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Variants in the Apolipoprotein L1 (APOL1) gene (G1-rs60910145, rs73885319,

G2-rs71785313) are common in Africans and in individuals of recent African ancestry

and are associated with an increased risk of non-diabetic chronic kidney disease (CKD)

and in particular of HIV associated nephropathy (HIVAN). In light of the significantly

increased risk of HIVAN in carriers of two APOL1 risk alleles, a role in HIV infectivity has

been postulated in the mechanism of APOL1 associated kidney disease. Herein, we aim

to explore the association between HIV viremia and APOL1 genotype. In addition, we

investigated interaction between BK and JC viruria, CKD and HIV viremia. A total of 199

persons living with HIV/AIDS (comprising 82 CKD cases and 117 controls) from among

the participants in the ongoing Human Heredity and Health in Africa (H3Africa) Kidney

Disease Research Network case control study have been recruited. The two APOL1 renal

risk alleles (RRA) genotypes were associated with a higher risk of CKD (OR 12.6, 95% CI

3.89–40.8, p < 0.0001). Even a single APOL1 RRA was associated with CKD risk (OR

4.42, 95% CI 1.49–13.15, p = 0.007). The 2 APOL1 RRA genotypes were associated

with an increased probability of having HIV viremia (OR 2.37 95% CI 1.0–5.63, p= 0.05).

HIV viremia was associated with increased CKD risk (OR 7.45, 95% CI 1.66–33.35,

P = 0.009) and with a significant reduction of JC virus urine shedding (OR 0.35, 95%
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CI 0.12–0.98, p = 0.046). In contrast to prior studies, JC viruria was not associated with

CKD but was restricted in patients with HIV viremia, regardless of CKD status. These

findings suggest a role of APOL1 variants in HIV infectivity and emphasize that JC viruria

can serve as biomarker for innate immune system activation.

Keywords: APOL1, HIV viremia, JC viruria, BK viruria, innate immune, kidney disease

INTRODUCTION

Two variants at the APOL1 gene, encoding Apolipoprotein L1,
account for more than 70% of the increased risk for non-diabetic
chronic kidney disease (CKD) in individuals of African ancestry
(1–3). The ancestral non-renal risk allele has been designated
G0 and the two risk alleles (renal risk alleles, RRA) have been
designated as G1 (encoding S342G and I384M substitutions)
and G2 (encoding the combined N388 and Y389 deletions),
respectively (1, 3). These variants have risen to high allele
frequency due to a dominant selective advantage that restores
trypanolytic activity against T. b. rhodesiense (G2) and confers
protection from active illness caused by T. b. gambiense (G1)
(1, 4–6). Unexpectedly, the G2 genotype is associated with active
T. b. gambiense infection (5). It is an enigma why some of the
highest frequencies of G2 are also found in regions of West
Africa where T. b. gambiense is endemic, despite the observed
G2 association with symptomatic chronic sleeping sickness. This
raises the likelihood of a broader role in pathogen resistance by
the RRA, extending beyond trypanosomes (4–6). Therefore, the
protective role of APOL1 variants in various infectious diseases is
under continued extensive investigation. HIV infection deserves
special consideration in regard to modulation of HIV infectivity
by APOL1 variants. In light of the significantly increased
risk of HIV associated nephropathy (HIVAN) in carriers of
two APOL1 RRA (2, 7), a role in HIV infectivity has been
postulated. In vitro studies have demonstrated that G0 APOL1
restricts HIV replication in macrophages and differentiated
monocytes (8). APOL1 was also identified as one of the HIV
restriction proteins, by using genome-wide scans for human
genes sharing molecular and evolutionary signatures of known
restriction factors. These findings were also validated using in
vitro studies demonstrating anti-HIV- activity (9). In addition,
the presence of RRA but not G0 APOL1 led to persistence
of HIV infection in human podocytes in synergy with IL-
1beta (10). Recently, a genetic association study (ALIVE - AIDS
Link to the Intravenous Experience cohort) revealed no evident
association of APOL1 RRA with HIV infection acquisition, viral
load or disease progression, in antiretroviral therapy (ART)
naïve patients (11). That study examined HIV natural history
cohorts enrolling African Americans prior to the ART era.
The large number of treatment-naïve seroconverters made it a
choice cohort for unbiased exploration of HIV-related outcomes.
Herein, we explored the association of HIV viremia and CKD
with APOL1 variants in participants recruited from HIV clinics
in Africa. All the participants were attending HIV clinics were
likely to have received ART, but we cannot be certain of
adherence. We also examined the association between JC and
BK viruria in all participants, in light of previous findings

demonstrating reduced JC viruria in CKD patients and the
expected increased BK urine shedding in immunocompromised
HIV infected patients (12–17).

