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Abstract: Latent tuberculosis infection (LTBI) represents a major challenge to curing TB disease. Current
guidelines for LTBI management include only three older drugs and their combinations—isoniazid
and rifamycins (rifampicin and rifapentine). These available control strategies have little impact
on latent TB elimination, and new specific therapeutics are urgently needed. In the present mini-
review, we highlight some of the alternatives that may potentially be included in LTBI treatment
recommendations and a list of early-stage prospective small molecules that act on drug targets
specific for Mycobacterium tuberculosis latency.

Keywords: latent tuberculosis infection; dormant Mycobacterium tuberculosis; LTBI treatment; anti-
TB drugs

1. Introduction

Tuberculosis (TB), an infection caused by the bacillus Mycobacterium tuberculosis, still
remains one of the top 10 causes of death worldwide, especially in low- and lower-middle-
income countries [1]. Although TB is preventable and curable, the World Health Organiza-
tion (WHO) estimates that 7.1 million people fell ill and 1.4 million died from the infection
in 2019 [2]. This situation is a result of many factors, such as late diagnosis, co-infection
with HIV, and the emergence of multidrug- and extensively drug-resistant (MDR- and
XDR-TB) bacilli due to incomplete or inappropriate care. Approximately 0.22 million (3%)
of the total new TB cases in 2019 were associated with resistant forms of the infection [2].
However, despite a small share of total TB cases, the number of MDR-TB and XDR-TB cases
is increasing every year (0.22 million in 2019 up from 0.20 million in 2018, and 0.17 million
in 2017) [2–4].

Another global challenge in TB management is the ability of M. tuberculosis to cause
latent infection, which can suddenly turn into active disease during the lifetime of infected
individuals. LTBI may be defined as infection in which tubercle bacilli are persistent
in the host but do not currently cause active disease. Latent TB infection is diagnosed
by the absence of clinical symptoms and signs and by positive tuberculin skin (TST) or
interferon-gamma release assay (IGRA) blood tests. However, these tests/diagnostic
approaches have some limitations [5]. Since there is no gold-standard test for LTBI, the
exact number of LTBI cases is difficult to establish [6]. It is thought that one fourth of the
world’s population is latently infected with M. tuberculosis, indicating a large reservoir
of individuals with a potential risk of developing active TB [7]. The WHO recommends
LTBI treatment for people living with HIV, for people who have household contacts with
patients with bacteriologically confirmed pulmonary tuberculosis, and for specific groups
of patients receiving immunosuppression therapy (anti-TNF treatment, etc.) [8]. Notably,
the likelihood of LTBI activation for these categories may increase from 5% to 10% per year
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throughout their lifetime. Therefore, addressing LTBI is one of the End TB Strategy crucial
milestones for TB elimination [3].

The development of small molecules that suppress latent tuberculosis infection is
a non-trivial task, since target-based approaches have had little success. Thus, testing
candidate molecules on bacterial cells rather than on isolated enzymes may be the preferred
method for finding new drugs for TB as it allows the testing of antibacterial molecules
under the appropriate physiological state of the pathogen [9,10]. Therefore, reliable and
adequate modeling of latent TB both in vitro and in vivo to search for anti-latent TB drugs
is currently a crucial task. Although animal models of LTBI (guinea pigs, mice, rabbits, and
non-human primates) may greatly simplify the study of the pathogenic mechanisms of
M. tuberculosis [11–16], due to their relatively high cost and ethical considerations they are
unlikely to be applied for primary small molecule screening. Obviously, in vitro models
cannot comprehensively reproduce all complex host/pathogen interactions involved in
the latent stage of TB, but they are cheaper and save time [17]. Several in vitro models that
attempt to mimic latency have been reported [18–25].

2. Differences between the Definitions of Latency, Persistence, and Dormancy of
Mycobacterium tuberculosis

The clinical term latency refers to the asymptomatic state of the infection. LTBI is
currently diagnosed by using a tuberculin skin test (TST), which measures delayed-type
immune response to a purified protein derivative derived from tuberculin and injected
under the skin, or by using an interferon-gamma release assay (IGRA), which measures
immune response to the tubercle bacteria in whole blood [26]. The term latency was
introduced by Clemens von Pirquet, who in 1907 developed the tuberculin test applied to
the skin by scarification [27]. It is believed that culture of tubercle cells from sputum or
other samples of a latently infected person is impossible, indicating a low bacterial load in
such a patient [26].

