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We develop optimal respiratory airflow patterns using a nonlinear multicompartment model for a lung mechanics system.
Specifically, we use classical calculus of variations minimization techniques to derive an optimal airflow pattern for inspiratory
and expiratory breathing cycles. The physiological interpretation of the optimality criteria used involves the minimization of work
of breathing and lung volume acceleration for the inspiratory phase, and the minimization of the elastic potential energy and rapid
airflow rate changes for the expiratory phase. Finally, we numerically integrate the resulting nonlinear two-point boundary value
problems to determine the optimal airflow patterns over the inspiratory and expiratory breathing cycles.

1. Introduction

Respiratory failure, the inadequate exchange of carbon diox-
ide and oxygen by the lungs, is a common clinical problem
in critical care medicine, and patients with respiratory failure
frequently require support with mechanical ventilation while
the underlying cause is identified and treated. The goal of
mechanical ventilation is to ensure adequate ventilation,
which involves a magnitude of gas exchange that leads to
the desired blood level of carbon dioxide, and adequate
oxygenation, which involves a blood concentration of oxygen
that will ensure organ function. Achieving these goals is
complicated by the fact that mechanical ventilation can
actually cause acute lung injury, either by inflating the lungs
to excessive volumes or by using excessive pressures to inflate
the lungs. The challenge to mechanical ventilation is to
produce the desired blood levels of carbon dioxide and
oxygen without causing further acute lung injury.

With the increasing availability of microchip technology,
it has been possible to design partially automated mechanical
ventilators with control algorithms for providing volume or
pressure control [1–5]. More sophisticated fully automated

model reference adaptive control algorithms for mechanical
ventilation have also been recently developed [6, 7]. These
algorithms require a reference model for identifying a clin-
ically plausible breathing pattern. However, the respiratory
lung models that have been presented in the medical and
scientific literature have typically assumed homogenous lung
function. For example, in analogy to a simple electrical
circuit, the most common model has assumed that the lungs
can be viewed as a single-compartment characterized by its
compliance (the ratio of compartment volume to pressure)
and the resistance to air flow into the compartment [8–10].
While a few investigators have considered two compartment
models, reflecting the fact that there are two lungs (right and
left), there has been little interest in more detailed models
[11–13].

Early work on the optimality of respiratory control
mechanisms using simple homogenous lung models dealt
with the frequency of breathing. In particular, the authors
in [14–17] predicted the frequency of breathing by using a
minimum work-rate criterion. This work involves a static
optimization problem and assumes that the airflow pattern is
a fixed sinusoidal function. The authors in [17, 18] developed
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optimality criteria for the prediction of the respiratory
airflow pattern with fixed inspiratory and expiratory phases
of a breathing cycle. These results were extended in [19] by
considering a two-level hierarchical model for the control
of breathing, in which the higher-level criterion determines
values for the overall control variables of the optimal
airflow pattern derived from the lower-level criteria, and the
lower-level criteria determine the airflow pattern with the
respiratory parameters chosen by minimizing the higher-
level criterion.

Although the problem for identifying optimal respiratory
patterns has been addressed in the literature (see [14, 16–
19] and the references therein), the models on which
these respiratory control mechanisms have been identified
are predicated on a single compartment lung model with
constant respiratory parameters. However, the lungs, espe-
cially diseased lungs, are heterogeneous, both functionally
and anatomically, and are comprised of many subunits,
or compartments, that differ in their capacities for gas
exchange. Realistic models should take this heterogeneity
into account. In addition, the resistance to gas flow and the
compliance of the lung units are not constant but rather vary
with lung volume. This is particularly true for compliance.
While more sophisticated models entail greater complexity,
since the models are readily presented in the context of
dynamical systems theory, sophisticated mathematical tools
can be applied to their analysis. Compartmental lung models
are described by a state vector, whose components are the
volumes of the individual compartments.

A key question that arises in the consideration of
nonlinear multicompartment models is whether or not
experimental data support a complex model. This question
can be addressed by considering an analogy to pharma-
cokinetics. Specifically, the earliest pharmacokinetic models
were typically one-compartment models. This reflected the
challenges of sampling and drug assay. These models were
adequate for quantifying drug disposition on a long time
scale. For example, simple one-compartment models were
adequate in describing the total clearance or volume of
distribution. However, for even open-loop control of drug
concentrations, the one compartment model was inade-
quate. More complex models (two- and three-compartment
models) were needed that accounted for distribution as well
as elimination processes (see [20] and the references therein).

Similarly, for adaptive control of mechanical ventilation,
that is, more advanced controller architectures than simple
volume- or pressure-controlled ventilation, more elaborate
models are needed, especially when accounting for nonlinear
compliance and resistance and lung heterogeneity [6]. In
the case of pharmacokinetics, the control algorithm can
only be as complex as the data supports. This is also true
for control of mechanical ventilation. Flow and pressure
patterns in the airway are not simple waveforms, although
clinicians to date have modeled them as such. There is
considerable information embedded in these waveforms.
The purpose of our work in this paper is to provide a
mathematically rigorous and general framework developing
optimal determination of respiratory airflow patterns using
a nonlinear multicompartment model for a lung mechanics

system. It is a an easy task to simplify this framework to
be congruent with the granularity of the data. The reverse
process, however, is not possible without the development of
a general framework.