MATERIALS AND METHODS

Ethics Statement
Ethical approval for the study was obtained from all the
Institutional Review Boards of each participating institution as
well as the lead clinical center at the University of Ghana (Ghana
Health Service Ethics Review Committee) who approved the
study protocols. Written informed consent was obtained from all
study participants.

Study Participants
Age and sex matched Africans fromGhana and Nigeria with HIV
infection were recruited as part of the H3Africa Kidney Disease
Research Network, from 2013 to 2018.

The study group comprises 82 individuals with CKD and
117 individuals with normal kidney function. The estimated
glomerular filtration rate (eGFR) was computed using the
creatinine-based Chronic Kidney Disease Epidemiology
Collaboration equation without race adjustment (CKD-EPI)
(18). CKD was defined as eGFR < 60 mL/min/1.73m2, or eGFR
more than 60 ml/min/1.73m2 with albumin to creatinine ratio
(ACR) > 2.5 mg/mmol (male) > 3.5 mg/mmol (female). Control
participants enrolled had eGFR > 90 ml/min and ACR < 2.5
mg/mmol (male), <3.5 mg/mmol (female). HIV viral load was
examined at enrollment.

HIV Viral Load
Plasma HIVRNA quantitative analysis was assayed as
previously reported by Tung et al. using the Roche Cobas
Ampliprep/Taqman qRT-PCR assay, v. 3.1.2 Roche Diagnostics,
Indianapolis, IN, USA (19). The test quantitates HIV RNA over
the range of 20–10,000,000 copies/mL.

Genotyping of APOL1 G1-G2 Risk Variants
APOL1 renal risk variants G1 (rs73885319, p.S342G and
rs60910145, p.I384M) and G2 (rs71785313, p.N388_Y389del)
were genotyped by custom TaqMan genotyping assays (Applied
Biosystems, Foster City, CA) (20).

Nucleic Acid Extraction and Quantitative
PCR for JCV and BKV
Frozen urine (200mL) samples from the participants were
thawed, and total nucleic acid was extracted. The extraction
procedure used the Magna Pure LC, version 2.0, apparatus
and Magna Pure LC total Nucleic Acid Isolation Kit Reagents
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TABLE 1 | Comparison of CKD patients and control.

Controls (n = 117) CKD (n = 82)

Mean SD Mean SD P-value

Age 41.89 9.58 44.38 9.57 0.060

Log_HIV load 2.79 1.26 2.98 1.36 0.698

Log BK viruria 2.46 1.55 2.92 1.55 0.200

Log_JC viruria 4.46 1.57 4.35 1.80 0.610

n % n %

Gender Male 33 28.2% 31 37.8% 0.154

APOL1 risk alleles Copies 0 39 33.3% 11 13.4% < 0.001

1 51 43.6% 31 37.8%

2 27 23.1% 40 48.8%

HIV pos 34 29.1% 28 34.1% 0.446

BK pos 26 22.2% 20 24.4% 0.721

JC pos 22 18.8% 13 15.9% 0.591

(Roche Diagnostics, Germany) according to the manufacturer’s
instructions (elution volume, 100 mL).

TaqMan Real Time PCR
The primers and probes were derived from nucleotide sequences
of the N terminus of the viral T antigen of JCV and BKV:
JCV, 5′-GAGTGTTGGGATCCTGTGTTTT-3′ (forward); 5′

-AGAAGTGGGATGAAGACCTGTTT-3′ (reverse); and Probe
5′FAM-TCATCACTGGCAAACATTTCTTCATGGC- BHQ-
1-3′; BKV: 5′-TTGCTTCTTCATCACTGGCAA-3′ (forward);
5′-AGTCCTGGTGGAGTTCCTTTAATG-3′ (reverse); and
probe 5′FAM-CATATCTTCATGGCAAAATAAATCTTCATCT
CATCCCATTT-BHQ-1-3′.