The term persistence is mostly used to describe the ability of M. tuberculosis to survive
and persist in host tissues under stress. Concerning bacterial infections, the term was first
introduced in 1944 by Joseph Bigger to characterize a small subgroup in a growing popula-
tion of staphylococci that was genetically susceptible to drugs but was able to persist after
long-term treatment with penicillin [28]. McDermott defined Mycobacterium tuberculosis
persistence as the “capacity of drug-susceptible microorganisms to survive drug attacks
when subsisting in an animal body” [29]. Thus, persistence arises under the effect of
antibiotics, while latency is the result of the host’s immune system activity.

The term dormancy comes from the Latin word “dormire” (“to sleep”) and describes
a bacterial phenotype with reduced metabolism and slower cell division [17]. This term
is often used in the context of the in vitro model of progressive hypoxia (the Wayne
model), where M. tuberculosis cells decrease metabolism and replication rate, and become
phenotypically resistant to isoniazid [18].

3. Pathogenesis of Latent Tuberculosis Infection in Humans

Tubercle bacilli that cause LTBI were traditionally assumed to represent a population
of dormant non-replicating bacilli with a temporary inability to grow and divide, and with
reduced metabolic activity as a result of an adaptive response to immune-mediated mech-
anisms [30]. Lillebaek et al. showed that the restriction fragment length polymorphism
(RFLP) associated with the insertion sequence profiles of latent isolates has not changed
for decades, supporting the idea of reduced bacterial replication in the latent state [31].
Colangeli et al. also demonstrated no increase in the number of mutations using whole
genome sequencing of M. tuberculosis isolates when comparing cases from over 20 years
ago and the present day [32]. So, both latent and active tuberculosis are considered to be
caused by a heterogeneous population of mycobacteria, including both actively growing
bacilli and bacilli with reduced metabolic activity, only in different proportions [33].

Generally, the pathogenesis of LTBI in humans is characterized by a range of fea-
tures [34]. Primary granulomas, a pathological hallmark of tuberculosis, are formed mostly
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in the basis pulmonis under the influence of very small amounts of tubercle bacilli (from 1
to 5). In primarily infected persons, the lesions most often disappear spontaneously and
asymptomatically, but a local or systemic disease develops in 5–10% of infected persons
(mostly in children) in the next 1–2 years [35]. In more than 90% of cases, tuberculosis
infection is latent and asymptomatic; after 3–8 weeks of primary infection, the tuberculin
skin test becomes positive—this status persists throughout life. Mycobacterium tuberculosis
cells may also migrate with lymph and blood from primary lesions to secondary locations
in the apical regions of the lungs where post-primary granulomas form (post-primary
TB) [36]. For reasons that remain unclear, in about 10% of cases of the post-primary disease,
the host’s immune system is unable to control the infection. Dormant bacteria begin to
reactivate and actively divide, which leads to an increase in their concentration in granu-
lomas in the apical regions of the lungs. Taken together, the infection–disease–infection
cycle, mediated by the reactivation of dormant M. tuberculosis cells in TST-positive people
with latent TB disease, is precisely the mechanism by which M. tuberculosis maintains its
survival and spreads to new hosts.

4. In Vitro and In Vivo Models to Imitate Mycobacterium tuberculosis Latency

The Wayne model, developed in 1996, is probably the most studied model of
M. tuberculosis dormancy [18]. The idea is based on the gradual oxygen depletion of
tubercle bacilli, in which dormant cells are obtained by adaptation to hypoxia. Limitations
of the model include the lack of explanation for other aspects of dormancy, such as bacterial
adaptation to other stresses; the possibility of growing immediately after recovery; and
lack of standardization of the method [37]. Another model that utilizes hypoxia is the
low-oxygen recovery assay (LORA) [38]. The model uses a recombinant M. tuberculosis
luciferase reporter to provide results of compound activity against non-replicating tubercle
bacilli surviving under hypoxic conditions.