In this paper, we extend the work of [17, 18] to develop
optimal respiratory airflow patterns using a nonlinear mul-
ticompartment model for a lung mechanics system. (The
usage of the word optimal throughout the paper refers to
an optimal solution of the calculus of variations problems
addressed in the paper and not an optimal breathing pattern
in the sense of respiratory physiology.) First, we extend
the linear multicompartment lung model given in [6] to
address system model nonlinearities. Then, we extend the
performance functionals developed in [17, 18] for the
inspiratory and expiratory breathing cycles to derive an
optimal airflow pattern using classical calculus of variations
techniques. In particular, the physiological interpretation
of the optimality criteria involves the minimization of
work of breathing and lung volume acceleration for the
inspiratory breathing phase, and the minimization of the
elastic potential energy and rapid airflow rate changes for
the expiratory breathing phase. Finally, we numerically
integrate the resulting nonlinear two-point boundary value
problems to determine the optimal airflow patterns over the
inspiratory and expiratory breathing cycles.

The notation used in this paper is fairly standard.
Specifically, Rn denotes the set of n × 1 real column vectors,
and Rn×m, denotes the set of n×m real matrices. For x ∈ Rn

we write x ≥≥ 0 (resp., x � 0) to indicate that every
component of x is nonnegative (resp., positive). In this case,
we say that x is nonnegative or positive, respectively. Likewise,
A ∈ Rn×m is nonnegative or positive if every entry of A is
nonnegative or positive. (In this paper, it is important to
distinguish between a square nonnegative (resp., positive)
matrix and a nonnegative-definite (resp., positive-definite)
matrix.) Furthermore, R

n
+ and Rn

+ denote the nonnegative
and positive orthants of Rn, that is, if x ∈ Rn, then x ∈ Rn

+
and x ∈ Rn

+ are equivalent, respectively, to x ≥≥ 0 and
x � 0. Finally, we write (·)T to denote transpose, (·)′ to
denote Frèchet derivative, and δx to denote the first variation
of the function x.

2. A Nonlinear Multicompartment Model
for Respiratory Dynamics

In this section, we extend the linear multicompartment
lung model of [6] to develop a nonlinear model for the
dynamic behavior of a multicompartment respiratory system
in response to an arbitrary applied inspiratory pressure.
Here, we assume that the bronchial tree has a dichotomy
architecture [21]; that is, in every generation each airway
unit branches into two airway units of the subsequent
generation. In addition, we assume that the lung compliance
is a nonlinear function of lung volume.

First, for simplicity of exposition, we consider a single-
compartment lung model as shown in Figure 1. In this
model, the lungs are represented as a single lung unit with
nonlinear compliance c(x) connected to a pressure source
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Figure 1: Single-compartment lung model.

by an airway unit with resistance (to airflow) of R. At time
t = 0, a driving pressure pin(t) is applied to the opening of
the parent airway, where pin(t) is generated by the respiratory
muscles or a mechanical ventilator. This pressure is applied
over the time interval 0 ≤ t ≤ Tin, which is the inspiratory
part of the breathing cycle. At time t = Tin, the applied airway
pressure is released and expiration takes place passively, that
is, the external pressure is only the atmospheric pressure
pex(t) during the time interval Tin ≤ t ≤ Tin + Tex, where
Tex is the duration of expiration.

The state equation for inspiration (inflation of lung) is
given by

Rinẋ(t) +
1

cin(x)
x(t) = pin(t), x(0) = xin

0 , 0 ≤ t ≤ Tin,

(1)

where x(t) ∈ R, t ≥ 0, is the lung volume, Rin ∈ R
is the resistance to airflow during the inspiration period,
cin : R → R+ is a nonlinear function defining the lung
compliance at inspiration, and xin

0 ∈ R+ is the lung volume
at the start of the inspiration and serves as the system initial
condition. Equation (1) is simply a pressure balance equation
where the driving pressure pin(t), 0 ≤ t ≤ Tin, applied
to the compartment is proportional to the volume of the
compartment via the compliance and the rate of change of
the compartmental volume via the resistance. We assume
that expiration is passive due to the elastic stretch of the
lung unit. During the expiration process, the state equation
is given by

Rexẋ(t) +
1

cex(x)
x(t) = pex(t), x(Tin) = xex

0 ,

Tin ≤ t ≤ Tin + Tex,

(2)

where x(t) ∈ R, t ≥ 0, is the lung volume, Rex ∈ R is the
resistance to air flow during the expiration period, cex : R →
R+ is a nonlinear function defining the lung compliance at
expiration, and xex

0 ∈ R+ is the lung volume at the start of
expiration.