The PCR reaction was performed in a total volume of 25
ul containing Absolute Blue quantitative PCR mix (Thermo
Scientific, UK) in the presence of 10mL target DNA, 300 nM of
each primer and 200 nM of the probe. PCR was performed using
the rotor gene 6000/Q instrument (Corbett Research/Qiagen,
Hilden, Germany) under the following conditions: 15min at
95◦C and 45 cycles of 15 s at 95◦C and 60 s at 60◦C. For
quantitative results analysis, an average standard curve was
constructed using quantified JCV and BKV DNA (Advanced
Biotechnology Industry, MD). The results are reported as the
number of JCV/BKV genome copies per 1mL of urine. The
lowest detection level was 100 genomic copies per 1 mL.

Statistical Analysis
Univariate analysis (Chi-squared test, t-test) was used to compare
case and control groups. Multivariate logistic regression with
stepwise, forward and backward model selection was used to
predict the risks for HIV viral load, JC and BK viruria and
CKD. Each covariate was corrected for all other variables. The
covariates that were included for CKD were: age, gender, APOL1
RRA, BK viruria, JC viruria and HIV viremia. The interaction
between APOL1 RRA and HIV viremia was added to the CKD
risk association model. For CKD risk, we adjusted sequentially

to four models: model 1: for APOL1 variants, age and sex,
model 2: further adjusted for BK and JC viruria, model 3:
as for model 2 plus HIV viremia and model 4: as for model
3 plus the interaction of APOL1 RRA and HIV viremia. For
models predicting HIV viremia, JC and BK viruria, the following
covariates were included in the logistic regression: age, gender,
CKD, urine albumin/creatinine, APOL1 RRA and the other two
viruses, respectively.

RESULTS

Association With CKD
The demographic and clinical characteristics for participants in
this cohort, stratified by case-control status (n = 82, n = 117,
respectively) are presented inTables 1, 2. The CKD patient group
and the control group did not differ significantly by age (p-
value = 0.06) or sex (p-value = 0.154) (Table 1). We compared
the distribution of G1 and G2 RRAs in HIV seroprevalent
subjects with and without CKD. The following covariates were
included: age, gender, APOL1 RRA, HIV viremia, BK viruria, JC
viruria and the interaction 0f HIV∗ APOL1 RRA. Multivariate
logistic regression with a stepwise, forward and backward model
selection showed that even a single APOL1 RRA was associated
with CKD,OR 4.429 (95%CI 1.49–13.15, p= 0.007). As expected,
2 APOL1 RRA were significantly associated with CKD, OR
12.6 (95% CI 3.89–40.80, p < 0.0001). HIV viremia was also
associated with CKD, OR 7.45 (95% CI 1.66–33.35, p = 0.009).
The interaction between APOL1 RRA and HIV was significant
(p = 0.011), with OR 0.081 and 0.073 with 1 and 2 APOL1
RRA, respectively. This reverse association is perplexing and
might be explained by Simpson’s paradox, and does not seem
to confer biological significance (21–23) (Table 3). Interestingly,
adjusted models for age, sex, BK, JC and HIV viremia (models
2 and 3, respectively) did not change the association of 2
APOL RRA with CKD while adjustment for APOL1 RRA∗HIV
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TABLE 2 | Demographic and clinical characteristics for individuals participating in this cohort, stratified by case-control status.