Almost 90 years ago, Loebel et al. noticed that nutritional deficiencies lead to decreased
growth and metabolic activity of mycobacteria [39]. Much later, Betts et al. modified the
Loebel nutrient-deficient model to design a simple method for testing molecules active
against persistent bacteria [20]. The principle is based on the complete deprivation of
nutrients from a culture medium. To achieve this, the nutrient-rich culture medium is
washed with phosphate-buffered saline, which leads to a gradual shutdown of respiration
and a switch of viable bacilli to a dormant state. Like the Wayne model, the Loebel–Betts
model also cannot comprehensively mimic the environment of granuloma.

The multiple-stress model was designed to overcome the limitations associated with
single-stress conditions. The model proposed by Deb et al. uses a low-nutrient medium
that has an acidic pH of 5.0 with a gas mixture of low oxygen and high carbon dioxide
(5% O2 + 10% CO2 + 85% N2) [22]. The streptomycin-dependent model represents another
in vitro model of M. tuberculosis dormancy [40]. The M. tuberculosis strain underlying the
model was isolated from the sputum of a TB patient who was resistant to streptomycin
therapy in Japan in 1955 [41]. The M. tuberculosis strain ss18b is characterized by an inability
to grow in vitro in the absence of streptomycin [40]. Although the bacteria could not divide,
they maintained their viability and ability to reproduce after adding streptomycin to the
culture medium.

There are several in vivo models of latent infection that are currently used to explain
the disease development. Among them, zebrafish is the cheapest and simplest model
that mimics Mycobacterium tuberculosis latency, and it may be used in the early preclinical
stages of drug discovery [42]. However, most models of TB latency have been developed
in mice: the chronic tuberculosis model [43]; the Cornell model based on the treatment of
M. tuberculosis-infected mice with antibiotics (isoniazid and pyrazinamide), as a result of
which bacilli are not detected by organ culture [11]; the artificial granuloma model [44];
and the Kramnik model, in which specially grown C3HeB/FeJ mice demonstrated the key
features of latent tuberculosis in humans [13]. In guinea pig/rabbit models, granulomas
are very similar to those in humans, but these animals are highly susceptible to rapid
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disease progression [45]. The most useful animal model of LTBI is the non-human primate
model—this model most accurately reproduces the clinical, histological, and microbiologi-
cal characteristics of latent infection in humans [46]. Limitations of the model include high
cost and ethical considerations. Although there is not an ideal model, these animal models
are used to study the efficacy of molecules active against dormant mycobacteria.

5. Alternatives for Latent Tuberculosis Infection Treatment

Since specific and effective anti-latent TB drugs are still in short supply, traditional
antituberculosis drugs—isoniazid, rifampicin, and rifapentine—are used in modern LTBI
chemotherapy, and therapeutic regimens are generally based on long-term treatment of
latently infected patients with these drugs [6,47,48]. Isoniazid obviously has low efficiency
against latent TB infection because it targets bacterial cell wall biosynthesis, which is
inactive during dormancy [49]. The role of isoniazid in LTBI therapy is probably to
kill emerging bacilli that grow actively as a result of reactivation of dormant cells or
transformation of slowly growing persisters into actively growing bacilli susceptible to
INH treatment [49]. Rifampicin is used as an alternative agent to reduce the side effects of
isoniazid therapy (e.g., hepatotoxicity) [47]. Rifapentine, in turn, has a longer half-life and
greater potency against M. tuberculosis than rifampicin [50]. Rifamycins block transcription
by binding to the b-subunit of RNA polymerase—an important stage in the life of actively
growing mycobacteria—so the effectiveness of the above drugs in the treatment of LTBI is
still an open question.

