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Abstract 
Recent large-scale genome-wide association studies (GWAS) have identified a number of genetic variants 
associated with breast cancer which showed great potential for clinical translation, especially in breast cancer 
diagnosis via mammograms. However, the amount of interaction between these genetic variants and mammographic 
features that can be leveraged for personalized diagnosis remains unknown. Our study utilizes germline genetic 
variants and mammographic features that we collected in a breast cancer case-control study. By computing the 
conditional mutual information between the genetic variants and mammographic features given the breast cancer 
status, we identified six interaction pairs which elevate breast cancer risk and five interaction pairs which reduce 
breast cancer risk. 

1.  Introduction 

In the last couple of years, the field of genome-wide association studies has made tremendous progress, and a
number of genetic variants (single-nucleotide polymorphisms, or SNPs) have been identified to be associated with 
breast cancer [1], providing the opportunity to use genetic information for personalized medicine. However, 
the rapid progress within GWAS has been both an opportunity and a challenge. The large number of variants found 
to be associated with breast cancer provide low signal, and their contribution over and above other conventional risk 
factors for breast cancer risk prediction and clinical diagnosis remains difficult to evaluate in terms of clinical 
significance.

Perhaps the most important question is whether germline genetic variants can further improve the prediction of 
future breast cancer evolvement in order to influence care. Many in the scientific community admit that genotype 
manifests itself as phenotype based on a mélange of environmental factors; hence breast cancer risk determination 
should involve a combination of genetic and phenotypic ) traits. Understanding the interaction effect is 
extremely critical to connect genetic variants with mammographic features, especially as we are just beginning to 
understand the biological mechanism of cancers [2]. On one hand, the germline genetic variants are the genetic 
information shared by all the normal cells , and the information is static all through the life of 
the patient but provides the genetic background of abnormalities within the developed tumors. On the other hand, 
the features we observe on the mammograms provide a closer portrait of the tumor at the time of diagnosis, but the 
tumor is dynamic over time and the mammographic information is on the tissue level rather than the molecular level. 
In the perfect situation, we would like to keep track of the somatic genetic information within the tumor over the 
time, but the current biotechnology and computation facility do not support it yet. Therefore, the true value of 
combining the germline DNA and mammographic features is from leveraging the interaction effect between the 
genetic variants and environmental exposures, the two key determinants in the development and prognosis of breast 
cancer. Imaging features (like mammographic findings), ) into 
the complex interactions between genetics and the environment in order to predict individual disease risk. Thus a
specific combination of a genetic variant and a mammographic feature may increase or decrease breast cancer risk 
due to these two converging etiologies. We hypothesize that the combined features can be used to predict the 
likelihood of breast cancer as well as the prognosis to inform future prevention, early detection, and treatment. 

In this paper, we explore the interaction effect between the breast-cancer-associated genetic variants and the 
mammographic features. We calculate conditional mutual information between SNPs and mammographic features 
given breast cancer status variable. In total, we identified six interaction pairs that increase breast cancer risk when 
they present together. We also identified five interaction pairs that decrease breast cancer risk when they present 
together.  

107



2.  Data 

[Subjects] The subjects were sampled through the Personalized Medicine Research Project [3] at the Marshfield 
Clinic. The project was reviewed and approved by the Marshfield Clinic IRB. The subjects were from a
retrospective case-control design, and used in our previous study [4]. In our study, each subject must have a plasma 
sample from which we can genotype the genetic variants, a diagnostic mammogram, and a follow-up breast biopsy 
within 12 months after the mammogram. Cases were defined as women having a confirmed diagnosis of breast 
cancer, which was obtained from the institutional cancer registry. Controls were confirmed through the Marshfield 
Clinic electronic medical records as never having had a breast cancer diagnosis by ICD-9 diagnosis code. Cases 
included both invasive breast cancer and ductal carcinoma in situ. We used an age matching strategy to construct 
case and control groups that were similar in age distribution. Specifically, we selected a control whose age was 
within five years of the age of each case. We decided to focus on high-frequency/low-penetrance SNPs that affect 
breast cancer risk as opposed to low frequency SNPs with high penetrance or intermediate penetrance. Individuals 
with a known high-penetrance genetic mutation, including the BRCA1 and BRCA2 mutations, were excluded. In 
total, there are 336 cases and 375 controls. 

[Genetic Variants] Our study included the genetic variants which were identified by the recent large-scale genome-
wide association studies. In the previous study of Liu et al. (2013) [4], we performed the same interaction analysis 
for the 22 SNPs identified before 2010; hence, in this paper we focus on the 55 new SNPs which have been 
identified since 2010. Among the 55 SNPs, 41 were identified by COGS [5] and 14 SNPs were included based on 
several other recent studies [6-12].