Baseline demographic characteristics and clinical parameters

HIV +Cases with CKD

APOL1 - APOL1 - APOL1 - APOL1 -

0 risk alleles (11) 1 risk alleles (31) 0 + 1 risk alleles (42) 2 risk alleles (40)

Age at enrollment, y 39.8

(35.8–44.8)

46.2

(40.9– 51.1)

44.8

(38.9– 50.8)

44.8

(36.5–51.5)

Female sex, n (%) 63.6 67.7 66.6 62.9

CKD-EPI eGFR, mL/min/1.73 m2 42.7

(20.1–51.2)

36.8

(22.3–56.2)

39.3

(20.6–54.9)

18.6

(11.6–42.3)

UACR, mg/mmol 1.5

(0.5–2.4)

2.79

(0.99–10.7)

2.26

(0.94–6.25)

3.2

(0.7–64.9)

JC virus, % 9 22.5 19 12.5

Log (JC titers)a 2.78 4.4

(3.7–5.5)

4.3

(3.2–5.5)

2.9

(2.3–4.9)

BK virus, % 27.2 32.2 30.9 17.5

Log (BK titers)a 1.27

(1–1.9)

3.8

(2.4–4.6)

3.3

(1.2–4.6)

2.3

(1.8–3)

HIV virus, % 54.5 19.3 28.5 37.5

Log (HIV titers)a 1.6

(1.5–3.6)

3

(1.9–4.2)

2.2

(1.5–4.3)

3.2

(2–4.3)

HIV+ controls without CKD

APOL1 - APOL1 - APOL1 - APOL1 -

0 risk alleles (39) 1 risk alleles (51) 0 + 1 risk alleles (90) 2 risk alleles (27)

Age at enrollment, y 39.2

(33.9–47)

38.9

(34.6–49.9)

39.1

(34.2–49.8)

43.9

(38.2–48.8)

Female sex, n (%) 76.9 72.5 74.4 62.9

CKD-EPI eGFR, mL/min/1.73 m2 117.8

(104.4–131.8)

124.6

(109–130.86)

121.6

(106.6–131.6)

120

(109.5–130.3)

UACR, mg/mmol 0.6

(0.5–1.2)

0.6

(0.4–1)

0.6

(0.4–1)

0.7

(0.5–1)

JC virus, % 17.9 25.5 22.2 7.4

Log (JC titers)a 4.6

(2.6–5.3)

5.1

(3.3–5.8)

4.7

(2.7–5.8)

4.7

(4.2–5.2)

BK virus, % 10.2 31.3 22.2 18.5

Log (BK titers)a 1.5

(1.1–1.6)

2.6

(1.2–3.7)

2

(1.1–3.5)

1

(1–3.1)

HIV virus, %b 15.3 27.4 22.2 51.84

Log (HIV titers)a 2.5

(2.3–2.8)

2.2

(1.5–2.8)

2.2

(1.6–2.9)

3.2

(1.7–4.8)

Data presented as median (25th percentile to 75th percentile) for continuous variables or % for categorical variables.

CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration.
aData from subjects that have viremia or viruria measured.
bHIV viremia: more than 20 copies/ml.

interaction (model 4) increased the OR for 1 and 2 APOL1 RRA
significantly (Table 4).

Prevalence of HIV Viremia
Participants with CKD (cases) and those without CKD (controls)
were evaluated for HIV viral load, JCV and BKV viruria. All
HIV-positive patients recruited from HIV clinics were likely
to have been initiated on antiretroviral therapy (ART) before
recruitment into the study. To determine whether APOL1

G1 or G2 RRAs affect host susceptibility to HIV viremia,
multivariate logistic regression with a stepwise, forward and
backward model selection was used to predict HIV viral
load. Variables included in the model were age, gender, JC
viruria, BK viruria, APOL1 RRA (2 vs. 1 vs. 0), CKD, e GFR
and urine albumin to creatinine ratio. The two APOL1 RRA
genotypes were associated with an increased probability of
having HIV viremia OR 2.37 (95% CI 1.0–5.63, p = 0.05)
(Table 5). Moreover, a higher viral load (more than 40,000
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TABLE 3 | Odds ratio (OR) and 95% confidence intervals (CIs) for the association

with CKD.