Three anti-TB drugs with original targets have the potential to be selected in LTBI
treatment guidelines. Bedaquiline (formerly TMC207 or R207910) was approved to treat
active tuberculosis in 2012, being the first anti-TB drug discovered in the past 40 years.
The molecule targets mycobacterial F0F1 ATP synthase and thus stops the production
of ATP required for cellular energy production [51]. In further study, Andries’ research
group observed that TMC207/R207910 treatment leads to a 1.8-log reduction in CFU
in the Wayne model and 2.1-log in CFU in the hypoxia-induced model [52]. A killing
kinetic study revealed that the compound completely sterilizes dormant bacilli in the
Wayne hypoxia model in vitro after 14 days. Andries et al. proposed that ATP synthase
contributes to mycobacterial survival despite its downregulation during the latent state
and thus may potentially serve as a target for dormant bacteria. Rao et al. also confirmed
TMC207/R207910 is highly active against non-replicating mycobacteria under hypoxic
conditions [53]. The in vivo efficacy of bedaquiline was determined in several murine
models of LTBI [54,55].

Pretomanid (formerly PA-824), belonging to the chemical class of nitroimidazoles,
was initially identified as an attractive small molecule for TB treatment in 2000 and was
approved for clinical use in 2019 by the U.S. Food and Drug Administration (FDA) and in
2020 by the European Medicines Agency (EMA) [56]. The compound exhibits bactericidal
activity not only against actively replicating M. tuberculosis, but also against non-replicating
bacteria in the Wayne hypoxia model [56,57]. PA-824 is a prodrug, which is converted
to an active metabolite by deazaflavin-dependent nitroreductase (Ddn). Singh et al. sug-
gested that the des-nitro metabolite and reactive nitrogen species, primarily nitric oxide
(NO) generated from it, significantly contribute to PA-824’s anaerobic activity against
non-replicating tubercle bacilli [58]. To verify the in vivo efficacy of pretomanid against
dormant M. tuberculosis, Dutta and Karakousis used a necrotic granuloma murine model of
LTBI, which is considered a highly clinically relevant model [59,60]. PA-824 demonstrates
relatively limited efficacy against latent M. tuberculosis infection in C3HeB/FeJ mice, reduc-
ing bacterial load from Month 1 to Month 4 by only ~1.0-log CFU [60]. Another anti-TB
nitroimidazooxazole derivative, FDA-approved delamanid (formerly OPC-67683), has also
been investigated against LTBI. Chen et al. reported that the molecule kills more than
50% of the population of dormant bacilli in a modified Wayne model at concentrations of
0.4 mg/L and above [61]. In M. tuberculosis-infected guinea pigs, delamanid completely
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eradicates bacterial CFU in lungs over time (2.04-log CFU at 4 weeks, 0-log CFU at 8 weeks)
compared with the control (5.91-log CFU at 4 weeks, 5.64-log CFU at 8 weeks) [61].

A few drugs from other therapeutic areas are being investigated as repurposable
alternatives for LTBI treatment. For example, tafenoquine, an antimalarial agent from the
8-aminoquinoline class, was found to be active in a nutrient-starved dormancy model
with a ~2.0-log decrease in CFU [62]. Other works evaluate derivatives of sacubitrile, an
antihypertensive drug used in combination with valsartan, and pleuromutilin, an antibiotic,
against dormant tubercle cells [63,64].

6. Early-Stage Compounds Active against Dormant and Non-Replicating Bacilli

The search for small-molecule inhibitors of dormant M. tuberculosis is a challenging
process. First of all, dormant bacilli are characterized by reduced metabolism, and therefore
most bacterial targets are non-druggable and only a few M. tuberculosis enzymes may be
inhibited. In addition, all currently available in vivo and in vitro models of TB dormancy
have certain limitations, such as high metabolic activity of dormant mycobacteria, lack of
difference between the clinical manifestations of active and dormant TB, or an ambiguous
assessment of the reduction in bacterial load. However, despite the existing obstacles, a
number of recently discovered small molecules with anti-latent TB activity may be exploited
as a platform for further in-depth study of the prospective M. tuberculosis molecular targets
for LTBI elimination.

