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Upon arriving in the host gut, enteric pathogens face a daunting challenge: to proliferate in an
environment already rich in commensal microbes and poor in available nutrients. Recent evi-
dence suggests that Salmonella and other enteric bacteria conduct a coordinated assault
employing two complimentary systems: bacterial microcompartments and the type III secre-
tion system. While a portion of invading bacteria construct subcellular metabolic organelles
designed to utilize unique nutrients, the remaining invading cells induce intestinal inflamma-
tion, remodeling the chemical environment of the gut to render it more favorable to Salmonella
proliferation (Fig 1).

What Are Bacterial Microcompartments andWhat Are They For?
Despite the received wisdom that eukarya possess intracellular organelles and bacteria do not,
bacteria do use organelles called bacterial microcompartments to spatially segregate metabo-
lism. Rather than a phospholipid membrane, however, these organelles are bound by a porous
protein monolayer made up of trimeric, pentameric, and hexameric shell proteins. A suite of
metabolic enzymes, including those required for cofactor regeneration, are encapsulated in the
microcompartment lumen. The mechanism of microcompartment assembly remains elusive,
but it is known that some enzymes are localized to the microcompartment through interactions
with the inner face of the microcompartment shell [1,2]. Many pathogens possess microcom-
partments, including Salmonella enterica, Escherichia coli, Listeria monocytogenes, Yersinia
enterocolitica, and Shigella flexneri, and microcompartment genes have been found in as many
as 20% of sequenced bacterial genomes [3,4]. Bacteria are known to use a variety of microcom-
partment systems to metabolize compounds such as 1,2-propanediol [5], ethanolamine [6],
and L-fucose and L-rhamnose [7]. All of these metabolic pathways proceed through toxic alde-
hyde intermediates, and it is proposed that the microcompartment shell functions to protect
the rest of the bacterial cell contents from these toxic compounds as well as to sequester a pri-
vate pool of the requisite cofactor molecules [8]. Compartmentalized metabolic processes may
impart a competitive advantage to invading pathogens over the existing gut microbiota, which
typically lack microcompartment operons and thus are unable to utilize the substrates metabo-
lized in the microcompartments [9,10]. For example, S. enterica subsp. enterica, serovar Typhi-
murium dedicates approximately 2% of its genome to 1,2-propanediol and ethanolamine
metabolism and the synthesis of associated cofactors, suggesting that these processes confer a
significant competitive advantage at some point in the pathogen’s life cycle [11,12].

Microcompartment systems, such as the ethanolamine utilization microcompartment,
enhance E. coli and S. enterica proliferation in diverse settings, including in food products, in
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a Caenorhabditis elegansmodel of infection, during growth on bovine intestinal content, and
in the gut of a mouse model of Salmonella infection [9,13,14]. This indicates that there are
many circumstances in which microcompartments may provide a competitive advantage to
pathogens. Evidence suggests that the gut microbiota plays a central role in preventing host
colonization by pathogens, possibly by sequestering critical nutrients [15]. In a model of S.
Typhimurium infection of the mouse gut, for example, antibiotic treatment to reduce the
abundance of native gut microbes renders the host more susceptible to Salmonella infection
[16], and mice with a compromised microbiota clear S. Typhymurium from the gut much less
effectively following nonfatal infection [17]. Gaining a unique metabolic capacity may help
pathogens sidestep microbiotic defense mechanisms by creating a new nutritional niche in the
host gut, but microcompartment-mediated metabolism also requires a unique micronutrient:
the cofactor vitamin B12.

The B12 Synthesis Paradox: Is 1,2-Propanediol Utilization an
Aerobic or Anaerobic Process?
1,2-propanediol and ethanolamine utilization both require vitamin B12, and the B12 biosyn-
thetic genes in S. enterica were found to be transcriptionally co-regulated with the 1,2-propane-
diol utilization operon [18]. This raised an apparent paradox: 1,2-propanediol and
ethanolamine metabolism were once thought to occur only in aerobic conditions, whereas B12
synthesis is a strictly anaerobic process [11,19]. This puzzle was solved by the discovery that
1,2-propanediol and ethanolamine metabolism can proceed using tetrathionate as an electron
acceptor in place of molecular oxygen [12]. Tetrathionate, in turn, is a product of the oxidation
of thiosulfate, an abundant molecule in the gut produced by the inactivation of H2S. Salmonella