CKD OR (95% CI) P-value

Age 1.02 (0.99–1.06) 0.09

Gender 0.77 (0.39–1.5) 0.45

APOL1 1 RRA 4.42 (1.491–13.158) 0.007

APOL1 2 RRA 12.6 (3.89–40.80) <0.0001

HIV viremia 7.45 (1.66–33.35) 0.009

BK viruria 1.17 (0.57–2.42) 0.65

JC viruria 0.84 (0.36–1.94) 0.68

APOL1 1 RRA* HIV viremiaa 0.081 (0.01–0.52) 0.008

APOL1 2 RRA* HIV viremiaa 0.073 (0.01–0.45) 0.005

aAPOL1 RRA interaction with HIV viremia.

copies/ml) was observed in patients with 2 RRA compared
with 0, 1 RRA OR 7.583 (95% CI 1.530–37.597, p = 0.013).
Interestingly, males were found to have a higher risk of
HIV viral load compared to females (>40,000/ml; OR of
4.552, 95% CI 1.1–18.829, p = 0.036). While previous studies
have pointed to reduced ART success in males, that only
partially is attributable to reduced ART adherence in males
compared to females (24), the current study does not include
information about ART adherence that could potentially explain
this difference.

Association of BK and JC Viruria
HIV viremia was associated with a significant effect on the
probability of JC virus urine shedding, reducing the probability
of JC viruria compared to individuals without HIV viremia OR
0.35 (95% CI 0.12–0.98, P = 0.046; Table 5). JC viruria did not
differ between patients with CKD and controls (p-value = 0.67).
In addition, subjects with APOL1 RRA who had JC viruria did
not display a lower prevalence of CKD compared to individuals
who did not have JC viruria (p-value = 0.692). BK viruria
was not associated with CKD and HIV viremia (p-value 0.65
and 0.503, respectively). In light of previous publications about
the inhibitory interaction between BK and JC viruria (25), we
assessed this possibility. As we previously reported (14), there was
no correlation between BK and JC viruria (Pearson correlation
coefficient: 0.43, p=0.23).

DISCUSSION

In this genetic epidemiological study of HIV infected individuals
living in Ghana and Nigeria (26), we observed an association
between 2 APOL1 RRA and HIV viremia and CKD. Notably,
there was a trend for increased CKD risk with one APOL1
RRA that was significantly increased after adjustment for APOL1
RRA∗HIV viremia interaction. This increased risk is in keeping
with the reported marginal association of HIVAN with 1 risk
allele, in individuals of black African ancestry from South Africa
(7). Similarly, previous studies have also reported a marginal
effect of one APOL1 RRA (1, 2, 27, 28), suggesting that the
possibility that an environment (HIV)-gene interaction may
enhance the risk of CKD, in carriers of one APOL1 RRA.

Therefore, HIV is a robust risk factor for kidney disease, that may
potentiate the genetic risk, even in individuals with only one risk
allele, into manifest kidney disease. Innate immune responses
to viruses can drive APOL1 kidney disease in patients with
APOL1 high-risk genotypes as was demonstrated in case series of
collapsing glomerulopathy caused by therapeutic administration
of interferon products and in patients infected with COVID-19
(29, 30). Interestingly, one APOL1 RRA in kidney allograft was
associated with collapsing glomerulopathy in a patient infected
with COVID-19 (30), suggesting that one APOL1 risk allele
may confer a pathogenic role in diseases that share enhanced
activation of the innate immune system. For completeness, we
point out that in a combined interaction analysis, the interaction
of HIV viremia and 2 APOL1 RRA was associated with decreased
CKD risk. We consider this not to reflect a biological effect but
rather a statistical effect that can occur in interaction analyses of
separately contributory associations, termed Simpson’s paradox,
but still make note in case future biological or clinical research is
warranted to explain this result (21–23).

In addition, we demonstrate a complex interaction of HIV
viremia with polyoma virus urine shedding. The increased HIV
viral load was associated with reduced JC viruria, while BK
viruria was not associated with CKD or HIV viremia. We did
not demonstrate the protective association of JC viruria with
preserved kidney function, as previously reported in patients
who did not have HIV infection and had non-diabetic as well as
diabetic kidney disease (12–14).We reasoned that in the presence
of HIV viremia, the secretion of inflammatory cytokines, such
as Interferon itself, might lead to restriction of other viruses,
including suppression of JC viruria and thereby mask any
such association.