6.1. Dormancy Survival Two-Component Regulatory System (DosRST)

Low oxygen level (hypoxia), nutrient starvation, acidic pH, and other environmental
and host immune pressures force active mycobacterial cells to switch into a dormant state
with reduced metabolism [65]. M. tuberculosis is known to exploit DosRST to regulate its
dormancy and virulence, and, especially, to promote survival during this state [66–69]. The
DosRST regulatory system consists of two heme-based histidine sensor kinases, DosS and
DosT, and the response regulator DosR, which are activated under stress conditions [70].
Given the importance of this system for maintaining dormancy in mycobacteria, it may be
an attractive target for the control of LTBI. The feasibility of this approach for suppressing
tubercle bacilli was first explored by Gupta et al. in 2009 [71]. Later, Zheng et al. screened a
large chemical library using the DosRST regulon fluorescent M. tuberculosis reporter strain
CDC1551 [72]. They suggested that inhibition of such fluorescence may be associated with
inactivation of the DosRST. As a result, HC106A (compound 1, Figure 1) was found to
inhibit dosR-dependent GFP fluorescence with an EC50 of 6.9 µM or 2.5 µM, and further to
modulate the DosRST signaling by directly targeting the heme sensor [72]. To understand
the structure–activity relationships (SAR) of the hit compound, a range of urea derivatives
with different substitution patterns were further synthesized [72]. The isoxazole ring
was important for the function as its replacement with another hetero/aryl group led
to a decrease in fluorescence inhibition. The urea moiety was also needed for better
activity. Particular attention has been paid to the role of the 2,4-dichlorophenyl ring. So,
1-(4-fluorophenyl)-3-(isoxazol-5-yl)urea (compound 2, Figure 1) was selected as the most
active inhibitor of DosRST with an EC50 of 0.54 µM.
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Figure 1. Early-stage small molecules with established drug targets for dormant M. tuberculosis. Compound 1:
1-(2,4-dichlorophenyl)-3-(isoxazol-5-yl)urea; compound 2: 1-(4-fluorophenyl)-3-(isoxazol-5-yl)urea; compound 3:
7-bromo-5-chloroquinolin-8-ol; compound 4: 4-methoxy-2-(pyridin-4-yl)thiazole-5-carboxylic acid; compound 5:
1-((4-methoxyphenyl)sulfonyl)-4′,5′-dihydrospiro[piperidine-4,7′-thieno[2 ,3-c]pyran]; compound 6: 2,2′-oxybis(N′-
(4-fluorobenzylidene)acetohydrazide); compound 7: 4-(5-(2-(benzo[d]thiazol-2-yl)-2-cyanovinyl)thiophen-2-
yl)isophthalic acid; compound 8: 4-(2-bromophenyl)-2-hydroxy-4-oxobut-2-enoic acid; compound 9: methyl
ester of -4-(2-chloro-6-fluoro-3-methylphenyl)-2-hydroxy-4-oxobut-2-enoic acid; compound 10: tert-butyl ester of
3-carbamoyl-2-(4-chlorobenzamido)-4,7-dihydrothieno[2,3-c]pyridine-6(5H)-carboxylic acid; compound 11: N2,N4-
bis(benzo[d]thiazol-2-yl)-1-(isonicotinamido)azetidine-2,4-dicarboxamide; compound 12: 2-ethyl-N-phenethyl-5,6,7,8-
tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-amine; compound 13: 3-(3-(3,4-dichlorophenyl)ureido)benzoic acid; com-
pound 14: methyl ester of 1-hydroxy-6-thioxo-1,6-dihydropyridine-3-carboxylic acid; compound 15: ethyl ester of 1-hydroxy-
6-thioxo-1,6-dihydropyridine-3-carboxylic acid; compound 16: 1-hydroxy-5-(trifluoromethyl)pyridine-2(1H)-thione.
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6.2. Methionine Aminopeptidase (MetAP)

Bacterial methionine aminopeptidases are metalloenzymes that catalyze the cleavage
of amino acid residues at the N-terminal position of peptides and proteins [73]. To validate
mycobacterial metalloproteinase (MtMetAP) as a druggable target, Olaleye et al. screened
a chemical library and found that inhibitors of these mycobacterial enzymes were active
against both replicating and aged non-growing (non-replicating) M. tuberculosis in the
Byrne model of persistence [74,75]. Continuing this research, they characterized 7-bromo-
5-chloroquinolin-8-ol CLBQ14 (compound 3, Figure 1), a bromine analog of clioquinol,
as a suitable inhibitor of non-replicating bacilli [76]. Clioquinol is an antiprotozoal drug
from the 8-hydroxyquinoline class that is probably neurotoxic at high doses. Olaleye et al.
hypothesized that CLBQ14 does not show the same adverse effect, but they did not confirm
or reject this point of view. Moreover, in recent preclinical studies of this compound in rats,
the researchers also did not provide a toxicity profile of CLBQ14 [77].