Next, we develop the state equations for inspiration and
expiration for a 2n-compartment model, where n ≥ 0. In
this model, the lungs are represented as 2n lung units which
are connected to the pressure source by n generations of
airway units, where each airway is divided into two airways of
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c1(x1)

x1

x2
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2,2
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1,1
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Figure 2: Four-compartment lung model.

the subsequent generation leading to 2n compartments (see
Figure 2 for a four-compartment model).

Let xi, i = 1, 2, . . . , 2n, denote the lung volume in the
ith compartment, let cin

i (xi) (resp., cex
i (xi)), i = 1, 2, . . . , 2n,

denote the compliance at inspiration (resp., expiration) of
each compartment as a nonlinear function of the volume of
ith compartment, and let Rin

j,i (resp., Rex
j,i), i = 1, 2, . . . , 2 j , j =

0, . . . ,n, denote the resistance (to air flow) of the ith airway in
the jth generation during the inspiration (resp., expiration)
period with Rin

01 (resp., Rex
01) denoting the inspiration (resp.,

expiration) of the parent (i.e., 0th generation) airway.
As in the single-compartment model, we assume that a

pressure of pin(t), t ≥ 0, is generated (by the inspiratory
muscles) or applied (by a mechanical ventilator) during
inspiration. Now, the state equations for inspiration are given
by

Rin
n,iẋi(t) +

1

cin
i (xi(t))

xi(t) +
n−1∑

j=0

Rin
j,kj

kj2n− j

∑

l=(kj−1)2n− j+1

ẋl(t) = pin(t),

xi(0) = xin
i0 , 0 ≤ t ≤ Tin, i = 1, 2, . . . , 2n,

(3)

where cin
i (xi), i = 1, 2, . . . , 2n, are nonlinear functions of xi,

i = 1, 2, . . . , 2n, given by [22]

cin
i (xi) �

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ain
i1 + bin

i1 xi, if 0 ≤ xi ≤ xin
i1 ,

ain
i2 , if xin

i1 ≤ xi ≤ xin
i2 ,

ain
i3 + bin

i3 xi, if xin
i2 ≤ xi ≤ VTi ,

i = 1, . . . , 2n,

(4)

where ain
i j , j = 1, 2, 3, and bin

i j , j = 1, 3, are model parameters

with bin
i1 > 0 and bin

i3 < 0, xin
i j , j = 1, 2, are volume

ranges wherein the compliance is constant, VTi denotes tidal
volume, and

kj =
⌊
kj+1 − 1

2

⌋
+ 1, j = 0, . . . ,n− 1, kn = i, (5)

where �q	 denotes the floor function which gives the largest
integer less than or equal to the positive number q.
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Figure 3: Typical inspiration and expiration compliance functions
as function of compartmental volumes.

Figure 3 shows a typical piecewise linear compliance func-
tion for inspiration. A similar compliance representation
holds for expiration and is also shown in Figure 3.

To further elucidate the inspiration state equation for
a 2n-compartment model, consider the four-compartment
model shown in Figure 2 corresponding to a two-generation
lung model. Let xi, i = 1, 2, 3, 4, denote the compartmental
volumes. Now, the pressure (1/cin

i (xi (t)))xi(t) due to the
compliance in ith compartment will be equal to the differ-
ence between the driving pressure and the resistance to air
flow at every airway in the path leading from the pressure
source to the ith compartment. In particular, for i = 3 (see
Figure 2),

1

cin
3 (x3(t))

x3(t) = pin(t)− Rin
0,1[ẋ1(t) + ẋ2(t) + ẋ3(t) + ẋ4(t)]

− Rin
1,2[ẋ3(t) + ẋ4(t)]− Rin

2,3ẋ3(t),
(6)

or, equivalently,

Rin
2,3ẋ3(t) + Rin

1,2[ẋ3(t) + ẋ4(t)]

+ Rin
0,1[ẋ1(t) + ẋ2(t) + ẋ3(t) + ẋ4(t)]

+
1

cin
3 (x3(t))

x3(t) = pin(t).

(7)

Next, we consider the state equation for the expiration
process. As in the single-compartment model, we assume
that the expiration process is passive and the external
pressure applied is pex(t), t ≥ 0. Following an identical

procedure as in the inspiration case, we obtain the state
equation for expiration as

Rex
n,iẋi(t) +

n−1∑

j=0

Rex
j,kj

kj2n− j

∑

l=(kj−1)2n− j+1

ẋl(t) +
1

cex
i (xi(t))

xi(t) = pex(t),

xi(Tin) = xex
i0 , Tin ≤ t ≤ Tex + Tin, i = 1, 2, . . . , 2n,

(8)

where

cex
i (xi) �

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

aex
i1 + bex

i1 xi,

aex
i2 ,

aex
i3 + bex

i3 xi,

if 0 ≤ xi ≤ xex
i1 ,

if xex
i1 ≤ xi ≤ xex

i2 ,

if xex
i2 ≤ xi ≤ VTi ,

i = 1, . . . , 2n,

(9)

aex
i j , j = 1, 2, 3, and bex

i j , j = 1, 3, are model parameters with
bex
i1 > 0 and bex

i3 < 0, xex
i j , j = 1, 2, are volume ranges wherein

the compliance is constant, and kj is given by (5).
Next, we provide a smooth (i.e., C∞) characterization

of the nonlinear compliance using sigmoidal functions [23].
Specifically, for inspiration, cin

i (xi) can be approximated as

cin
i (xi) ≈ ain

i2

(
S

(β)
a,b(xi)− S

(β)
c,d (xi)

