreased in the red stage.

2.12. Quantitative Real-Time PCR Validation of Differentially Expressed Transcripts from RNA-Seq

In order to verify the reliability of the RNA-Seq data, nine candidates with differentially expressed
transcripts involved in anthocyanin biosynthesis were selected for real-time quantitative polymerase
chain reactions (RT-qPCRs) (Table S6). The RT-qPCR results were consistent with those of the RNA-Seq
analysis (Figure S5).
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Table 1. Genes involved in carotenoid biosynthesis and chlorophyll degradation.

#ID Function Annotation
FPKM Log2 (FC)

Green Turning Red G vs. T G vs. R T vs. R

Carotenoid biosynthesis
c64566.graph_c0 Geranylgeranyl pyrophosphate synthase (GGPPS) 20.07 6.83 7.35 −1.46 −1.28 0.19
c49043.graph_c0 beta-carotene hydroxylase (BOH) 28.14 9.83 4.58 −1.45 −2.5 −1.04
c68245.graph_c1 zeaxanthin epoxidase (ZEP) 60.19 3.2 4.5 −4.18 −3.62 0.57
c69135.graph_c0 zeaxanthin epoxidase (ZEP) 17.99 27.12 46.58 0.64 1.49 0.86
c64983.graph_c0 9-cis-epoxycarotenoid dioxygenase (NCEDs) 10.53 2.88 1.45 −1.78 −3.22 −1.44
c65617.graph_c0 9-cis-epoxycarotenoid dioxygenase (NCEDs) 49.88 16.86 8.44 −1.5 −2.44 −0.94

Chlorophyll degradation
c48268.graph_c0 Chlorophyllase (CLH) 43.88 14.36 51.63 −1.46 0.45 1.92
c56088.graph_c0 Chlorophyllase (CLH) 16.83 73.89 114.68 2.18 2.87 0.71
c66184.graph_c4 Chlorophyllase (CLH) 2.24 0 0 / / /
c69667.graph_c2 Chlorophyllase (CLH) 26.13 33.15 70.04 0.34 1.38 1.06
c70181.graph_c0 Mg-chelatase (MCS) 6.77 17.3 15.64 1.44 1.34 −0.08

G—green stage; T—turning stage; R—red stage; FPKM—fragments per kilobaseof exon per million fragments mapped.

3. Discussion

3.1. Candidate Genes Involved in Anthocyanin Biosynthesis

According to previous studies, the genes of flavonoid biosynthesis in Arabidopsis can been
divided into “early” genes (such as CHS, CHI, F3H, and FLS) and “late” genes (such as DFR, ANS,
UFGT, LAR, and ANR) [23,34]. The transcription levels of the structural genes in the flavonoid
biosynthetic pathway are largely regulated by the related transcription factors (such as MYB, hHLH,
WD40, WRKY, NAC, ERF, and zinc finger) [30,35]. The early genes (leading to the production of
flavonols) and late genes (leading to the production of proanthocyanins and anthocyanins) of the
flavonoid biosynthesis pathway in the dicot Arabidopsis are activated by coactivator-independent
R2R3-MYB transcription factors and the MBW (MYB-bHLH-WD40) complex, respectively [31,32,34].
The anthocyanin accumulation was closely correlated with the coloration of endocarp in E. konishii
(Figure 2). The genes participating in each step of the anthocyanin biosynthesis pathway were
found in the transcriptome dataset of E. konishii, and the enzymes were encoded by more than one
annotated gene in the anthocyanin biosynthesis (Figure 4 and Table S5). With the exception of DFR,
the 17 up-regulated anthocyanin biosynthetic genes (including two CHS, two CHI, two F3H, two
ANS, and seven UFGT) were strongly related to anthocyanin accumulation (Figure 4), which may be
determinants of color variation. The up-regulated early genes (CHS, CHI, F3H, and FLS) would be
regulated by the R2R3-MYB-type gene controlling flavonol biosynthesis (c66827.graph_c2) (Figure 5),
to turn a flow of partial production into flavonols, and inhibit the expression of downstream DFR
genes. In addition, the key regulators of the anthocyanin biosynthesis in A. thaliana tissues (AtMYB75,
AtMYB90, AtMYB113, and AtMYB114) were highly homologous with the MYB tanscription factor
(c72761.graph_c1) in E. konishii (Figure 5), and the c72761.graph_c1 gene strongly interacted with
structure genes (Figure 6). These results suggest that c72761.graph_c1 may be an important regulatory
gene influencing the anthocyanin production during the endocarp reddening of E. konishii.