6.3. Lysine ε-Aminotransferase (LAT)

Lysine ε-aminotransferase (LAT), a pyridoxal 5′-phosphate (PLP)-dependent enzyme,
was found to be involved in the formation of persisters in mycobacteria [78,79]. A little
earlier, Betts et al. determined that this enzyme is activated ~42-fold in their own developed
nutrient-starved model of dormancy [20]. To understand the potential of LAT as a thera-
peutic target, Sriram et al. selected a number of primary hits using an e-pharmacophore
approach and synthesized a library of hit-based analogs to assess in vitro activity [80–83].
Some interesting second-generation hits are presented in Figure 1. Three of the four com-
pounds exhibit acceptable activity towards the target in an LAT enzyme inhibition assay
(except for compound 7) together with good bacterial log reduction in a nutrient-starved
model of M. tuberculosis dormancy.

6.4. Isocitrate Lyase (ICL)

Isocitrate lyases (ICLs) represent Mg2+-dependent enzymes that catalyze the reversible
cleavage of D-isocitrate to glyoxylate and succinate in the glyoxylate shunt [84]. Actually,
M. tuberculosis contains two isocitrate lyases with 27% sequence identity, ICL1 (428aa) and
ICL2 (766aa), encoded by the icl1 and aceA genes, respectively [85]. Evidence indicates
that ICLs are essential proteins not only for virulence [86,87], but also for the survival
of non-replicating M. tuberculosis in a nutrient-deprived, oxygen-rich model of latency
(the Loebel–Betts model) [88]. Several compounds have been investigated to validate the
druggability of the target. 3-Nitropropionate and itaconate (structures not shown) strongly
inhibit M. tuberculosis ICLs and, however, were found to be very toxic [89,90]. Bhusal et al.
defined the main problems in the development of ICL inhibitors: the highly polar nature
of the ICL binding pocket may lead to a drug selectivity issue, and the small size of the
pocket will not allow a complete SAR study of the small molecules [91]. Some other studies
have identified 4-(4-methoxy-phenyl)-4-oxo-crotonic acid methyl ester (IMBI-3), phenolic
N-mono-substituted carbamates, salicylanilide derivatives, and cis-2,3-epoxy-succinic acid
(structures not shown) as ICL inhibitors; however, limited data do not permit a conclusion
about the usefulness of their further development [92–95].

6.5. Malate Synthase (GlcB)

While isocitrate lyase catalyzes the first step of the glyoxylate shunt, malate synthase
acts in the second step of this pathway and converts glyoxylate into malate using one
molecule of acetyl-CoA [96,97]. Krieger et al. suggested that GlcB may be a more “drug-
gable” target than ICL [96]. Using a focused library of glyoxylate-like small molecules,
researchers identified (Z)-2-hydroxy-4-oxo-4-phenylbut-2-enoic acid (PDKA) as a suitable
GlcB inhibitor with an IC50 value of 2.0 µM [96]. However, PDKA was unstable in cell
growth media (half-life t1/2 = 3 days). The PDKA derivative containing an ortho-bromine
atom in the 4-phenyl ring (compound 8, Figure 1) exhibited a more pronounced enzyme
inhibition effect (IC50 = 0.6 µM), but it is also not sufficiently stable. At the same time,
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the derivative with three substituents in the phenyl ring was weaker inhibitor of GlcB
(IC50 = 5.5 µM) but with a longer half-life. To improve stability, Krieger et al. synthesized
and evaluated the pharmacological properties of several alkyl- and benzyl-ester prodrugs
of selected PDKA analogs [96]. The methyl ester (compound 9, Figure 1) showed a more
favorable in vitro pharmacokinetic profile than other prodrugs and was selected for further
detailed studies.