)
, i = 1, . . . , 2n, (10)

where a = −ain
i1 /b

in
i1 , b = (ain

i2 /b
in
i1 ) + a, c = −ain

i3 /b
in
i3 , d =

ain
i2 /b

in
i3 + c, S

(β)
a,b(xi) � 1/(b − a) ln (σ

(−β)
b (xi)/σ

(−β)
a (xi ))

1/β

with σ
(−β)
b (xi) � 1/(1 + e−β(xi−a)), and β > 0 is an

approximation parameter. Figure 4 shows the smoothed
approximation of the piecewise linear compliance function
cin
i (xi). A similar approximation holds for cex

i (xi) and is also
shown in Figure 4.

Finally, we rewrite the state equations (3) and (8) for
inspiration and expiration, respectively, in vector-matrix
state space form. Specifically, define the state vector x �
[x1, x2, . . . , x2n]T , where xi denotes the lung volume of the ith
compartment. Now, the state equations (3) for inspiration
can be rewritten as

Rinẋ(t) + Cin(x(t))x(t)= pin(t)e, x(0)=xin
0 , 0 ≤ t ≤ Tin,

(11)

where e � [1, . . . , 1]T denotes the one vector of order 2n,
Cin(x) is a diagonal matrix function given by

Cin(x) � diag

[
1

cin
1 (x1)

, . . . ,
1

cin
2n(x2n)

]
, (12)

Rin �
n∑

j=0

2 j∑

k=1

Rin
j,kZj,kZ

T
j,k, (13)

where Zj,k ∈ R2n is such that the lth element of Zj,k is 1 for
all l = (k−1)2n− j + 1, (k−1)2n− j + 2, . . . , k2n− j , k = 1, . . . , 2 j ,
j = 0, 1, . . . ,n, and zero elsewhere.
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Figure 4: Original and the smoothed compliance functions, β = 30.

Similarly, the state equation (8) for expiration can be
rewritten as

Rexẋ(t) + Cex(x(t))x(t) = pex(t)e, x(Tin) = xex
0 ,

Tin ≤ t ≤ Tex + Tin,
(14)

where

Cex(x) � diag

[
1

cex
1 (x1)

, . . . ,
1

cex
2n(x2n)

]
, (15)

Rex �
n∑

j=0

2 j∑

k=1

Rex
j,k Zj,kZ

T
j,k. (16)

Finally, it follows from [6, Proposition 4.1] that Rin and Rex

are positive definite and, hence, Rin and Rex are invertible
matrices.

3. Optimal Determination of Inspiratory
and Expiratory Airflow in Breathing

In this section, we use the respiratory dynamical system
characterized by (11) and (14) to develop an optimal
model for predicting airflow patterns in breathing. The
optimization criteria used allows for the minimization of
oxygen expenditure of the respiratory muscles as well as
rapid changes in the lung volume flow rate. The oxygen
consumption of the lung muscles is mainly due to the work
carried out by the respiratory muscles to overcome the
resistive forces and stretch the lung and chest wall. In [24],
this work is defined as PV , where P is the pressure driving
inflation and V is the lung unit volume. The efficiency of gas
exchange in the lungs is related to the volume acceleration,
since rapid changes in lung volume can cause discomfort and
inefficacy of muscular contraction and control. Moreover,
high-volume acceleration can result in overexpansion of the
lung resulting in lung tissue rupture as well as excessive work
of breathing with subsequent ventilatory muscle fatigue.

In the ensuing discussion, we assume that the inspiration
process starts from a given initial state xin

0 and is followed

by the expiration process where its initial state will be the
final state of the inspiration. An inspiration followed by an
expiration is called a single breathing cycle. Furthermore,
we assume that each breathing cycle is followed by another
breathing cycle where the initial condition for the latter
breathing cycle is the final state of the former breathing cycle.
Since the respiratory process is periodic, we need only focus
on one breathing cycle.

The next result gives the optimal solution x∗(t), 0 ≤
t ≤ Tin, for the inspiratory airflow breathing pattern using
classical calculus of variations techniques.