In cells, the anthocyanin pigments are synthesized at the cytoplasmic surface of the endoplasmic
reticulum and are then transported and finally accumulated inside the vacuole [36]. In the current
study, the anthocyanin transport was regulated by a series of enzymes, including GST, ABC,
and MATE [21,37–39]. GSTs are important anthocyanin transport proteins, as a loss of their function
causes a visible deletion of the pigment phenotype in Arabidopsis [40] and Litchi [41]. In this
study, four up-regulated GST genes increased sharply during the endocarp ripening and anthocyanin
accumulation. A further analysis of the Protein–Protein Interaction(PPI) Network network (Figure 6)
showed that c48398.graph-c0 (GST) strongly interacted with the structure of genes. These results
suggest that c48398.graph-c0 (GST) may play a positive role in anthocyanin transport, and may lead
to an increase in the vacuolar anthocyanin levels in E. konishii. In addition, two major transporter
families (MATE and ABC-C) is closely related to the anthocyanin transport in some plants, such as TT12



Int. J. Mol. Sci. 2018, 19, 3209 10 of 14

from Arabidopsis [42] and grape (Vitis vinifera) [43]. In the present study, one MATE (c68306.graph_c2)
and two ABC (c64922.graph_c0 and c63386.graph_c0) were the up-regulated genes for fruit coloration.
Thus, the MATE and ABC transport genes may be involved in anthocyanin transport.

3.2. Candidate Genes Involved in Carotenoid Biosynthesis and Chlorophyll Degradation

Anthocyanins and carotenoids are often present in the same organs, and their combination
increases the color variety [20]. However, we found an increase in the anthocyanin content, but a low
carotenoid content in E. konishii. We also identified six genes in the carotenoid biosynthesis pathway
by using transcriptome data (Table 1), including five down-regulated genes and one up-regulated
gene. Thus, five down-regulated genes may play a negative role in carotenoid biosynthesis.

Degreening in the senescent leaves and ripening fruit is a natural phenomenon, and research
on chlorophyll degradation has been widely reported [44,45]. Chlorophyll is first dephytylated to
chlorophyllide by chlorophyllase (CLH), and then a metal-chelating substance (MCS) removes the
central Mg atom [27]. In the present study, we only found two up-regulated CLH genes and one
up first and then down MCS (Mg-chelatase) gene in the E. konishii transcriptome database (Table 1).
These genes are closely related to chlorophyll breakdown in the reddening endocarp of E. konishii.

4. Conclusions

The reddening of the E. konishii endocarp was closely correlated with anthocyanin accumulation
and chlorophyll degradation. The candidate genes involved in the endocarp coloration of E. konishii
were identified using transcriptome analysis. This study provides a large collection of transcripts and
expression profiles associated with E. konishii endocarp coloration, including anthocyanin biosynthesis,
carotenoid biosynthesis, and chlorophyll breakdown. Most of the genes that we identified participated
in the anthocyanin biosynthesis pathway, but a few genes were found for the carotenoid biosynthesis
and chlorophyll breakdown. The candidate R2R3-MYB transcription factors that likely regulate
anthocyanin biosynthesis were identified, and the candidate GST transport genes involved in the
anthocyanin biosynthesis were also identified. This study reveals the regulatory mechanisms of
E. konishii endocarp reddening and provides a platform for E. konishii functional genomic research.

5. Material and Methods

5.1. Plant Material

The pericarps of E. konishii were selected as the plant material and were obtained in 2017 from the
nursery stock base of Qingliu County, Fujian Province, China. The pericarps were harvested at three
developmental stages of endocarp coloration (green stage, turning stage, and red stage), with three
replicates (Figure 2). All of the pericarps from the same stage were collected, frozen immediately in
liquid nitrogen, and then stored at −80 ◦C for further study.

5.2. Total Anthocyanin, Carotenoid, and Chlorophyll Determination

The ultrasonic extraction method was used to extract anthocyanin. Approximately 0.5 g of
pericarp was collected and quickly ground into powder in liquid nitrogen, before 12 mL of an extract
solution (85:15 v/v mixture of 95% ethanol and 1.5 N HCl) was added, and the sample was extracted
for 40 min at 40 ◦C under a power of 300 W. After filtering, the supernatants were measured for the
total anthocyanin content using a pH differential method [46]. The total carotene and chlorophyll
were extracted and determined according to the methodology in the Experimental Guidance of Plant
Physiology [47]. The experiments were repeated three times.