[Mammography Features] Mammography is the most common breast cancer screening test, and the only one 
supported by multiple randomized trials demonstrating reduction in mortality rate [13]. There is a long history of 
development and codification of features observed by radiologists on mammograms. The American College of 
Radiology developed the BI-RADS lexicon to standardize mammographic findings and recommendations. The BI-
RADS lexicon consists of 49 descriptors, including the characteristics of masses and microcalcifications, 
background breast density and other associated findings. Mammography data was historically recorded as free text 
reports in the electronic health records, and thus it was difficult to directly access the information contained therein. 
We used a parser to extract these mammography features from the text reports; the parser was shown to outperform 
manual extraction [14, 15]. After extraction, each mammography feature took
except that the variable mass size wa on 
whether there was a reported mass size and whether any dimension was larger than 30mm.  

3.  Methods 

In this paper, we focus on the interaction effect between the breast cancer associated genetic variants and the 
mammographic features. We use conditional mutual information between SNPs and mammographic features given 
breast cancer status variable. Conditional mutual information (CMI) between a discrete feature X and a discrete 
feature Y given a discrete response Z is  

We also calculate the 95% confidence intervals for the CMI between each SNP and each mammography feature via 
bootstrapping. We randomly draw samples with replacement from the subjects, and calculate the conditional mutual 
information from the samples. We bootstrap for 1,000 times and calculate the corresponding 1,000 CMI values. We 
sort the 1,000 CMI values from the smallest to the largest, and report the 26-th smallest value and the 26-th largest 
value as the boundaries of the 95% confidence interval.  

One subtlety during the calculation is how to code the genetic variants. Ideally, it is desirable to code each individual 
SNP as the three genotypes values, namely the risk allele homozygous carrier, the risk allele heterozygous carrier 
and the non-risk allele homozygous carrier.  However, due to the limited number of samples in our cohort and that 
we usually need sufficient samples for each configuration (a combination of genetic variable, mammographic 
feature and case/control status) for a reliable estimate of the conditional mutual information, we code each SNP as a 
binary variable, namely whether the subject carries the risk allele.  
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4.  Results 

For each SNP, we find the top three mammographic features which have the greatest conditional mutual information. 
We also calculated the 95% confidence intervals for these pairs. There are in total 11 pairs with CMI significantly 
greater than zero. The 11 interaction pairs are summarized in Table 1. Among them, there are six interaction pairs 
which increase the breast cancer risk and five interaction pairs which decrease breast cancer risk when the specific 
allele of the genetic variant and the specific mammographic feature present at the same time. The six imaging-
genetic pairs that increase risk are summarized in Table 2. The five imaging-genetic pairs that decrease breast cancer 
risk are summarized in Table 3.

Table 1. The interaction between SNPs and imaging features. 

SNP ID Imaging features CMI 95% CI 

rs9790517 heterogeneous breast composition 0.008 (0.001, 0.023) 

rs10472076 indistinct mass margin 0.012 (0.004, 0.026) 

rs10472076 linear distribution of calcifications  0.006 (0.001, 0.023) 

rs11242675 grouped distribution of calcifications 0.007 (0.001, 0.021) 

rs13281615 irregular mass shape 0.008 (0.002, 0.024) 

rs17817449 large mass size 0.005 (0.001, 0.020) 

rs11552449 dystrophic calcifications 0.010 (0.004, 0.021) 

rs12493607 heterogeneous breast composition 0.009 (0.001, 0.027) 

rs4973768 indistinct mass margin 0.006 (0.001, 0.021) 

rs10759243 linear distribution of calcifications 0.007 (0.001, 0.021) 

rs17356907 lobular mass shape 0.005 (0.001, 0.020) 

Table 2. The contingency tables for the six imaging-genetic pairs that increase breast cancer risk. 

Case Ctrl 

rs9790517 Carry T Not Carry T Carry T Not Carry T 

heterogeneous breast composition present 41 34 21 46

heterogeneous breast composition not present 99 162 122 186

rs10472076 Carry C Not Carry C Carry C Not Carry C 

indistinct mass margin present 39 7 23 17 

indistinct mass margin not present 176 114 206 129

rs10472076 Carry C Not Carry C Carry C Not Carry C 

linear distribution of calcifications present 13 3 6 10

linear distribution of calcifications not present 202 118 223 136

rs11242675 Carry C Not Carry C Carry C Not Carry C 

grouped distribution of calcifications present 40 22 52 58

grouped distribution of calcifications not present 177 97 165 100

rs13281615 Carry G Not Carry G Carry G Not Carry G 

irregular mass shape present 69 18 20 8 

irregular mass shape not present 162 87 207 140

rs17817449 Carry T Not Carry T Carry T Not Carry T 

large mass size present 21 2 7 5 

large mass size not present 263 50 306 57
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Table 3. The contingency tables for the five imaging-genetic pairs that decrease breast cancer risk. 