The role of APOL1 as a member of the innate immune
system is only partially understood. APOL1 has a well-
characterized protective role that restores trypanolysis activity
against Trypanosoma brucei rhodesiense (G2) and confers
protection from active illness caused by Trypanosoma brucei
gambiense (G1) (1, 4–6). It is not clear if APOL1 has
broader protective roles as an innate immunity protein.
Most interestingly, a recent analysis of the African-American
participants of the Reasons for Geographic and Racial Differences
in Stroke (REGARDS) study, demonstrated that APOL1 RRA
were associated with sepsis risk under dominant [Hazard
Ratio (HR) 1.55, 95% confidence interval (CI), 1.13–2.11] and
additive (HR per variant allele copy 1.25, 95% CI, 1.02–1.53)
genetic models adjusted for covariates and ancestry, suggesting a
complex interaction between APOL1 and general risk for severe
infection (31). In contrast to the increased sepsis risk, some
in vitro studies have demonstrated that APOL1 restricts HIV
infectivity and protects human keratinocytes from the lethal
effect of the Staphylococcus aureus α toxin (8, 9, 32). Specifically,
impaired HIV restriction in podocytes by the APOL1 encoded
by RRA, has been suggested (10). However, an epidemiological
study did not detect an association between HIV viral load
and APOL1 variants. The ALIVE cohort revealed no evidence
of association of APOL1 RRA with HIV infection acquisition,
viral load or disease progression, in ART naïve patients (11).
In contrast, the current study of ART treated patients points to
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TABLE 4 | Odds ratio (OR) and 95% confidence intervals (CIs) for the association between APOL1 risk genotype and CKD.

APOL RRA Model 1, OR Model 2, OR Model 3, OR Model 4, OR

(95% CI) (95% CI) (95% CI) (95% CI)

1 2.07 (0.92–4.66) 2.03 (0.89–4.63) 2.03 (0.89–4.63) 4.42 (1.49–13.15)

2 5 (2.17–11.547) 4.96 (2.15–11.46) 4.96 (2.15–11.46) 12.6 (3.89–40.8)

Multivariate logistic regression with stepwise and forward model selection was used to predict the risk for CKD. The explanatory variable is number of APOL1 risk alleles: model 1,

adjusted for age and sex; model 2, further adjusted for JC and BK viruria; model 3 further adjusted for HIV viremia, model 4 further adjusted for APOL1 RRA* HIV interaction.

TABLE 5 | Odds ratio (OR) and 95% confidence intervals (CIs) for the association with JC and BK viruria and HIV viremia.

JC viruria OR P-value BK viruria OR P-value HIV viremia OR P-value

(95% CI) (95% CI) (95% CI)

Age 1.035 (0.992–1.080) 0.111 0.993 (0.955–1.032) 0.720 0.994 (0.96–1.03) 0.749

Gender 1.469 (0.606–3.56) 0.395 0.962 (0.437–2.117) 0.923 0.809 (0.401–1.63) 0.553

CKD 1.162 (0.144–9.356) 0.888 6.958 (1.003–48.258) 0.050 0.519 (0.09–2.977) 0.462

eGFR 1.005 (0.982–1.029) 0.655 1.017 (0.996–1.038) 0.108 0.992 (0.975–1.01) 0.408

Urine Albumin/creatinine 1.002 (0.997–1.006) 0.426 0.988 (0.967–1.009) 0.265 1.001 (0.998–1.003) 0.535

APOL 0.333 0.068 0.067

APOL1 1 risk variant 1.645 (0.63–4.297) 0.309 2.33 (0.934–5.81) 0.070 1.098 (0.466–2.582) 0.831

APOL1 2 risk variants 0.841 (0.26–2.716) 0.772 1.004 (0.341–2.957) 0.994 2.375 (1.001–5.635) 0.050