Fig 1. Bacterial microcompartment function and the coordinated invasion of the host gut by Salmonella enterica. (a): A substrate molecule enters
the microcompartment and is converted to an aldehyde species, which is trapped in the microcompartment shell before being converted either to an
alcohol or to a Coenzyme A-conjugated species [32]. (b) The invading pathogen population enters the gut. (c) Each pathogen cell undergoes a fate
decision between type III secretion (~10%–35% of cells) and microcompartment formation (~65%–90% of cells). (d) Type III secretion-competent cells
invade the host epithelium while microcompartment-competent cells form microcompartments and synthesize vitamin B12. (e) Type III secretion-
competent cells traverse the epithelium and undergo phagocytosis in the lamina propria. (f) Gut inflammation causes thiosulfate oxidation to tetrathionate,
allowing microcompartment-mediated metabolism and pathogen proliferation.

doi:10.1371/journal.ppat.1005558.g001
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or other pathogenic bacteria in the gut might thus synthesize vitamin B12 anaerobically while
simultaneously respiring to tetrathionate instead of oxygen. Under normal gut conditions, oxi-
dation of thiosulfate to tetrathionate is minimal; however, this reaction is accelerated by
inflammation when the gut is rendered a more oxidizing environment [20]. The oxidizing
environment of the inflamed gut may favor microcompartment-mediated metabolism by Sal-
monella and other pathogens, allowing their proliferation at the expense of the gut microbiota
[14]. Indeed, many pathogenic bacteria possess a mechanism to induce just such an oxidative
dysbiosis—the type III secretion system [21].

Type III Secretion and Microcompartment-Mediated Metabolism:
Does Salmonella Conduct a Coordinated Assault on the Gut
Microbiota?
Upon encountering environmental cues that are indicative of the host intestinal tract (e.g., high
osmolarity, low pH, and low oxygen concentration), many enteric pathogens, including Salmo-
nella and Shigella spp., express type III secretion systems, which function to mechanically pene-
trate the intestinal epithelium and translocate various effector proteins into host cells [22].
These effectors not only mediate internalization of the Salmonella cell into a Salmonella-con-
taining vacuole but also induce an inflammatory response throughout the host gut. This
inflammatory response increases the rate of thiosulfate oxidation and hence the concentration
of tetrathionate in the gut [23,20]. Not all the invading Salmonella cells, however, express the
type III secretion system. Experiments examining the transcriptional regulation of type III
secretion system promoters indicate that only a fraction of a given population expresses the
type III secretion system even in appropriate inducing conditions [24]. What, then, is the role
of the non-induced cells? This population is believed to remain in the gut in order to exploit
the ensuing inflammation and gain a foothold in the metabolic competition between invaders
and commensals [25,26].

Interestingly, 1,2-propanediol represses expression of the type III secretion system master
regulator hilA, suggesting that cells may undergo a fate decision between type III secretion sys-
tem-mediated epithelium invasion (leading to bacterial cell death) and 1,2-propanediol or etha-
nolamine metabolism (leading to proliferation) [23,27]. Furthermore, propionate, a downstream
product of 1,2-propanediol metabolism, down-regulates another type III secretion system mas-
ter regulator, HilD, at the post-translational level; it is proposed that endogenous propionate in
the gut is primarily responsible for this phenomenon [28]. We additionally propose that post-
translational modification of HilD as a result of intracellular propionate production may be a
means of down-regulating type III secretion in response to 1,2-propanediol utilization micro-
compartment expression.

Does the Paradigm of Nutritional Competition Extend beyond
Micronutrients?
Nutritional immunity, the modulation of micronutrient concentrations by the host to prevent
colonization by pathogens, is well characterized for transition metal micronutrients [29,30]. It
seems likely that this paradigm, in which host and commensal processes are under selective
pressure to sequester critical nutrients from pathogens, extends beyond micronutrients such as
iron and copper ions to other small molecules as well. Bacterial microcompartments may
therefore represent another step in the nutritional arms race between pathogens and commen-
sal species. The coordinated induction of the type III secretion system and bacterial microcom-
partments in separate bacterial populations allows the pathogen population to induce and
exploit an inflamed state in the host gut, allowing colonization followed by diarrhea favorable
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for subsequent transmission to other hosts [31]. The proposed interplay between type III secre-
tion and bacterial microcompartments suggests that pathogens “dumpster diving” in the gut
can develop specialized metabolic mechanisms to utilize compounds otherwise considered to
be waste by the gut microbiota. These strategies may involve the coordinated action of multiple
cellular processes across the invading bacterial population.
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