Case Ctrl 

rs11552449 Carry T Not Carry T Carry T Not Carry T 

dystrophic calcifications present 0 10 5 4 

dystrophic calcifications not present 96 230 102 264

rs12493607 Carry C Not Carry C Carry C Not Carry C 

heterogeneous breast composition present 33 42 36 31

heterogeneous breast composition not present 166 95 169 139

rs4973768 Carry T Not Carry T Carry T Not Carry T 

indistinct mass margin present 28 18 32 8 

indistinct mass margin not present 224 66 255 80

rs10759243 Carry A Not Carry A Carry A Not Carry A 

linear distribution of calcifications present 6 10 12 4 

linear distribution of calcifications not present 164 156 163 196 

rs17356907 Carry G Not Carry G Carry G Not Carry G 

lobular mass shape present 28 31 32 23

lobular mass shape not present 154 121 144 176

5.  Discussion 

The primary contribution of our study is to show that there exist, in our cohort, a number of interaction pairs 
between the genetic variants and mammographic features. These interaction pairs, if can be further validated in a 
larger cohort, are potentially useful for personalized breast cancer diagnosis. For example, when radiologists read 
mammograms for breast cancer diagnosis, they can also take into account the genetic variants of the patient if the 
information is available. If the interaction pairs are protective, successful adoption of them can help alleviate the 
problem of overdiagnosis. If the interaction pairs confer elevated breast cancer risk, successfully identifying them 
may increase the stratification power and allow for early detection of breast cancer. Our study differs from the 
previous study of Wacholder et al. (2010) [16] which added ten genetic variants to the Gail model, a risk model 
based on self-reported demographic and personal risk factors. Therefore, our study investigates the potential clinical 
impact of translating the exciting discoveries from GWAS to the patient experience at diagnosis. Unlike our 
previous study [4], which focused on the additional stratification power from these genetic variants in breast cancer 
risk prediction models, our current study focuses on the interaction effect between the genetic variants and 
mammographic features.  

One methodological limitation of our study is that we only look into the two-way interaction between the genetic 
variants and the mammographic features. It is quite likely that the interaction comes from more than two risk 
variables. On the genomics side, it is likely that several genetic variants interact with each other and confer an 
elevated breast cancer risk. On the mammography side, radiologists usually make medical diagnosis and decisions 
based on a combination of features rather than a single one. However, detecting high-order interaction effect 
requires more samples.  

We are also aware of other methods for identifying the interaction pairs such as hypothesis testing and Bonferroni 
correction. However, these tests are dependent on each other and the conservativeness of Bonferroni correction may 
reduce the power of detection. Therefore, we decided to use conditional mutual information as the measure and 
report the contingency tables as we elaborate these interaction pairs.  

Limitations of our study include small sample size and the pitfalls of data extraction from text reports. We are aware 
of the limited power of detecting such interactions due to the limited number of samples. We understand that parsing 
mammography features from text reports may introduce noise into the data. Especially, we may have failed to 
extract some of the features from the text. Therefore, a number of the interaction pairs we identified may be false 
positives. We investigated the literature for evidence that can support these interactions, however almost all the new 
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SNPs were first identified by COGS in 2013 and there is no existing literature about them. Nevertheless, we believe 
our results will be useful to other researchers and warrant further investigation. 

To sum up, our study connects mammographic features with germline genetic variants and explores the interaction 
effect between them. Mammography features represent richer phenotypic data directly relevant to breast cancer 
diagnosis and thus provide high signal. The germline variants contain the genetic information present in all the 

, leading 
to the development of tumors. In order to fully investigate the susceptibility of genetic variants that might lead to 
mutations that develop into tumors, the DNA from tumor cells (to identify somatic mutations) should also be studied 
using emerging single-cell technologies. Analysis of germline variants and somatic mutations in individual patients 
and combining such data from cohort studies can help to identify germline predispositions and environmental effects 
related to cancer, which can in turn lead to more informed diagnosis and treatment. We hope that our work can 
move forward and eventually bring radiogenomic imaging into breast care, understanding the correlation between 
gene expression profiling of solid tumors and noninvasive cancer imaging features to provide new insights into 
human cancers. In a future study, we plan to utilize additional genomic and transcriptomic data in the hopes of 
linking specific radiological tumor phenotypes from routine clinical imaging to treatment-response gene expression 
patterns in order to predict the likely response to specific chemotherapeutics. 
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