Theorem 1. Consider the nonlinear system model for inspira-
tion given by (11). Let the optimal air volume x∗(t), 0 ≤ t ≤
Tin, be given by the solution to the minimization problem

Jin(x) =
∫ Tin

0

[
ẍT(t)ẍ(t) + α1pin(t)eT ẋ(t)

]
dt, α1 ≥ 0,

(17)

subject to the natural boundary conditions

x(0) = V0, ẋ(0) = 0, (18)

x(Tin) = V0 + VT , ẋ(Tin) = 0, (19)

where V0 ∈ R2n is the end expiratory volume and VT ∈ R2n is
the tidal volume. If α1 > 0, then x∗(t), 0 ≤ t ≤ Tin, is given by

x∗(t) = d1 + d2t + exp
(√

α1R
1/2
in t

)
d3

+ exp
(
−√α1R

1/2
in t

)
d4, t ≥ 0,

(20)

and if α1 = 0, then

x∗(t) = d1 + d2t + d3t
2 + d4t

3, t ≥ 0, (21)

where d1, d2, d3, and d4 ∈ R2n are constant vectors determined
by the boundary conditions (18) and (19), and R1/2

in denotes the
(unique) positive-definite square root of Rin.

Proof. First, note that pin(t)e, 0 ≤ t ≤ Tin, in (17) can be
eliminated using the state equation (11). Thus, the integrand
of the performance criterion (17) can be written as

Lin(x(t), ẋ(t), ẍ(t))

= ẍT(t)ẍ(t)

+ α1[Rinẋ(t) + Cin(x(t))x(t)]T ẋ(t)

= ẍT(t)ẍ(t)

+ α1

[
ẋT(t)Rinẋ(t) + xT(t)Cin(x)ẋ(t)

]
,

α1 ≥ 0.

(22)
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The first variation of the performance criterion Jin(x) is
given by

δJin(x∗, δx) =
∫ Tin

0
δLin(x∗(t), ẋ∗(t), ẍ∗(t))dt

=
∫ Tin

0

{(
∂Lin

∂x

)
δx(t) +

(
∂Lin

∂ẋ

)
δẋ(t)

+
(
∂Lin

∂ẍ

)
δẍ(t)

}
dt

=
[
∂Lin

∂ẍ
δẋ +

(
∂Lin

∂ẋ
− d2

dt2

∂Lin

∂ẍ

)
δx

]Tin

0

+
∫ Tin

0

{(
∂Lin

∂x

)
− d

dt

(
∂Lin

∂ẋ

)

+
d
dt

(
∂Lin

∂ẍ

)}
δx(t)dt.

(23)

Using the boundary conditions (18) and (19), it follows that
δx(0) = δx(Tin) = δẋ(0) = δẋ(Tin) = 0. Now, since
Tin is fixed, it follows from the fundamental theorem of the
calculus of variations that the variation of Jin(x) must vanish
on x∗; that is, the extremals optimizing the performance
criterion Jin(x) satisfy the Euler-Lagrange equation

(
∂Lin

∂x

)T
− d

dt

(
∂Lin

∂ẋ

)T
+

d2

dt2

(
∂Lin

∂ẍ

)T
= 0. (24)

Next, using Cin(x) given by (12),

(
∂Lin

∂x

)T
= α1Cin(x(t))ẋ(t)

+ α1C
′
in(x(t))Ẋ(t)x(t), 0 ≤ t ≤ Tin,

(
∂Lin

∂ẋ

)T
= 2α1Rinẋ(t) + α1Cin(x(t))x(t), 0 ≤ t ≤ Tin,

(
∂Lin

∂ẍ

)T
= 2ẍ(t), 0 ≤ t ≤ Tin,

(25)

whereC′in(x(t)) � diag [(∂/∂xi)(1/(cin
i (xi (t))))] and Ẋ(t) �

diag[ẋi(t)], i = 1, . . . , 2n. Thus, (24) yields the fourth-order
differential equation

x(4)(t)− α1Rinx
(2)(t) = 0, 0 ≤ t ≤ Tin, (26)

where x(n)(t) � (dnx(t)/dtn ), with boundary conditions
given in (18) and (19). Now, using standard analysis
techniques, the solution x(t), 0 ≤ t ≤ Tin, to (26) satisfies
(20) if α1 > 0 and (21) if α1 = 0.

Remark 2. The vectors d1, d2, d3, and d4 in Theorem 1 can
be uniquely determined using the four boundary conditions
given by (18) and (19). Specifically, if α1 = 0, it can be
shown that d1 = V0, d2 = 0, d3 = (3/T2

in )VT , and d4 =
−(2/T3

in )VT . Hence, in this case, ẋ(t) = d2 + 2d3t + 3d4t2 =
(6t/(T2

in ))VT(1− (t/Tin )) ≥≥ 0, 0 ≤ t ≤ Tin, which implies

that the solution x∗(t), 0 ≤ t ≤ Tin, to (26) is increasing
during inspiration, and hence, V0i ≤ x∗i (t) ≤ V0i + VTi , i =
1, . . . , 2n, where V0i , xi(t) and VTi are the ith components of
V0, x(t), and VT , respectively. A similar result holds for the
case where α1 > 0.

Next, we give the optimal solution x∗(t),Tin ≤ t ≤ Tin +
Tex, for the expiratory airflow breathing pattern.