6.6. L-Alanine Dehydrogenase (L-AlaDH)

L-Alanine dehydrogenase is another enzyme expressed by mycobacteria during the
latent state [98]. This enzyme catalyzes a reversible conversion of L-alanine to pyruvate.
Griffin et al. also proposed that L-AlaDH maintains an optimal NADH/NAD ratio during
mycobacterial cells’ recovery from hypoxic state (anaerobiosis), and the enzyme may
be utilized as a potential target for TB dormancy inhibitors [99]. So, Shiram’s research
group attempted to develop L-AlaDH inhibitors [100–102]. In the articles discussed, they
identify a prospective parent structure from each virtual screening and synthesize a range
of molecules based on this backbone. Then, they evaluate the activity of the compounds
against nutrient-starved dormant bacilli to investigate the SAR. High enzyme-specificity
compounds were cytotoxic and, in contrast, low enzyme-specificity molecules showed less
cytotoxic effect. In the nutrient-starved model of dormant M. tuberculosis, the bacterial
reduction value was approximately 2-log. A few interesting hits (compounds 10–12) are
presented in Figure 1. However, the rationale for further optimization of these chemical
classes needs to be clarified in detail.

6.7. Cysteine Synthase (CysM)

Cysteine synthase (CysM), one of three pyridoxal phosphate-dependent cysteine syn-
thases in M. tuberculosis, is responsible for the synthesis of cysteine using O-phosphoserine
and a sulfur carrier protein CysO [103]. Moreover, cysteine biosynthesis plays an impor-
tant role during M. tuberculosis dormancy, since cysteine is involved in the biosynthesis
of mycothiol, which is used to maintain redox homeostasis by mycobacteria [104]. A
diverse library screening campaign by Brunner et al. led to the selection of urea-based hits
for follow-up experiments. 3-(3-(3,4-Dichlorophenyl)ureido)benzoic acid (compound 13,
Figure 1) shows suitable CysM-specific affinity with a Kd value of 0.32 µM and a 3-log
decrease in bacterial count in a nutrient-starved model of dormancy (or the Loebel–Betts
model) [105]. A preliminary SAR study revealed that the introduction of an additional
substituent in the left phenyl ring or the replacement of two chlorine atoms with various
groups in the right phenyl ring had little effect on target-specific affinity. At the same time,
the urea moiety is important for binding to the CysM active site. Furthermore, Brunner
et al. additionally evaluated these urea-based derivatives for binding with two another cys-
teine synthases, CysK1 and CysK2, and found some interesting inhibitors [106]. However,
in-depth SAR investigation is needed to understand the potential of this chemical class as
CysM inhibitors.

6.8. Copper-Mediated Innate Immunity

Copper-mediated innate immunity and its antibacterial properties [107–110] coupled
with the ability of the metal ion to accumulate in bacteria-infected macrophage phago-
somes [111] suggest copper as a viable antibacterial weapon. 1-Hydroxy-5-R-pyridine-
2(1H)-thiones (compounds 14–16, Figure 1), active against streptomycin-deficient cells of
M. tuberculosis 18b strain in vitro [25], form stable, charged lipophilic complexes with Cu2+

ions for transport into M. tuberculosis cells [112]. Subsequent metabolic transformation
of the compounds led to the release and accumulation of free ions in the cytoplasm of
bacilli. The actual molecular target of copper toxicity is still debated, but it may be scattered
across a range of metabolic targets containing or constructing iron–sulfur clusters [113–115].
Hence, copper may actually affect a wide variety of cellular processes; this “target plurality”
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appears to be effective in inhibiting tubercle bacilli at different metabolic stages, including
the dormant state.