5.3. RNA Extraction and cDNA Synthesis

The total RNA was extracted and purified using an RNAprep Pure Plant Kit (Polysaccharides and
Polyphenolics-Rich, Tiangen, Beijing, China), according to the manufacturer’s instructions. The RNA
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quality was checked using a NanoPhotometer® spectrophotometer (Implen, Westlake Village, CA, USA)
and the RNA concentration was measured using Qubit® RNA Assay Kit in a Qubit® 2.0 fluorometer
(Life Technologies, Carlsbad, CA, USA). The RNA integrity was assessed using the RNA Nano 6000
Assay Kit, part of the Agilent Bioanalyzer 2100 system (Agilent Technologies, Palo Alto, CA, USA).
Firstly, the strand cDNA synthesis was performed using a Revert Aid First Strand cDNA Synthesis Kit
(Thermo Fisher, Foster City, CA, USA), according to the manufacturer’s instructions, and was stored at
–80 ◦C for RT-qPCR assays.

5.4. Library Construction and Transcriptome Sequencing

The sequencing libraries were generated using NEBNext® Ultra™ RNA Library Prep Kit for
Illumina® (San Diego, NE, USA), following the manufacturer’s recommendations, and index codes
were added to attribute the sequences to each sample. The library generation involved five steps,
as follows: firstly, the mRNA was purified and fragmented; secondly, the double-stranded cDNA was
synthesized using the fragmented mRNA; thirdly, the sticky ends of the short fragments were repaired
with end repair reagents to avoid self-connection; fourthly, the sequencing adaptors were added to
the cDNA fragments that were then enriched by PCR amplification; and finally, the quality control of
the constructed libraries was assessed on the Agilent Bioanalyzer 2100 system. The clustering of the
index-coded samples was performed on a cBot Cluster Generation System using TruSeq PE Cluster Kit
v3-cBot-HS (Illumina, San Diego, NE, USA), according to the manufacturer’s instructions. After the
cluster generation, the library preparations were sequenced on an Illumina Hiseq 2000 (San Diego, NE,
USA) platform and paired-end reads were generated.

5.5. RNA-Sequencing Data Analysis

In order to ensure the accuracy and reliability of the RNA-sequencing data, some of the poor-quality
reads were eliminated from the raw reads and only the remaining high-quality reads (clean reads)
were used for statistical analysis. The level of gene expression was determined according to the
number of fragments per kilobase of exon per million fragments mapped. The genes with a false
discovery rate below 0.01 and an absolute value of the log2 (fold change) ≥2 were defined as
DEGs. The functional annotation information for these DEGs were obtained using the following
databases: NR (NCBI nonredundant protein sequences, ftp://ftp.ncbi.nih.gov/blast/db/), Pfam (Protein
family, http://pfam.xfam.org/), KOG/COG/eggNOG (Clusters of Orthologous Groups of proteins,
ftp://ftp.ncbi.nih.gov/pub/COG/COG; http://eggnogdb.embl.de/), Swiss-Prot (a manually annotated
and reviewed protein sequence database, http://www.uniprot.org/), KEGG (Kyoto Encyclopedia
of Genes and Genomes, http://www.genome.jp/kegg/), and GO (Gene Ontology, http://www.
geneontology.org/).

5.6. RT-qPCR Validation

In order to verify the reliability of the RNA-Seq results, nine important DEGs (the primers
used are listed in Table S8) were selected and measured using RT-qPCR on a Quant Studio
5 Real-Time PCR System (Thermo Fisher, Foster City, CA, USA) using the PowerUpTM SYBRTM

Green Master Mix (Thermo Fisher, FosterCity, CA, USA), according to the manufacturer’s instructions.
UBC23 (ubiquitin-conjugating enzyme 23; the primer used is listed in Table S6) was used as
the reference gene, and the relative gene expression levels were determined using the 2−44CT

approach [48]. Each sample (including three biological repetitions) was quantified in triplicate.
The comparison between the sequencing data and the RT-qPCR results is shown in Figure S5.

5.7. Phylogenetic Analysis

The phylogenetic analysis based on the amino acid sequences was performed using MEGA
(version 7.0, the laboratory at the Pennsylvania State University, St Collie, PA, USA) and the neighbor
joining method with 1000 bootstrap replicates [49].

ftp://ftp.ncbi.nih.gov/blast/db/
http://pfam.xfam.org/
ftp://ftp.ncbi.nih.gov/pub/COG/COG
http://eggnogdb.embl.de/
http://www.uniprot.org/
http://www.genome.jp/kegg/
http://www.geneontology.org/
http://www.geneontology.org/
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5.8. PPI Network Analysis

The network was used to construct a protein interaction network by using the String Online Tools
(https://string-db.org/). Then, we constructed a co-expression network using Cytoscape (version
3.6.1, the Institute of Systems Biology, Seattle, Washington, USA) [50].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/10/
3209/s1.
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