Theorem 3. Consider the nonlinear system model for expira-
tion given by (14). Let the optimal solution x∗(t),Tin ≤ t ≤
Tin +Tex, be given by the solution to the minimization problem

Jex(x) =
∫ Tin+Tex

Tin

[
ẍT(t)ẍ(t) + α2p

2
ex(t)eTe

]
dt, α2 ≥ 0,

(27)

subject to the natural boundary conditions

x(Tin) = V0 + VT , ẋ(Tin) = 0, (28)

x(Tin + Tex) = V0, ẋ(Tin + Tex) = 0. (29)

If α2 > 0, then x∗(t),Tin ≤ t ≤ Tin + Tex, satisfies

x(4)(t)− α2R
2
exx

(2)(t) + α2C
2
ex(x)x(t)

+ α2[Cex(x)Rexẋ(t)− RexCex(x)ẋ(t)

+ X(t)C′ex(x)Rexẋ(t)

− RexC
′
ex(x)X(t)ẋ(t)

+X(t)C′ex(x)Cex(x)x(t)
] = 0,

(30)

where X(t) � diag[xi(t)] and C′ex(x) � diag[(∂/∂xi)
(1/cex

i (xi))], i = 1, . . . , 2n, and if α2 = 0, then

x∗(t) = d1 + d2t + d3t
2 + d4t

3, t ≥ 0, (31)

where d1, d2, d3, and d4 ∈ R2n are constant vectors determined
by the four boundary conditions (28) and (29).

Proof. Using (14), the integrand of the performance criterion
(27) can be written as

Lex(x(t), ẋ(t), ẍ(t)) = ẍT(t)ẍ(t) + α2
(
pex(t)e

)T(
pex(t)e

)

= ẍT(t)ẍ(t)

+ α2[Rexẋ(t) + Cex(x(t))x(t)]T

× [Rexẋ(t) + Cex(x(t))x(t)]

= ẍT(t)ẍ(t)

+ α2

[
ẋT(t)R2

exẋ(t) + xT(t)

× C2
ex(x(t))x(t)

+2ẋT(t)RexCex(x(t))x(t)
]

,

α2 > 0.
(32)
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Thus, the variation of Jex(x) on an extremal solution gives

δJex(x∗, δx) =
∫ Tin+Tex

Tin

δLex(x∗(t), ẋ∗(t), ẍ∗(t))dt

=
∫ Tin+Tex

Tin

{(
∂Lex

∂x

)
δx(t) +

(
∂Lex

∂ẋ

)
δẋ(t)

+
(
∂Lex

∂ẍ

)
δẍ(t)

}
dt

=
[
∂Lex

∂ẍ
δẋ +

(
∂Lex

∂ẋ
− d

dt
∂Lex

∂ẍ

)
δx
]Tin+Tex

Tin

+
∫ Tex

0

{(
∂Lex

∂x

)
− d

dt

(
∂Lex

∂ẋ

)

+
d2

dt2

(
∂Lex

∂ẍ

)}
δx(t)dt = 0.

(33)

Using the boundary conditions (28) and (29), it follows that
δx(Tin) = δx(Tin + Tex) = δẋ(Tin) = δẋ(Tin + Tex) = 0.
Hence, the extremals optimizing the performance criterion
Jex(x) satisfy the Euler-Lagrange equation

(
∂Lex

∂x

)T
− d

dt

(
∂Lex

∂ẋ

)T
+

d2

dt2

(
∂Lex

∂ẍ

)T
= 0. (34)

Now, using Cex(x) given by (15),

(
∂Lex

∂x

)T
= α2

[
2C2

ex(x(t))x(t) + 2Cex(x(t))Rexẋ(t)

+ 2X(t)C′ex(x(t))Rexẋ(t)

+2X(t)C′ex(x(t))Cex(x(t))x(t)
]
,

Tin ≤ t ≤ Tin + Tex,

(
∂Lex

∂ẋ

)T
= α2

[
2R2

exẋ(t) + 2RexCex(x(t))x(t)
]
,

Tin ≤ t ≤ Tin + Tex,

(
∂Lex

∂ẍ

)T
= 2ẍ(t), Tin ≤ t ≤ Tin + Tex,

(35)

which yields (30). Finally, in the case where α2 = 0, (30)
collapses to x(4)(t) = 0,Tin ≤ t ≤ Tin + Tex, which satisfies
(31).