6.9. Unknown Targets

Santivañez-Veliz et al. reported that the quinoxaline-based molecule (compound 14,
Figure 2) inhibits M. tuberculosis cells with an MIC value of 0.375 µg/mL in a low-oxygen
recovery assay (LORA) [116]. Nikonenko et al. synthesized the 3-triazenoindole-based
molecule TU112 (compound 15, Figure 2), which inhibits dormant M. tuberculosis by
~2.0-log in the Salina model, but the toxicity profile of the molecule and the class as a whole
strongly needs to be optimized [117]. In another article, a thiazole derivative (compound 16,
Figure 2) was found to show more than 90% inhibition of dormant M. tuberculosis H37Ra at
10 µM [118]. Bonnet et al. demonstrated the bactericidal activity of hydrazones (structures
not shown) against non-replicating M. tuberculosis in two (hypoxia and starvation) dor-
mancy models [119]. A benzimidazole–acrylonitrile hybrid (compound 17, Figure 2) shows
a 2.8-log reduction in mycobacterial count in a nutrient-starved dormancy model [120].
Monakhova et al. investigated a class of pyrano[3,2-b]indolones and found that a par-
ticular compound (compound 18, Figure 2) exhibits good activity against M. tuberculosis
H37Rv and the streptomycin-starved M. tuberculosis 18b model (ss18b) with MIC99 values
of 0.3 and 0.4 µg/mL, respectively [121]. Rather et al. evaluated the potency of a recently
discovered compound, PAMCHD (compound 19, Figure 2), against M. tuberculosis in sev-
eral in vitro models mimicking the latent state [122]. PAMCHD was found to sterilize
persister M. tuberculosis cells in a hypoxia-induced model with a 6.5-log CFU decrease, as
well as in a nutrient-starved model with a 7.5-log decrease. In some other works, molecular
docking has been used to predict drug targets for the compounds discovered [123–126].
We have included these articles in the present chapter of the review because in all these
cases, mechanism-of-action studies are needed to clarify the site of action of the molecules.

Figure 2. Small molecules active against dormant M. tuberculosis by an unknown mechanism of action. Com-
pound 14: 6-(4-(4-fluorophenyl)piperazin-1-yl)-3-(methoxycarbonyl)-2-(trifluoromethyl)quinoxaline 1,4-dioxide; com-
pound 15: ethyl ester of 3-((4-methylpiperazin-1-yl)diazenyl)-1H-indole-2-carboxylic acid; compound 16: ethyl ester
of 2-cyclohexyl-5-(quinoxalin-6-yl)thiazole-4-carboxylic acid; compound 17: 2-(1H-benzo[d]imidazol-2-yl)-3-(4-(4-(p-
tolyl)piperazin-1-yl)phenyl)acrylonitrile; compound 18: 2-oxo-2,5-dihydropyrano[3,2-b]indole-3-carbonitrile; compound 19:
2-(((2-hydroxyphenyl)amino)methylene)-5,5-dimethylcyclohexane-1,3-dione.
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7. Concluding Remarks and Future Outlook

Latent tuberculosis infection is a serious obstacle to the complete elimination of
tuberculosis. Therapeutic and preventive options for LTBI treatment are limited. For
example, the only vaccine licensed against TB thus far is Bacille Calmette-Guérin (BCG),
which was approved a century ago [127]. BCG vaccination primarily provides consistent
protection against the most severe forms of childhood tuberculosis and practically does
not provide protection against adult-type tuberculosis [128]. In 2019, GSK reported that
the M72/AS01E vaccine candidate reduces the incidence of pulmonary tuberculosis in
HIV-negative adults with latent infection. It demonstrated an overall efficacy of 50% for at
least three years after vaccination in a Phase IIb study, but there is still no information on
additional clinical trials or market launch of the vaccine [129].

Phage therapy may play an important role in TB management. Recently, Guerrero-
Bustamante et al. found that a five-phage cocktail minimized the emergence of phage
resistance and cross-resistance to multiple phages, and efficiently killed M. tuberculosis
strains tested [130]. We hypothesize that the evaluation of bacteriophages against dormant
tubercle cells represents an interesting research direction, but more data are needed to
clarify this point.

The discovery of small molecules acting on both active and dormant M. tuberculosis
cells seems to be the most promising direction. In the present mini-review, we highlighted
early-stage compounds targeting the dormancy survival two-component regulatory system
and a number of enzymes, such as methionine aminopeptidase, lysine-aminotransferase,
or malate synthase, that are specific for the dormant state of tubercle bacilli. In addition, the
discovery of multiple-target compounds that can induce apoptosis only in mycobacterial
cells, for example, through copper-mediated innate immunity, may also represent an
attractive way to target dormant bacteria.

Finally, tackling the spread of tuberculosis from two ends—small-molecule drug dis-
covery and vaccination—holds great promise for fighting this dangerous and
persistent pathogen.
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