BK viruria 1.156 (0.47–2.841) 0.752 1.303 (0.6–2.83) 0.503

HIV viremia 0.351 (0.125–0.982) 0.046 1.308 (0.602–2.839) 0.498

JC viruria 1.154 (0.47–2.836) 0.754 0.345 (0.122, 0.98) 0.046

increased risk for HIV viremia in association with certain APOL1
genotypes. In accordance to the World Health Organization
and International Antiviral Society-USAPanel recommendations
from 2015 for early ART initiation regardless of CD4 cell-
count (33), all participants were likely to have received ART, but
we cannot confirm adherence. To the best of our knowledge,
this is the first observed significant association between APOL1
risk variants and HIV viremia in patients receiving ART. The
complex interaction between virus, host, treatment status and
environmental factors may explain this association in contrast
to previous publications. The dominant HIV subtype is different
in West Africa vs. South Africa and the Americas (CRF02_AG,
subtype G vs. C and B, respectively) (34, 35). Different subtypes
may have different biological properties resulting in differences in
transmissibility and pathogenicity. In addition, the participants
of the current cohort were treated with ART although adherence
was not established. This is in contrast to the ALIVE cohort
that was a prospective longitudinal natural cohort originally
designed to characterize the incidence and natural history of
HIV infection. Moreover, in the ALIVE study, viral loads not
reflecting the steady-state (viral load measurements exceeding 3-
fold from the average of all remaining points) were excluded (11),
thereby, reducing the probability of detecting transient viremia.
Given the absence of longitudinal follow up in our cohort, we
cannot determine whether the viremia detected was transient. In
addition, we do not have data about CD4 cell count in parallel
with HIV viral load. Similarly, we cannot determine whether
these findings impact clinical outcomes, such as incidence of
CKD as well as other HIV outcomes.

We demonstrate complex interactions between HIV viremia,
CKD and polyoma viruria. Previous studies reported reduced
JC viruria in CKD patients (12–14). Herein, reduced JC viruria
was driven by HIV viremia and not CKD. We postulated that
the reduced JC viruria in kidney disease and the presence of
HIV viremia share similar signaling pathways that enhance the
activation of the innate immune system. Enhanced inflammatory
signaling (e.g., via the type I interferon signaling cascade that
abrogates JC replication) restricts JCV growth and leads to
decreased shedding of JCV (14, 36). Indeed, in vitro studies
have demonstrated divergent interaction between IFN-β and the
two polyoma viruses. IFN-β controls JCV replication but fails
to restrict BKV (36), thereby, explaining the specific restriction
of JC virus shedding in urine and not BK in patients with
HIV viremia. We hypothesize that absence of JC viruria is an
epiphenomenon, serving as a biomarker that reflects innate
immune system activation. In contrast to JC viruria, only BK
viruria is enhanced in immunocompromised patients with HIV
infection and correlates inversely with the CD4+ cell count (15–
17). In the current cohort, BK viruria was not associated with
CKD and HIV viremia. Most BK virus associated nephropathy
occurs in renal allograft patients after kidney transplantation.
However, some case reports have described BK virus-associated
nephropathy in the native kidney, particularly in patients with
human immunodeficiency virus infection (37, 38). Further
studies are needed to explore the role of BK viruria in CKD
patients infected with HIV.

The present study has limitations: This cohort has a relatively
small sample size. HIV viral load was measured only at
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enrollment, so we could not determine if the enhanced viral
load was transient or persistent. Similarly, we do not have
information about CD4 cells count, ART compliance and
longitudinal clinical outcomes of kidney function were missing.
Therefore, we could not ascertain if the increased HIV viremia
will translate to faster CKD progression, as was previously
demonstrated (39). In addition, JC and BK viruria may fluctuate
and was measured at a single time point over time in the
current study.

In conclusion, this population genetic study demonstrates
an increased risk for HIV viremia and CKD in patients with
one and two APOL1 renal risk alleles. The association of
one APOL1 risk allele with CKD suggests that if G0 has a
protective role, it does not have complete suppressive penetrance;
alternatively, this finding is also consistent with a gain of
injury mechanism mediating kidney injury in individuals with
a robust environmental insult, such as HIV infection. Future
studies are warranted to explore the complex interaction of
APOL1 RRA, CKD risk, HIV viremia and urine shedding
of polyoma viruses. Confirmation in future studies of an
association between twoAPOL1 risk alleles with HIV viremia and
CKD would have significant therapeutic implications regarding
APOL1 inhibition in patients with two risk alleles, who do not
reside in Trypanosoma endemic areas.
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