Remark 4. In the case where α2 = 0, the vectors d1, d2,
d3, and d4 in Theorem 3 can be uniquely determined using
the four boundary conditions (28) and (29). In particular,
d1 = V0 + VT + 3βT2

inTexVT + 2βT3
inVT , d2 = −β(6T2

inVT +
6TexTinVT), d3 = β(3TexVT + 6TinVT), and d4 = −2βVT ,
where β = 1/(3T3

ex + 12T2
exTin + 12TexT

2
in + 4T3

in). Hence,
ẋ(t) = d2 + 2d3t+ 3d4t2 = −6βVTt(Tin +Tex− t)−6βVTt(t−
Tin) ≤≤ 0,Tin ≤ t ≤ Tin+Tex, which implies that the solution
x∗(t),Tin ≤ t ≤ Tin + Tex, is decreasing during expiration,
and hence, V0i ≤ x∗i (t) ≤ V0i + VTi , i = 1, . . . , 2n. The case

where α2 > 0 involves the solution to (30), and hence, we
have been unable to show that x∗(t),Tin ≤ t ≤ Tin + Tex, is
decreasing during expiration analytically. However, this has
been verified numerically.

Remark 5. If optimal solutions to Theorems 1 and 3 exist,
then the optimal respiratory airflow patterns and their
corresponding driving pressures can be computed using the
lung mechanics model developed in Section 2. The input
signal to this model can then be used as the driving pressure
of a mechanical ventilator needed to achieve the optimal
respiratory airflow pattern.

The physiological interpretations of the performance
criteria for inspiration and expiration used in Theorems 1
and 3 are slightly different. In particular, the inspiratory
criterion Jin(x) involves a weighted sum of squares of
the lung volume acceleration and the mechanical work
performed by the inspiratory muscles. Alternatively, during
the expiratory phase, the respiratory muscles remain active in
the beginning of expiration since they continue their action
by opposing expiration and hence consume oxygen thereby
performing negative work. Thus, mechanical work alone is
not a satisfactory criterion for describing control of breathing
at rest. As in [25], we assume that oxygen consumption of
expiration correlates with the integral square of the driving
pressure. This assumption is supported in [26] which shows
that an index of average respiratory pressure can predict the
total oxygen cost of breathing. Hence, instead of mechanical
work, we use the integral square of the applied pressure
in the expiratory criterion Jex(x), which corresponds to
minimizing the mean standard potential energy in the lung.

It can be seen that the optimal solutions x∗(t), t ≥ 0,
depend on the variables Tin, Tex, V0, and VT through the
boundary conditions. Moreover, the nonlinearities in (30)
are due to nonlinearities in the lung compliance Cex(x),
which make analytical solutions to (30) difficult to obtain.
It is interesting to note that although the optimal solutions
x∗(t),Tin ≤ t ≤ Tin + Tex, to (30) during the expiration
phase depend on the nonlinear compliance of Cex(x), the
optimal solutions x∗(t), 0 ≤ t ≤ Tin, to (26) during the
inspiration phase are independent of the nonlinear system
compliance Cin(x). In the case where n = 0 (i.e., a single-
lung-compartment model), x(t) ∈ R, Rex ∈ R, and Cex(x) =
Cex are constants, (30) reduces to

x(4)(t)− α2R
2
exx

(2)(t) + α2C
2
exx(t) = 0. (36)

This case is extensively discussed in [25] wherein the authors
characterize four different solutions to (36) corresponding to
α2 = 0, 0 < α2 < 4C2

ex/R
4
ex, α2 = 4C2

ex/R
4
ex, and α2 > 4C2

ex/R
4
ex.

4. Numerical Determination of Optimal
Volume Trajectories

The optimal volume trajectories formulated in Section 3
result in two-point nonlinear boundary-value problems.
Numerical methods for solving such problems include
shooting methods [27] and steepest descent methods [28].
In this section, we use the collocation method implemented
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by bvp4c in MATLAB [29] to numerically integrate the
differential equations (26) and (30) to obtain the optimal
volume trajectory x∗(t), t ≥ 0.

For our simulations, we first consider a two-compart-
ment lung model and use the values for the lung compliance
found in [22]. In particular, we set ain

i1 = 0.018 �/cm H2O,
bin
i1 = 0.0233, ain

i2 = 0.025 �/cm H2O, ain
i3 = 0.2532 �/cm

H2O, bin
i3 = −0.01, xin

i1 = 0.3 �, xin
i2 = 0.48 �, aex

i1 = 0.02 �/cm
H2O, bex

i1 = 0.078, aex
i2 = 0.038 �/cm H2O, aex

i3 = 0.1025 �/cm
H2O, bex

i3 = −0.15, xex
i1 = 0.23 �, xex

i2 = 0.43 �, and i = 1, 2.
Here, we assume that the bronchial tree has a dichotomy
structure (see Section 2). The airway resistance varies with
the branch generation, and typical values can be found in
[30]. Furthermore, the expiratory resistance will be higher
than the inspiratory resistance by a factor 2 to 3. Here, we
assume that the factor is 2.5.

For our simulation, we assume that the inspiration time
Tin = 2 sec and the expiration time Tex = 3 sec. The
two weighting parameters α1 and α2 differ from person to
person. Nominal values for the weighting parameters are
α1 = 2.0l/sec3 cm H2O and α2 = 0.1 l2/sec4 cm H2O, which
correspond to spontaneous breathing at rest [25]. Figure
5 shows the optimal air volume eTx

∗
(t), t ≥ 0, and the

optimal airflow rate eT ẋ∗(t), t ≥ 0, given by the two-point
nonlinear boundary-value problems (24) and (34). Note that
the airflow curve for inspiration is symmetric, since the
nonlinearities in Cin(x) do not appear in (26). However,
x∗(t), t ≥ 0, obtained using (30) during expiration involves
Cex(x), and hence, the airflow curve is asymmetric.

Figure 6 shows the sensitivity of the optimal volume and
airflow rate patterns to changes in the parameters α1 and
α2. As can be seen from the figure, the inspiratory airflow
rate is symmetric and the maximum value of the airflow
rate decreases as a function of increasing α1. Furthermore,
the asymmetric pattern of the expiratory airflow rate reflects
the fact that the minimum value becomes steeper with
increasing α2. Specifically, if we set the weighting parameter
α2 = 0, it follows from (30) that the airflow curve for the
expiration is given by a parabolic arc. The airflow patterns in
Figure 6 exhibit typical respiratory characteristics observed
in spontaneous breathing, that is, the inspiratory airflow
rate curve is relatively flat and the expiratory airflow rate
waveform is asymmetric with an initial trough, and quite
similar to “real” airflow signals [31].

Figure 7 shows the driving pressure generated by the res-
piratory muscles using the optimal air volume eTx∗(t), t ≥
0. Figure 8 compares the optimal air volume trajectory
eTx∗(t), t ≥ 0, with a nonoptimal air volume trajectory
eTx(t), t ≥ 0, generated by the linear pressure pin(t) =
20t + 5 cm H2O, t ∈ [0,Tin], and pex(t) = 0 cm H2O,
t ∈ [Tin,Tin + Tex], [6]. Note that eTx∗(t), t ≥ 0, switches
between the end expiratory level eTV0 = 0.2 l and the tidal
volume eTVT = 1.2 l. Figure 9 shows the phase portrait
of the optimal trajectories x∗1 (t) and x∗2 (t) and suboptimal
trajectories x1(t) and x2(t). Note that both sets of trajectories
asymptotically converge to a limit cycle, with the optimal
solutions satisfying the boundary conditions given in (18),
(19), (28), and (29). Figure 10 compares the value of the total
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Figure 5: Volume and airflow rate patterns for the total lung
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Figure 6: Volume and airflow rate patterns for different α1’s and
α2’s.

performance criterion generated by the optimal air volume
with the value of the total performance criterion generated
by the nonoptimal air volume.

Finally, Figure 11 shows the optimal air volume trajec-
tories for a four-compartment model with each air volume
trajectory satisfying the boundary conditions given in (18),
(19), (28), and (29). For this simulation, the compliance
parameters are taken to be identical to those used for the
two-compartment model with i = 1, 2, 3, 4, and the values
for airway resistances are generated using the results of [30].

5. Conclusion and Directions for Future Work

In this paper, we developed an optimal respiratory air flow
pattern using a nonlinear multicompartment model for a
lung mechanics system. The determination of the optimal
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air volume trajectories is derived using classical calculus
of variations techniques and involves optimization criteria
that account for oxygen expenditure of the respiratory lung
muscles, lung volume acceleration, and elastic potential
energy of the lung. Future work will include the development
of multivariable and adaptive control algorithms that will
utilize these models within a model reference control
architecture for fully automating mechanical ventilation to
ensure adequate ventilation and oxygenation for critical care
patients in intensive care units.

Since sedation in intensive care units is often admin-
istered to prevent the patient from fighting the ventilator,
it seems plausible to use respiratory parameters as a per-
formance variable for closed-loop control. Calculation of
patient work of breathing requires measurement of a patient-
generated pressure/volume loop or work of breathing. Since
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Figure 9: Phase portrait for x∗1 (t) versus x∗2 (t) and x1(t) versus
x2(t).
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work of breathing can be measured using a commercially
available esophageal balloon [32], work of breathing can
serve as a performance variable for closed-loop control of
sedation. Furthermore, patient-ventilator dyssynchrony can
be identified by analysis of pressure/flow wave forms [33].

Closed-loop control algorithms can use either work of
breathing as measured by an esophageal balloon or patient
respiratory rate as a performance variable for closed-loop
control of sedation. The need for optimal control algorithms
is necessary for achieving a target performance value while
satisfying certain constraints. For example, we could seek
to design a control algorithm that seeks to minimize the
patient respiratory rate (above the set ventilator rate) but
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Figure 11: Optimal volume x∗(t) versus time for a four-
compartmental model.

which does not result in hypotension. This requires the
development of a constrained optimal control framework
that seeks to minimize a given performance measure (e.g.,
patient respiratory rate) within a class of fixed-architecture
controllers satisfying internal controller constraints (e.g.,
controller order, control signal nonnegativity, etc.) as well
as system constraints (e.g., blood pressure, system state non-
negativity, etc.). The results in the present paper can serve as
a starting point for developing multivariable controllers for
mechanical ventilation of critically ill patients.
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